This analysis is no longer being updated. This is because the methodology and data for baseline measurements is no longer applicable.
From February 2024, excess mortality reporting is available at: Excess mortality in England.
Measuring excess mortality: a guide to the main reports details the different analysis available and how and when they should be used for the UK and England.
The data in these reports is from 20 March 2020 to 29 December 2023. The first 2 reports on this page provide an estimate of excess mortality during and after the COVID-19 pandemic in:
‘Excess mortality’ in these analyses is defined as the number of deaths that are above the estimated number expected. The expected number of deaths is modelled using 5 years of data from preceding years to estimate the number of death registrations expected in each week.
In both reports, excess deaths are broken down by age, sex, upper tier local authority, ethnic group, level of deprivation, cause of death and place of death. The England report also includes a breakdown by region.
For previous reports, see:
If you have any comments, questions or feedback, contact us at pha-ohid@dhsc.gov.uk.
We also publish a set of bespoke analyses using the same excess mortality methodology and data but cut in ways that are not included in the England and English regions reports on this page.
For the week ending June 20, 2025, weekly deaths in England and Wales were 374 below the number expected, compared with 228 below what was expected in the previous week. In late 2022, and through early 2023, excess deaths were elevated for a number of weeks, with the excess deaths figure for the week ending January 13, 2023, the highest since February 2021. In the middle of April 2020, at the height of the Coronavirus (COVID-19) pandemic, there were almost 12,000 excess deaths a week recorded in England and Wales. It was not until two months later, in the week ending June 19, 2020, that the number of deaths began to be lower than the five-year average for the corresponding week. Most deaths since 1918 in 2020 In 2020, there were 689,629 deaths in the United Kingdom, making that year the deadliest since 1918, at the height of the Spanish influenza pandemic. As seen in the excess death figures, April 2020 was by far the worst month in terms of deaths during the pandemic. The weekly number of deaths for weeks 16 and 17 of that year were 22,351, and 21,997 respectively. Although the number of deaths fell to more usual levels for the rest of that year, a winter wave of the disease led to a high number of deaths in January 2021, with 18,676 deaths recorded in the fourth week of that year. For the whole of 2021, there were 667,479 deaths in the UK, 22,150 fewer than in 2020. Life expectancy in the UK goes into reverse In 2022, life expectancy at birth for women in the UK was 82.6 years, while for men it was 78.6 years. This was the lowest life expectancy in the country for ten years, and came after life expectancy improvements stalled throughout the 2010s, and then declined from 2020 onwards. There is also quite a significant regional difference in life expectancy in the UK. In the London borough of Kensington and Chelsea, for example, the life expectancy for men was 81.5 years, and 86.5 years for women. By contrast, in Blackpool, in North West England, male life expectancy was just 73.1 years, while for women, life expectancy was lowest in Glasgow, at 78 years.
There were 10,412 deaths registered in England and Wales for the week ending June 20, 2025, compared with 10,902 in the previous week. During this time period, the two weeks with the highest number of weekly deaths were in April 2020, with the week ending April 17, 2020, having 22,351 deaths, and the following week 21,997 deaths, a direct result of the COVID-19 pandemic in the UK. Death and life expectancy As of 2022, the life expectancy for women in the UK was just over 82.5 years, and almost 78.6 years for men. Compared with 1765, when average life expectancy was under 39 years, this is a huge improvement in historical terms. Even in the more recent past, life expectancy was less than 47 years at the start of the 20th Century, and was under 70 as recently as the 1950s. Despite these significant developments in the long-term, improvements in life expectancy stalled between 2009/11 and 2015/17, and have even gone into decline since 2020. Between 2020 and 2022, for example, life expectancy at birth fell by 23 weeks for females, and 37 weeks for males. COVID-19 in the UK The first cases of COVID-19 in the United Kingdom were recorded on January 31, 2020, but it was not until a month later that cases began to rise exponentially. By March 5 of this year there were more than 100 cases, rising to 1,000 days later and passing 10,000 cumulative cases by March 26. At the height of the pandemic in late April and early May, there were around six thousand new cases being recorded daily. As of January 2023, there were more than 24.2 million confirmed cumulative cases of COVID-19 recorded in the United Kingdom, resulting in 202,156 deaths.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Age-standardised mortality rates for deaths involving coronavirus (COVID-19), non-COVID-19 deaths and all deaths by vaccination status, broken down by age group.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Provisional counts of the number of deaths registered in England and Wales, by age, sex, region and Index of Multiple Deprivation (IMD), in the latest weeks for which data are available.
Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Provisional data on death registrations and death occurrences in England and Wales, broken down by sex and age. Includes deaths due to coronavirus (COVID-19) and leading causes of death.
Between 1953 and 2021, the death rate of the United Kingdom fluctuated between a high of 12.2 deaths per 1,000 people in 1962 and a low of 8.7 in 2011. From 2011 onwards, the death rate creeped up slightly and, in 2020, reached 10.3 deaths per 1,000 people. In 2021, the most recent year provided here, the death rate was ten, a decline from 2020 but still higher than in almost every year in the twenty-first century. The recent spike in the death rate corresponds to the emergence of the COVID-19 pandemic in the UK, with the first cases recorded in early 2020. Most deaths since 1918 in 2020 In 2020, there were 689,629 deaths in the United Kingdom, the highest in more than a century. Although there were fewer deaths in 2021, at 667,479, this was still far higher than in recent years. When looking at the weekly deaths in England and Wales for this time period, two periods stand out for reporting far more deaths than usual. The first period was between weeks 13 and 22 of 2020, which saw two weeks in late April report more than 20,000 deaths. Excess deaths for the week ending April 17, 2020, were 11,854, and 11,539 for the following week. Another wave of deaths occurred in January 2021, when there were more than 18,000 deaths per week between weeks three and five of that year. Improvements to life expectancy slowing Between 2020 and 2022, life expectancy in the United Kingdom was approximately 82.57 years for women and 78.57 years for men. Compared with life expectancy in 1980/82 this marked an increase of around six years for women and almost eight years for men. Despite these long-term developments, improvements to life expectancy have been slowing in recent years, and have declined since 2017/19. As of 2022, the country with the highest life expectancy in the World was Japan, which was 84.5 years, followed by South Korea, at 83.6 years.
The ‘Excess mortality in England’ report provides an estimate of excess mortality broken down by:
It is classified as https://osr.statisticsauthority.gov.uk/policies/official-statistics-policies/official-statistics-in-development/" class="govuk-link">official statistics in development.
This report replaced Excess mortality in England and English regions: March 2020 to December 2023 in February 2024. The changes between the 2 reporting methods are detailed in ‘Changes to OHID’s reporting of excess mortality in England’. The detailed methodology used for the report is also documented.
A summary of results from both reports can be found in ‘Excess mortality within England: 2023 data - statistical commentary’. In November 2024, monthly age-standardised mortality rates were added to the report to aid understanding of recent mortality trends.
‘Excess mortality in England’ complements other excess mortality and mortality surveillance reports from the Office for National Statistics (ONS) and the UK Health Security Agency (UKHSA). These are summarised in Measuring excess mortality: a guide to the main reports.
If you have any comments, questions or feedback, email statistics@dhsc.gov.uk. Mark the email subject as ‘Excess mortality reports feedback’.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Provisional age-standardised mortality rates for deaths due to COVID-19 by sex, English regions and Welsh health boards.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
UK: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data was reported at 9.000 NA in 2016. This records a decrease from the previous number of 9.200 NA for 2015. UK: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data is updated yearly, averaging 9.800 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 12.900 NA in 2000 and a record low of 9.000 NA in 2016. UK: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United Kingdom – Table UK.World Bank.WDI: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Pre-existing conditions of people who died due to COVID-19, broken down by country, broad age group, and place of death occurrence, usual residents of England and Wales.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
UK: Mortality Rate: Infant: per 1000 Live Births data was reported at 3.700 Ratio in 2016. This stayed constant from the previous number of 3.700 Ratio for 2015. UK: Mortality Rate: Infant: per 1000 Live Births data is updated yearly, averaging 8.900 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 22.900 Ratio in 1960 and a record low of 3.700 Ratio in 2016. UK: Mortality Rate: Infant: per 1000 Live Births data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s UK – Table UK.World Bank: Health Statistics. Infant mortality rate is the number of infants dying before reaching one year of age, per 1,000 live births in a given year.; ; Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.; Weighted Average; Given that data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. Moreover, they are among the indicators most frequently used to compare socioeconomic development across countries. Under-five mortality rates are higher for boys than for girls in countries in which parental gender preferences are insignificant. Under-five mortality captures the effect of gender discrimination better than infant mortality does, as malnutrition and medical interventions have more significant impacts to this age group. Where female under-five mortality is higher, girls are likely to have less access to resources than boys.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical chart and dataset showing U.K. birth rate by year from 1950 to 2025.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Population figures over a 25-year period, including births, deaths and migration by sex for regions and local authorities in England. 2018-based estimates are the latest principal projection.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Deaths registered in England and Wales in 2020 and how they compared with the five-year average (2015 to 2019), based on finalised 2020 mortality data. The figures are broken down by cause, place of death, age group, sex and deprivation.
Following Edward Jenner's development of the smallpox vaccine in 1796, the death rate due to smallpox in England and Wales dropped significantly. Although Jenner's work was published in 1797, it would take over half a century for the British government to make vaccination compulsory for all infants. Between 1847 and 1853, when vaccination was optional, children under the age of five years had, by far, the largest number of deaths; the total death rate was 1.6 thousand deaths per million people, which was more than five times the overall death rate due to smallpox. When compulsory vaccination was introduced, this helped bring the smallpox death rate in this age group down by over fifty percent between 1854 and 1871. When compulsory vaccination was enforced with penalties in the wake of the Great Pandemic of the 1870s, the smallpox death rate among children under the age of five dropped to approximately fifteen percent of its optional vaccination level. Increase among adults Along with the youngest age group, children aged five to ten years also saw their death rates decrease by roughly two thirds, and the death rate among those aged ten to 15 declined by just under one third during this time. It was among adults, aged above 15 years, where the introduction of mandatory vaccination had an adverse effect on their death rates; increasing by fifty percent among young adults, and almost doubling among those aged 25 to 45. The reason for this was because, contrary to Jenner's theory, vaccination did not guarantee lifelong protection, and immunization gradually wore off making vaccinated people susceptible to the virus again in adulthood. There was some decline in the smallpox death rates among adults throughout the 1870s and 1880s, as revaccination became more common, and the enforced vaccination of children prevented smallpox from spreading as rapidly as in the pre-vaccination era. Overall trends While the introduction of mandatory vaccination saw the number of smallpox deaths increase for age groups above 15 years, the overall rate among all ages decreased, due to the huge drop in deaths among infants and children. The smallpox death rate dropped by over one quarter when compulsory vaccination was introduced, and it then fell to just over one third of it's optional-vaccination level when these measures were enforced. The development of the smallpox vaccine and the implementation of mandatory vaccination led to the eradication of the disease in Britain by 1934, and contributed greatly to the demographic developments of the twentieth century, such as the declines in fertility rate and birth rate, and the increase in life expectancy.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
UK: Probability of Dying at Age 15-19 Years: per 1000 data was reported at 1.300 Ratio in 2019. This stayed constant from the previous number of 1.300 Ratio for 2018. UK: Probability of Dying at Age 15-19 Years: per 1000 data is updated yearly, averaging 1.900 Ratio from Dec 1990 (Median) to 2019, with 30 observations. The data reached an all-time high of 2.600 Ratio in 1990 and a record low of 1.200 Ratio in 2017. UK: Probability of Dying at Age 15-19 Years: per 1000 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United Kingdom – Table UK.World Bank.WDI: Health Statistics. Probability of dying between age 15-19 years of age expressed per 1,000 adolescents age 15, if subject to age-specific mortality rates of the specified year.; ; Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.; Weighted average; Aggregate data for LIC, UMC, LMC, HIC are computed based on the groupings for the World Bank fiscal year in which the data was released by the UN Inter-agency Group for Child Mortality Estimation.
On 1 April 2025 responsibility for fire and rescue transferred from the Home Office to the Ministry of Housing, Communities and Local Government.
This information covers fires, false alarms and other incidents attended by fire crews, and the statistics include the numbers of incidents, fires, fatalities and casualties as well as information on response times to fires. The Ministry of Housing, Communities and Local Government (MHCLG) also collect information on the workforce, fire prevention work, health and safety and firefighter pensions. All data tables on fire statistics are below.
MHCLG has responsibility for fire services in England. The vast majority of data tables produced by the Ministry of Housing, Communities and Local Government are for England but some (0101, 0103, 0201, 0501, 1401) tables are for Great Britain split by nation. In the past the Department for Communities and Local Government (who previously had responsibility for fire services in England) produced data tables for Great Britain and at times the UK. Similar information for devolved administrations are available at https://www.firescotland.gov.uk/about/statistics/" class="govuk-link">Scotland: Fire and Rescue Statistics, https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-Inclusion/Community-Safety" class="govuk-link">Wales: Community safety and https://www.nifrs.org/home/about-us/publications/" class="govuk-link">Northern Ireland: Fire and Rescue Statistics.
If you use assistive technology (for example, a screen reader) and need a version of any of these documents in a more accessible format, please email alternativeformats@homeoffice.gov.uk. Please tell us what format you need. It will help us if you say what assistive technology you use.
Fire statistics guidance
Fire statistics incident level datasets
https://assets.publishing.service.gov.uk/media/67fe79e3393a986ec5cf8dbe/FIRE0101.xlsx">FIRE0101: Incidents attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 126 KB) Previous FIRE0101 tables
https://assets.publishing.service.gov.uk/media/67fe79fbed87b81608546745/FIRE0102.xlsx">FIRE0102: Incidents attended by fire and rescue services in England, by incident type and fire and rescue authority (MS Excel Spreadsheet, 1.56 MB) Previous FIRE0102 tables
https://assets.publishing.service.gov.uk/media/67fe7a20694d57c6b1cf8db0/FIRE0103.xlsx">FIRE0103: Fires attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 156 KB) Previous FIRE0103 tables
https://assets.publishing.service.gov.uk/media/67fe7a40ed87b81608546746/FIRE0104.xlsx">FIRE0104: Fire false alarms by reason for false alarm, England (MS Excel Spreadsheet, 331 KB) Previous FIRE0104 tables
https://assets.publishing.service.gov.uk/media/67fe7a5f393a986ec5cf8dc0/FIRE0201.xlsx">FIRE0201: Dwelling fires attended by fire and rescue services by motive, population and nation (MS Excel Spreadsheet, <span class="gem-c-attachm
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Annual UK and constituent country figures for births, deaths, marriages, divorces, civil partnerships and civil partnership dissolutions.
This analysis is no longer being updated. This is because the methodology and data for baseline measurements is no longer applicable.
From February 2024, excess mortality reporting is available at: Excess mortality in England.
Measuring excess mortality: a guide to the main reports details the different analysis available and how and when they should be used for the UK and England.
The data in these reports is from 20 March 2020 to 29 December 2023. The first 2 reports on this page provide an estimate of excess mortality during and after the COVID-19 pandemic in:
‘Excess mortality’ in these analyses is defined as the number of deaths that are above the estimated number expected. The expected number of deaths is modelled using 5 years of data from preceding years to estimate the number of death registrations expected in each week.
In both reports, excess deaths are broken down by age, sex, upper tier local authority, ethnic group, level of deprivation, cause of death and place of death. The England report also includes a breakdown by region.
For previous reports, see:
If you have any comments, questions or feedback, contact us at pha-ohid@dhsc.gov.uk.
We also publish a set of bespoke analyses using the same excess mortality methodology and data but cut in ways that are not included in the England and English regions reports on this page.