100+ datasets found
  1. Share content from ArcGIS Pro

    • teachwithgis.co.uk
    • lecturewithgis.co.uk
    Updated Mar 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri UK Education (2023). Share content from ArcGIS Pro [Dataset]. https://teachwithgis.co.uk/datasets/share-content-from-arcgis-pro-
    Explore at:
    Dataset updated
    Mar 24, 2023
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri UK Education
    Description

    Publishing your data and maps from desktop GIS to ArcGIS Online is essential to unlock modern GIS capabilities like collaboration or sharing your projects using interactive data-driven applications. The key to unlock this connected GIS is ArcGIS Identity.With an ArcGIS Identity you are unlocking a connected GIS. You can share your maps or selected map layers as a web layer. Web layers are stored in your organization's ArcGIS Online as one of the 7 different layer types of hosted layers. Depending on the layer type, the hosted layer will be shared with different capabilities.

  2. a

    My Layers Metadata

    • univredlands.hub.arcgis.com
    • national4hgeospatialteam.us
    • +8more
    Updated Apr 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    URSpatial (2023). My Layers Metadata [Dataset]. https://univredlands.hub.arcgis.com/datasets/univredlands::final-layers?layer=4
    Explore at:
    Dataset updated
    Apr 5, 2023
    Dataset authored and provided by
    URSpatial
    Area covered
    Description

    Business Analyst Metadata Table

  3. r

    Public Open Space (POS) geographic information system (GIS) layer

    • researchdata.edu.au
    Updated Aug 8, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Associate Paula Hooper (2012). Public Open Space (POS) geographic information system (GIS) layer [Dataset]. https://researchdata.edu.au/public-open-space-pos-geographic-information-system-gis-layer
    Explore at:
    Dataset updated
    Aug 8, 2012
    Dataset provided by
    The University of Western Australia
    Authors
    Research Associate Paula Hooper
    Time period covered
    Dec 1, 2011 - Present
    Area covered
    Description

    Public Open Space Geographic Information System data collection for Perth and Peel Metropolitan Areas

    The public open space (POS) dataset contains polygon boundaries of areas defined as publicly available and open. This geographic information system (GIS) dataset was collected in 2011/2012 using ArcGIS software and aerial photography dated from 2010-2011. The data was collected across the Perth Metro and Peel Region.

    POS refer to all land reserved for the provision of green space and natural environments (e.g. parks, reserves, bushland) that is freely accessible and intended for use for recreation purposes (active or passive) by the general public. Four types of “green and natural public open spaces” are distinguished: (1) Park; (2) Natural or Conservation Area; (3) School Grounds; and (4) Residual. Areas where the public are not permitted except on payment or which are available to limited and selected numbers by membership (e.g. golf courses and sports centre facilities) or setbacks and buffers required by legislation are not included.

    Initially, potential POSs were identified from a combination of existing geographic information system (GIS) spatial data layers to create a generalized representation of ‘green space’ throughout the Perth metropolitan and Peel regions. Base data layers include: cadastral polygons, metropolitan and regional planning scheme polygons, school point locations, and reserve vesting polygons. The ‘green’ space layer was then visually updated and edited to represent the true boundaries of each POS using 2010-2011 aerial photography within the ArcGIS software environment. Each resulting ’green’ polygon was then classified using a decision tree into one of four possible categories: park, natural or conservation area, school grounds, or residual green space.

    Following the classification process, amenity and other information about each POS was collected for polygons classified as “Park” following a protocol developed at the Centre for the Built Environment and Health (CBEH) called POSDAT (Public Open Space Desktop Auditing Tool). The parks were audited using aerial photography visualized using ArcGIS software. . The presence or absence of amenities such as sporting facilities (e.g. tennis courts, soccer fields, skate parks etc) were audited as well as information on the environmental quality (i.e. presence of water, adjacency to bushland, shade along paths, etc), recreational amenities (e.g. presence of BBQ’, café or kiosks, public access toilets) and information on selected features related to personal safety.

    The data is stored in an ArcGIS File Geodatabase Feature Class (size 4MB) and has restricted access.

    Data creation methodology, data definitions, and links to publications based on this data, accompany the dataset.

  4. Fire Stations

    • gis.data.mass.gov
    • hub.arcgis.com
    • +1more
    Updated Apr 18, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cape Cod Commission (2014). Fire Stations [Dataset]. https://gis.data.mass.gov/maps/4ef9d5b8adc04db7bceeee7a270facc7
    Explore at:
    Dataset updated
    Apr 18, 2014
    Dataset authored and provided by
    Cape Cod Commission
    Area covered
    Description

    The Fire Stations layer shows the point locations of Fire stations. The Massachusetts Emergency Management Agency (MEMA) GIS Program in cooperation with the Regional Planning Agencies and participating communities created the data as part of the development of Homeland Security Data Layers. Stored in the ArcSDE, the layer is named FIRESTATIONS_PT_MEMA.

  5. m

    Massachusetts Counties with Generalized Coast (Hosted Feature Layer)

    • gis.data.mass.gov
    Updated Jun 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MassGIS - Bureau of Geographic Information (2022). Massachusetts Counties with Generalized Coast (Hosted Feature Layer) [Dataset]. https://gis.data.mass.gov/maps/dd97a1c5b1294e528ed421d55ff8f2a6
    Explore at:
    Dataset updated
    Jun 1, 2022
    Dataset authored and provided by
    MassGIS - Bureau of Geographic Information
    Area covered
    Description

    Boundaries of Massachusetts' Counties, derived from MassGIS' Municipalities layer with a generalized coastline. Stored as a hosted feature layer within MassGIS' ArcGIS Online organization. Contains both line and area features.View metadata

  6. n

    My polygons

    • national4hgeospatialteam.us
    • univredlands.hub.arcgis.com
    • +7more
    Updated Dec 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National 4-H GIS Leadership Team (2024). My polygons [Dataset]. https://www.national4hgeospatialteam.us/datasets/my-polygons-1
    Explore at:
    Dataset updated
    Dec 11, 2024
    Dataset authored and provided by
    National 4-H GIS Leadership Team
    Area covered
    Description

    Business Analyst Polygons Layer

  7. d

    salt storage record table

    • catalog.data.gov
    • datasets.ai
    • +3more
    Updated Dec 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fluidstate Consulting (2024). salt storage record table [Dataset]. https://catalog.data.gov/dataset/salt-storage-record
    Explore at:
    Dataset updated
    Dec 13, 2024
    Dataset provided by
    Fluidstate Consulting
    Description

    Mapping of deicing material storage facilities in the Lake Champlain Basin was conducted during the late fall and winter of 2022-23. 126 towns were initially selected for mapping (some divisions within the GIS towns data are unincorporated “gores”). Using the list of towns, town clerk contact information was obtained from the Vermont Secretary of State’s website, which maintains a database of contact information for each town.Each town was contacted to request information about their deicing material storage locations and methods. Email and telephone scripts were developed to briefly introduce the project and ask questions about the address of any deicing material storage locations in the town, type of materials stored at each site, duration of time each site has been used, whether materials on site are covered, and the type of surface the materials are stored on, if any. Data were entered into a geospatial database application (Fulcrum). Information was gathered there and exported as ArcGIS file geodatabases and Comma Separated Values (CSV) files for use in Microsoft Excel. Data were collected for 118 towns out of the original 126 on the list (92%). Forty-three (43) towns reported that they are storing multiple materials types at their facilities. Four (4) towns have multiple sites where they store material (Dorset, Pawlet, Morristown, and Castleton). Of these, three (3) store multiple materials at one or both of their sites (Pawlet, Morristown, and Castleton). Where towns have multiple materials or locations, the record information from the overall town identifier is linked to the material stored using a unique ‘one-to-many’ identifier. Locations of deicing material facilities, as shown in the database, were based on the addresses or location descriptions provided by town staff members and was verified only using the most recent aerial imagery (typically later than 2018 for all towns). Locations have not been field verified, nor have site conditions and infrastructure or other information provided by town staff.Dataset instructions:The dataset for Deicing Material Storage Facilities contains two layers – the ‘parent’ records titled ‘salt_storage’ and the ‘child’ records titled ‘salt_storage_record’ with attributes for each salt storage site. This represents a ‘one-to-many’ data structure. To see the attributes for each salt storage site, the user needs to Relate the data. The relationship can be accomplished in GIS software. The Relate needs to be built on the following fields:‘salt_storage’: ‘fulcrum_id’‘salt_storage_record: ‘fulcrum_parent_id’This will create a one-to-many relationship between the geographic locations and the attributes for each salt storage site.

  8. Range: Pasture (Feature Layer)

    • agdatacommons.nal.usda.gov
    bin
    Updated Nov 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Range: Pasture (Feature Layer) [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Range_Pasture_Feature_Layer_/25973101
    Explore at:
    binAvailable download formats
    Dataset updated
    Nov 24, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Designates boundaries to establish extent of livestock distribution and management within pastures. This is a published layer created by combining GIS data managed by each National Forest and attribute data stored in the Forest Service Infra database application. This dataset is designed for reporting and analysis and is not used to enter or edit data.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService OGC WMS CSV Shapefile GeoJSON KML For complete information, please visit https://data.gov.

  9. Death Valley National Park Small-Scale Base GIS Data

    • catalog.data.gov
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Death Valley National Park Small-Scale Base GIS Data [Dataset]. https://catalog.data.gov/dataset/death-valley-national-park-small-scale-base-gis-data
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.

  10. g

    My Geographies

    • growbuckeye.com
    • esrinederland.hub.arcgis.com
    • +4more
    Updated Dec 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Buckeye, Arizona (2020). My Geographies [Dataset]. https://www.growbuckeye.com/datasets/my-geographies
    Explore at:
    Dataset updated
    Dec 9, 2020
    Dataset authored and provided by
    Buckeye, Arizona
    Area covered
    Description

    Business Analyst Geographies Layer

  11. n

    My attachments

    • national4hgeospatialteam.us
    • irs-first-site-umn.hub.arcgis.com
    • +5more
    Updated Dec 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National 4-H GIS Leadership Team (2024). My attachments [Dataset]. https://www.national4hgeospatialteam.us/datasets/my-attachments-1
    Explore at:
    Dataset updated
    Dec 11, 2024
    Dataset authored and provided by
    National 4-H GIS Leadership Team
    Area covered
    Description

    Business Analyst Attachments Table

  12. Catoctin Mountain Park Small-Scale Base GIS Data

    • catalog.data.gov
    • gimi9.com
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Catoctin Mountain Park Small-Scale Base GIS Data [Dataset]. https://catalog.data.gov/dataset/catoctin-mountain-park-small-scale-base-gis-data
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Catoctin Mountain
    Description

    This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.

  13. Cumberland Island National Seashore Small-Scale Base GIS Data

    • catalog.data.gov
    Updated Nov 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Cumberland Island National Seashore Small-Scale Base GIS Data [Dataset]. https://catalog.data.gov/dataset/cumberland-island-national-seashore-small-scale-base-gis-data
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Cumberland Island
    Description

    This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.

  14. My point locations

    • national4hgeospatialteam.us
    • growbuckeye.com
    • +9more
    Updated Dec 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National 4-H GIS Leadership Team (2024). My point locations [Dataset]. https://www.national4hgeospatialteam.us/datasets/4-H::nc-farmland-layers/explore?layer=0
    Explore at:
    Dataset updated
    Dec 11, 2024
    Dataset provided by
    4-Hhttps://4-h.org/
    Authors
    National 4-H GIS Leadership Team
    Area covered
    Description

    Business Analyst Locations Layer

  15. Global map of tree density

    • figshare.com
    zip
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crowther, T. W.; Glick, H. B.; Covey, K. R.; Bettigole, C.; Maynard, D. S.; Thomas, S. M.; Smith, J. R.; Hintler, G.; Duguid, M. C.; Amatulli, G.; Tuanmu, M. N.; Jetz, W.; Salas, C.; Stam, C.; Piotto, D.; Tavani, R.; Green, S.; Bruce, G.; Williams, S. J.; Wiser, S. K.; Huber, M. O.; Hengeveld, G. M.; Nabuurs, G. J.; Tikhonova, E.; Borchardt, P.; Li, C. F.; Powrie, L. W.; Fischer, M.; Hemp, A.; Homeier, J.; Cho, P.; Vibrans, A. C.; Umunay, P. M.; Piao, S. L.; Rowe, C. W.; Ashton, M. S.; Crane, P. R.; Bradford, M. A. (2023). Global map of tree density [Dataset]. http://doi.org/10.6084/m9.figshare.3179986.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Crowther, T. W.; Glick, H. B.; Covey, K. R.; Bettigole, C.; Maynard, D. S.; Thomas, S. M.; Smith, J. R.; Hintler, G.; Duguid, M. C.; Amatulli, G.; Tuanmu, M. N.; Jetz, W.; Salas, C.; Stam, C.; Piotto, D.; Tavani, R.; Green, S.; Bruce, G.; Williams, S. J.; Wiser, S. K.; Huber, M. O.; Hengeveld, G. M.; Nabuurs, G. J.; Tikhonova, E.; Borchardt, P.; Li, C. F.; Powrie, L. W.; Fischer, M.; Hemp, A.; Homeier, J.; Cho, P.; Vibrans, A. C.; Umunay, P. M.; Piao, S. L.; Rowe, C. W.; Ashton, M. S.; Crane, P. R.; Bradford, M. A.
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Crowther_Nature_Files.zip This description pertains to the original download. Details on revised (newer) versions of the datasets are listed below. When more than one version of a file exists in Figshare, the original DOI will take users to the latest version, though each version technically has its own DOI. -- Two global maps (raster files) of tree density. These maps highlight how the number of trees varies across the world. One map was generated using biome-level models of tree density, and applied at the biome scale. The other map was generated using ecoregion-level models of tree density, and applied at the ecoregion scale. For this reason, transitions between biomes or between ecoregions may be unrealistically harsh, but large-scale estimates are robust (see Crowther et al 2015 and Glick et al 2016). At the outset, this study was intended to generate reliable estimates at broad spatial scales, which inherently comes at the cost of fine-scale precision. For this reason, country-scale (or larger) estimates are generally more robust than individual pixel-level estimates. Additionally, due to data limitations, estimates for Mangroves and Tropical coniferous forest (as identified by WWF and TNC) were generated using models constructed from Topical moist broadleaf forest data and Temperate coniferous forest data, respectively. Because we used ecological analogy, the estimates for these two biomes should be considered less reliable than those of other biomes . These two maps initially appeared in Crowther et al (2015), with the biome map being featured more prominently. Explicit publication of the data is associated with Glick et al (2016). As they are produced, updated versions of these datasets, as well as alternative formats, will be made available under Additional Versions (see below).

    Methods: We collected over 420,000 ground-sources estimates of tree density from around the world. We then constructed linear regression models using vegetative, climatic, topographic, and anthropogenic variables to produce forest tree density estimates for all locations globally. All modeling was done in R. Mapping was done using R and ArcGIS 10.1.

    Viewing Instructions: Load the files into an appropriate geographic information system (GIS). For the original download (ArcGIS geodatabase files), load the files into ArcGIS to view or export the data to other formats. Because these datasets are large and have a unique coordinate system that is not read by many GIS, we suggest loading them into an ArcGIS dataframe whose coordinate system matches that of the data (see File Format). For GeoTiff files (see Additional Versions), load them into any compatible GIS or image management program.

    Comments: The original download provides a zipped folder that contains (1) an ArcGIS File Geodatabase (.gdb) containing one raster file for each of the two global models of tree density – one based on biomes and one based on ecoregions; (2) a layer file (.lyr) for each of the global models with the symbology used for each respective model in Crowther et al (2015); and an ArcGIS Map Document (.mxd) that contains the layers and symbology for each map in the paper. The data is delivered in the Goode homolosine interrupted projected coordinate system that was used to compute biome, ecoregion, and global estimates of the number and density of trees presented in Crowther et al (2015). To obtain maps like those presented in the official publication, raster files will need to be reprojected to the Eckert III projected coordinate system. Details on subsequent revisions and alternative file formats are list below under Additional Versions.----------

    Additional Versions: Crowther_Nature_Files_Revision_01.zip contains tree density predictions for small islands that are not included in the data available in the original dataset. These predictions were not taken into consideration in production of maps and figures presented in Crowther et al (2015), with the exception of the values presented in Supplemental Table 2. The file structure follows that of the original data and includes both biome- and ecoregion-level models.

    Crowther_Nature_Files_Revision_01_WGS84_GeoTiff.zip contains Revision_01 of the biome-level model, but stored in WGS84 and GeoTiff format. This file was produced by reprojecting the original Goode homolosine files to WGS84 using nearest neighbor resampling in ArcMap. All areal computations presented in the manuscript were computed using the Goode homolosine projection. This means that comparable computations made with projected versions of this WGS84 data are likely to differ (substantially at greater latitudes) as a product of the resampling. Included in this .zip file are the primary .tif and its visualization support files.

    References:

    Crowther, T. W., Glick, H. B., Covey, K. R., Bettigole, C., Maynard, D. S., Thomas, S. M., Smith, J. R., Hintler, G., Duguid, M. C., Amatulli, G., Tuanmu, M. N., Jetz, W., Salas, C., Stam, C., Piotto, D., Tavani, R., Green, S., Bruce, G., Williams, S. J., Wiser, S. K., Huber, M. O., Hengeveld, G. M., Nabuurs, G. J., Tikhonova, E., Borchardt, P., Li, C. F., Powrie, L. W., Fischer, M., Hemp, A., Homeier, J., Cho, P., Vibrans, A. C., Umunay, P. M., Piao, S. L., Rowe, C. W., Ashton, M. S., Crane, P. R., and Bradford, M. A. 2015. Mapping tree density at a global scale. Nature, 525(7568): 201-205. DOI: http://doi.org/10.1038/nature14967Glick, H. B., Bettigole, C. B., Maynard, D. S., Covey, K. R., Smith, J. R., and Crowther, T. W. 2016. Spatially explicit models of global tree density. Scientific Data, 3(160069), doi:10.1038/sdata.2016.69.

  16. e

    World - Wind Speed and Power Density GIS Data - Dataset - ENERGYDATA.INFO

    • energydata.info
    Updated Mar 20, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). World - Wind Speed and Power Density GIS Data - Dataset - ENERGYDATA.INFO [Dataset]. https://energydata.info/dataset/world-wind-speed-and-power-density-gis-data-2018
    Explore at:
    Dataset updated
    Mar 20, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    GeoTIFF raster data with worldwide wind speed and wind power density potential. The GIS data stems from the Global Wind Atlas (http://globalwindatlas.info/). This link provides access to the following layers: (1) Wind speed (WS): at 3 heights (50m, 100m, and 200m) , stored as separate bands in the raster file (2) Power Density (PD): at 3 heights (50m, 100m, and 200m) , stored as separate bands in the raster file. (3) Elevation (ELEV): at ground level (4) Air Density (RHO): at ground level (5) Ruggedness Index (RIX): at ground level All layers have 250m resolution.

  17. Black Canyon Of The Gunnison National Park Small-Scale Base GIS Data

    • catalog.data.gov
    • datasets.ai
    Updated Nov 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Black Canyon Of The Gunnison National Park Small-Scale Base GIS Data [Dataset]. https://catalog.data.gov/dataset/black-canyon-of-the-gunnison-national-park-small-scale-base-gis-data
    Explore at:
    Dataset updated
    Nov 11, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Gunnison River
    Description

    This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.

  18. Mapping 2021 Census Data using the Living Atlas

    • teachwithgis.co.uk
    • lecture-with-gis-esriukeducation.hub.arcgis.com
    Updated Apr 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri UK Education (2025). Mapping 2021 Census Data using the Living Atlas [Dataset]. https://teachwithgis.co.uk/datasets/mapping-2021-census-data-using-the-living-atlas
    Explore at:
    Dataset updated
    Apr 30, 2025
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri UK Education
    Description

    Anyone who has taught GIS using Census Data knows it is an invaluable data set for showing students how to take data stored in a table and join it to boundary data to transform this data into something that can be visualised and analysed spatially. Joins are a core GIS skill and need to be learnt, as not every data set is going to come neatly packaged as a shapefile or feature layer with all the data you need stored within. I don't know how many times I taught students to download data as a table from Nomis, load it into a GIS and then join that table data to the appropriate boundary data so they could produce choropleth maps to do some visual analysis, but it was a lot! Once students had gotten the hang of joins using census data they'd often ask why this data doesn't exist as a prepackaged feature layer with all the data they wanted within it. Well good news, now a lot off it is and it's accessible through the Living Atlas! Don't get me wrong I fully understand the importance of teaching students how to perform joins but once you have this understanding if you can access data that already contains all the information you need then you should be taking advantage of it to save you time. So in this exercise I am going to show you how to load English and Welsh Census Data from the 2021 Census into the ArcGIS Map Viewer from the Living Atlas and produce some choropleth maps to use to perform visual analysis without having to perform a single join.

  19. O

    Cambridge Parcel Data

    • data.cambridgema.gov
    Updated Oct 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Cambridge (2024). Cambridge Parcel Data [Dataset]. https://data.cambridgema.gov/Assessing/Cambridge-Parcel-Data/c392-hjk3
    Explore at:
    xlsx, kmz, application/geo+json, xml, csv, kmlAvailable download formats
    Dataset updated
    Oct 24, 2024
    Dataset authored and provided by
    City of Cambridge
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    This polygon layer contains all of the property parcels in Cambridge. Each parcel has a unique Map and Lot ID number that links it to a record in the Assessing Department's Vision database system. Created for internal use by the Assessing Department to provide a visual reference associated with each parcel in the CAMA database. Created for interdepartmental and external use as part of the web viewers on the City's website. Also created for addressing/geocoding needs, although the Buildings and Master Address List are currently more accurate than Parcels. NOTE: The Parcels GIS data layer is NOT used by Assessing to calculate land area or taxes. Assessors refer to actual deeds or plans accepted by the Massachusetts Land Court. The figures stored in the GIS data layer are for general reference purposes only.

    For more information and download links see: https://www.cambridgema.gov/GIS/gisdatadictionary/Assessing

  20. s

    Structures

    • opendata.starkcountyohio.gov
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Mar 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stark County Ohio (2024). Structures [Dataset]. https://opendata.starkcountyohio.gov/datasets/structures
    Explore at:
    Dataset updated
    Mar 20, 2024
    Dataset authored and provided by
    Stark County Ohio
    Area covered
    Description

    A combination of stormwater system data throughout Stark County, Ohio. The data is combined using an ETL via the data interoperability extension for ArcGIS Pro. Each weekend, the ETL is automatically ran via Python/Windows Task Scheduler to update the data with any changes from the past week from each of the source datasets. The source data is stored in ArcGIS SDE databases that Stark County GIS (SCGIS) provides for departments, cities, villages, and townships within the county. SCGIS currently maintains SDE databases for Canton, Alliance, Louisville, North Canton, Beach City, Easton Canton, Minerva, Meyers Lake, Stark County Engineer (SCE), and each of the townships. In addition to those datasets (which are updated weekly), this layer also includes data from the cities of Massillon and Canal Fulton, which are not stored in databases maintained by SCGIS. Data for those two cities is updated separately as new iterations become available.As this layer encompasses the entire county, source feature classes are consolidated into 4 layers to improve performance on ArcGIS Online. Discharge points are the point at which water exits part of the stormwater system, such as the outlet of a pipe or ditch. It includes outfalls defined under NPDES Phase II. Structures includes both inlets (catch basins, yard drains, etc.) and manholes. Pipes includes storm sewers, as well as culverts (pipes in which both ends are daylit). Finally, the ditches layer includes roadside ditches, as well as off-road ditches in some areas/instances.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri UK Education (2023). Share content from ArcGIS Pro [Dataset]. https://teachwithgis.co.uk/datasets/share-content-from-arcgis-pro-
Organization logo

Share content from ArcGIS Pro

Explore at:
Dataset updated
Mar 24, 2023
Dataset provided by
Esrihttp://esri.com/
Authors
Esri UK Education
Description

Publishing your data and maps from desktop GIS to ArcGIS Online is essential to unlock modern GIS capabilities like collaboration or sharing your projects using interactive data-driven applications. The key to unlock this connected GIS is ArcGIS Identity.With an ArcGIS Identity you are unlocking a connected GIS. You can share your maps or selected map layers as a web layer. Web layers are stored in your organization's ArcGIS Online as one of the 7 different layer types of hosted layers. Depending on the layer type, the hosted layer will be shared with different capabilities.

Search
Clear search
Close search
Google apps
Main menu