100+ datasets found
  1. Countries with the highest population decline rate 2024

    • statista.com
    • tokrwards.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Countries with the highest population decline rate 2024 [Dataset]. https://www.statista.com/statistics/264689/countries-with-the-highest-population-decline-rate/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    In the Cook Islands in 2024, the population decreased by about 2.24 percent compared to the previous year, making it the country with the highest population decline rate in 2024. Of the 20 countries with the highest rate of population decline, the majority are island nations, where emigration rates are high (especially to Australia, New Zealand, and the United States), or they are located in Eastern Europe, which suffers from a combination of high emigration rates and low birth rates.

  2. Data and Code for: Why is the Birth Rate Falling in the United States

    • openicpsr.org
    delimited
    Updated Jul 13, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Melissa S. Kearney; Phillip Levine; Luke Pardue (2021). Data and Code for: Why is the Birth Rate Falling in the United States [Dataset]. http://doi.org/10.3886/E144981V1
    Explore at:
    delimitedAvailable download formats
    Dataset updated
    Jul 13, 2021
    Dataset provided by
    American Economic Associationhttp://www.aeaweb.org/
    Authors
    Melissa S. Kearney; Phillip Levine; Luke Pardue
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    This paper documents a set of facts about the dramatic decline in birth rates in the United States between 2007 and 2020 and explores possible explanations for it. The overall reduction in the birth rate reflects both very large declines within certain groups of women, including teens and Hispanic women – and smaller declines among demographic groups that comprise a large population share, including college-educated white women. We explore potential economic, policy, and social factors that might be responsible for the overall decline. We conclude from our empirical examination of possible factors that there is not a readily identifiable economic or policy factor or set of factors this is likely responsible for a substantial share of the decline. Instead, the patterns observed suggest that widespread, hard to quantify changes in preferences for having children, aspirations for life, and the nature of parenting are more likely behind the recent decline in US births. We conclude with a brief discussion about the societal consequences for a declining birth rate and what the United States might do about it.

  3. Fertility rate of the world and continents 1950-2050

    • statista.com
    • tokrwards.com
    Updated Oct 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Fertility rate of the world and continents 1950-2050 [Dataset]. https://www.statista.com/statistics/1034075/fertility-rate-world-continents-1950-2020/
    Explore at:
    Dataset updated
    Oct 7, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The total fertility rate of the world has dropped from around 5 children per woman in 1950, to 2.2 children per woman in 2025, which means that women today are having fewer than half the number of children that women did 75 years ago. Replacement level fertility This change has come as a result of the global demographic transition, and is influenced by factors such as the significant reduction in infant and child mortality, reduced number of child marriages, increased educational and vocational opportunities for women, and the increased efficacy and availability of contraception. While this change has become synonymous with societal progress, it does have wide-reaching demographic impact - if the global average falls below replacement level (roughly 2.1 children per woman), as is expected to happen in the 2050s, then this will lead to long-term population decline on a global scale. Regional variations When broken down by continent, Africa is the only region with a fertility rate above the global average, and, alongside Oceania, it is the only region with a fertility rate above replacement level. Until the 1980s, the average woman in Africa could expect to have 6-7 children over the course of their lifetime, and there are still several countries in Africa where women can still expect to have 5 or more children in 2025. Historically, Europe has had the lowest fertility rates in the world over the past century, falling below replacement level in 1975. Europe's population has grown through a combination of migration and increasing life expectancy, however even high immigration rates could not prevent its population from going into decline in 2021.

  4. N

    Union Dale, PA Annual Population and Growth Analysis Dataset: A...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Union Dale, PA Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Union Dale from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/union-dale-pa-population-by-year/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Union Dale, Pennsylvania
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Union Dale population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Union Dale across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Union Dale was 220, a 0.46% increase year-by-year from 2022. Previously, in 2022, Union Dale population was 219, a decline of 0.45% compared to a population of 220 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Union Dale decreased by 143. In this period, the peak population was 363 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Union Dale is shown in this column.
    • Year on Year Change: This column displays the change in Union Dale population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Union Dale Population by Year. You can refer the same here

  5. Data from: Disentangling the spatial and temporal causes of decline in a...

    • zenodo.org
    • datadryad.org
    bin, txt
    Updated Jun 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Floriane Plard; Floriane Plard; Raphaël Arlettaz; Alain Jacot; Alain Jacot; Michael Schaub; Michael Schaub; Raphaël Arlettaz (2022). Data from: Disentangling the spatial and temporal causes of decline in a bird population [Dataset]. http://doi.org/10.5061/dryad.xksn02vc3
    Explore at:
    bin, txtAvailable download formats
    Dataset updated
    Jun 2, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Floriane Plard; Floriane Plard; Raphaël Arlettaz; Alain Jacot; Alain Jacot; Michael Schaub; Michael Schaub; Raphaël Arlettaz
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The difficulties in understanding the underlying reasons of a population decline lie in the typical short duration of field studies, the often too small size already reached by a declining population or the multitude of environmental factors that may influence population trend. In this difficult context, useful demographic tools such as integrated population models (IPM) may help disentangling the main reasons for a population decline.

    To understand why a hoopoe Upupa epops population has declined, we followed a three step model analysis. We built an IPM structured with respect to habitat quality (approximated by the expected availability of molecrickets, the main prey in our population) and estimated the contributions of habitat-specific demographic rates to population variation and decline. We quantified how much each demographic rate has decreased and investigated if habitat quality influenced this decline. We tested how much weather conditions and research activities contributed to the decrease of the different demographic rates.

    The decline of the hoopoe population was mainly explained by a decrease in first-year apparent survival and a reduced number of fledglings produced, particularly in habitats of high quality. Since a majority of pairs bred in habitats of the highest quality, the decrease of the production of locally recruited yearlings in high-quality habitat was the main driver of the population decline despite a homogeneous drop of recruitment across habitats.

    Overall, the explanatory variables we tested only accounted for 19% of the decrease of the population growth rate. Among these variables, the effects of spring temperature (49% of the explained variance) contributed more to population decline than spring precipitation (36%) and research activities (maternal capture delay, 15%). This study shows the power of IPMs for identifying the vital rates involved in population decline, and thus pave the way for targeted conservation and management actions.

  6. U

    United States US: Population: Growth

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States US: Population: Growth [Dataset]. https://www.ceicdata.com/en/united-states/population-and-urbanization-statistics/us-population-growth
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    United States
    Variables measured
    Population
    Description

    United States US: Population: Growth data was reported at 0.713 % in 2017. This records a decrease from the previous number of 0.734 % for 2016. United States US: Population: Growth data is updated yearly, averaging 0.979 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 1.702 % in 1960 and a record low of 0.711 % in 2013. United States US: Population: Growth data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Population and Urbanization Statistics. Annual population growth rate for year t is the exponential rate of growth of midyear population from year t-1 to t, expressed as a percentage . Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.; ; Derived from total population. Population source: (1) United Nations Population Division. World Population Prospects: 2017 Revision, (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;

  7. Data from: Spatial consistency in drivers of population dynamics of a...

    • data.niaid.nih.gov
    • dataone.org
    • +2more
    zip
    Updated Mar 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chloé Rebecca Nater; Malcolm Burgess; Peter Coffey; Bob Harris; Frank Lander; David Price; Mike Reed; Robert Robinson (2023). Spatial consistency in drivers of population dynamics of a declining migratory bird [Dataset]. http://doi.org/10.5061/dryad.rbnzs7hf9
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 29, 2023
    Dataset provided by
    British Trust for Ornithologyhttp://www.bto.org/
    Norwegian Institute for Nature Research
    Royal Society for the Protection of Birds
    Merseyside Ringing Group
    ,
    Piedfly.net
    Authors
    Chloé Rebecca Nater; Malcolm Burgess; Peter Coffey; Bob Harris; Frank Lander; David Price; Mike Reed; Robert Robinson
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description
    1. Many migratory species are in decline across their geographical ranges. Single-population studies can provide important insights into drivers at a local scale, but effective conservation requires multi-population perspectives. This is challenging because relevant data are often hard to consolidate, and state-of-the-art analytical tools are typically tailored to specific datasets.
    2. We capitalized on a recent data harmonization initiative (SPI-Birds) and linked it to a generalized modeling framework to identify the demographic and environmental drivers of large-scale population decline in migratory pied flycatchers (Ficedula hypoleuca) breeding across Britain.
    3. We implemented a generalized integrated population model (IPM) to estimate age-specific vital rates, including their dependency on environmental conditions, and total and breeding population size of pied flycatchers using long-term (34–64 years) monitoring data from seven locations representative of the British breeding range. We then quantified the relative contributions of different vital rates and population structures to changes in short- and long-term population growth rates using transient life table response experiments (LTREs).
    4. Substantial covariation in population sizes across breeding locations suggested that change was the result of large-scale drivers. This was supported by LTRE analyses, which attributed past changes in short-term population growth rates and long-term population trends primarily to variation in annual survival and dispersal dynamics, which largely act during migration and/or non-breeding season. Contributions of variation in local reproductive parameters were small in comparison, despite sensitivity to local temperature and rainfall within the breeding period.
    5. We show that both short- and longer-term population changes of British-breeding pied flycatchers are likely linked to factors acting during migration and in non-breeding areas, where future research should be prioritized. We illustrate the potential of multi-population analyses for informing management at (inter)national scales and highlight the importance of data standardization, generalized and accessible analytical tools, and reproducible workflows to achieve them. Methods Data collection protocols are described in the paper, and further references provided therein. Raw data were harmonised and converted to a standard format by SPI-Birds (https://spibirds.org/) and then collated into the input data provided here using code deposited on https://github.com/SPI-Birds/SPI-IPM. Details on this step of data processing will be added to https://spi-birds.github.io/SPI-IPM/. The MCMC sample data files are the outputs of the integrated population models fitted in the study. Please refer to the published article and material deposited on the associated GitHub repository for more details.
  8. N

    Bloomington, IN Annual Population and Growth Analysis Dataset: A...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Bloomington, IN Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Bloomington from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/bloomington-in-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Bloomington, Indiana
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Bloomington population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Bloomington across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Bloomington was 78,840, a 0.26% decrease year-by-year from 2022. Previously, in 2022, Bloomington population was 79,044, a decline of 0.42% compared to a population of 79,375 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Bloomington increased by 8,087. In this period, the peak population was 85,610 in the year 2019. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Bloomington is shown in this column.
    • Year on Year Change: This column displays the change in Bloomington population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Bloomington Population by Year. You can refer the same here

  9. f

    Dummy.

    • plos.figshare.com
    zip
    Updated Jun 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ryo Oizumi; Hisashi Inaba; Takenori Takada; Youichi Enatsu; Kensaku Kinjo (2023). Dummy. [Dataset]. http://doi.org/10.1371/journal.pone.0273817.s001
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 16, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Ryo Oizumi; Hisashi Inaba; Takenori Takada; Youichi Enatsu; Kensaku Kinjo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Text A, Representation theorem for a right eigenvector of an irreducible non-negative matrix. Text B, Theorem for infinite series expansion of characteristic equation. Text C, Original definition of type-reproduction number. Text D, Extension theorem of type-reproduction number. (ZIP)

  10. N

    Thurman, IA Annual Population and Growth Analysis Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Thurman, IA Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Thurman from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/thurman-ia-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Iowa, Thurman
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Thurman population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Thurman across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Thurman was 163, a 0% decrease year-by-year from 2022. Previously, in 2022, Thurman population was 163, a decline of 0.61% compared to a population of 164 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Thurman decreased by 73. In this period, the peak population was 236 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Thurman is shown in this column.
    • Year on Year Change: This column displays the change in Thurman population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Thurman Population by Year. You can refer the same here

  11. United States - birth rate 1990-2023

    • statista.com
    • thefarmdosupply.com
    • +1more
    Updated Jul 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). United States - birth rate 1990-2023 [Dataset]. https://www.statista.com/statistics/195943/birth-rate-in-the-united-states-since-1990/
    Explore at:
    Dataset updated
    Jul 2, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Over the past 30 years, the birth rate in the United States has been steadily declining, and in 2023, there were 10.7 births per 1,000 of the population. In 1990, this figure stood at 16.7 births per 1,000 of the population. Demographics have an impact The average birth rate in the U.S. may be falling, but when broken down along ethnic and economic lines, a different picture is painted: Native Hawaiian and other Pacific Islander women saw the highest birth rate in 2022 among all ethnicities, and Asian women and white women both saw the lowest birth rate. Additionally, the higher the family income, the lower the birth rate; families making between 15,000 and 24,999 U.S. dollars annually had the highest birth rate of any income bracket in the States. Life expectancy at birth In addition to the declining birth rate in the U.S., the total life expectancy at birth has also reached its lowest value recently. Studies have shown that the life expectancy of both men and women in the United States has been declining over the last few years. Declines in life expectancy, like declines in birth rates, may indicate that there are social and economic factors negatively influencing the overall population health and well-being of the country.

  12. N

    Iola, KS Annual Population and Growth Analysis Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Iola, KS Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Iola from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/iola-ks-population-by-year/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Kansas, Iola
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Iola population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Iola across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Iola was 5,318, a 0.78% decrease year-by-year from 2022. Previously, in 2022, Iola population was 5,360, a decline of 0.22% compared to a population of 5,372 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Iola decreased by 979. In this period, the peak population was 6,297 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Iola is shown in this column.
    • Year on Year Change: This column displays the change in Iola population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Iola Population by Year. You can refer the same here

  13. N

    Healdsburg, CA Annual Population and Growth Analysis Dataset: A...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Healdsburg, CA Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Healdsburg from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/healdsburg-ca-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Healdsburg, California
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Healdsburg population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Healdsburg across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Healdsburg was 11,137, a 0.30% decrease year-by-year from 2022. Previously, in 2022, Healdsburg population was 11,171, a decline of 1.05% compared to a population of 11,290 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Healdsburg increased by 48. In this period, the peak population was 12,065 in the year 2018. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Healdsburg is shown in this column.
    • Year on Year Change: This column displays the change in Healdsburg population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Healdsburg Population by Year. You can refer the same here

  14. k

    Data from: Lower Labor Force Participation Rates and Slower Population...

    • kansascityfed.org
    pdf
    Updated Mar 30, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Lower Labor Force Participation Rates and Slower Population Growth Pose Challenges for Employers [Dataset]. https://www.kansascityfed.org/research/economic-bulletin/lower-labor-force-participation-rates-and-slower-population-growth-pose-challenges-for-employers/
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Mar 30, 2022
    Description

    As the nation recovers from the pandemic-induced recession, finding workers to fill job openings has been a headwind for many regions and industries. Although many researchers have pointed to the sharp decline in labor force participation rates as an explanation, the role of population growth over time has received less attention. We examine state and national trends in these measures and show that slower population growth and an aging population may put downward pressure on labor force growth for some time.

  15. f

    Population growth rate - pollution - and parasite analyses from Avian...

    • rs.figshare.com
    txt
    Updated May 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daria Dadam; Robert A. Robinson; Anabel Clements; Will J. Peach; Malcolm Bennett; J. Marcus Rowcliffe; Andrew A. Cunningham (2023). Population growth rate - pollution - and parasite analyses from Avian malaria-mediated population decline of a widespread iconic bird species. [Dataset]. http://doi.org/10.6084/m9.figshare.8791619.v2
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    The Royal Society
    Authors
    Daria Dadam; Robert A. Robinson; Anabel Clements; Will J. Peach; Malcolm Bennett; J. Marcus Rowcliffe; Andrew A. Cunningham
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Parasites have the capacity to affect animal populations by modifying host survival, and it is increasingly recognized that infectious disease can negatively impact biodiversity. Populations of the house sparrow (Passer domesticus) have declined in many European towns and cities, but the causes of these declines remain unclear. We investigated associations between parasite infection and house sparrow demography across suburban London where sparrow abundance has declined by 71% since 1995. Plasmodium relictum infection was found at higher prevalences (averaging 74%) in suburban London house sparrows than previously recorded in any wild bird population in Northern Europe. Survival rates of juvenile and adult sparrows and population growth rate were negatively related to Plasmodium relictum infection intensity. Other parasites were much less prevalent and exhibited no relationship with sparrow survival and no negative relationship with population growth. Low rates of co-infection suggested sparrows were not immunocompromised. Our findings indicate that P. relictum infection may be influencing house sparrow population dynamics in suburban areas. The demographic sensitivity of the house sparrow to P. relictum infection in London might reflect a recent increase in exposure to this parasite.

  16. Global population 1800-2100, by continent

    • statista.com
    • thefarmdosupply.com
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Global population 1800-2100, by continent [Dataset]. https://www.statista.com/statistics/997040/world-population-by-continent-1950-2020/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world's population first reached one billion people in 1805, and reached eight billion in 2022, and will peak at almost 10.2 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two-thirds of the world's population lives in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a few years later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.

  17. F

    Population Growth for Japan

    • fred.stlouisfed.org
    json
    Updated Jul 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Population Growth for Japan [Dataset]. https://fred.stlouisfed.org/series/SPPOPGROWJPN
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 2, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Japan
    Description

    Graph and download economic data for Population Growth for Japan (SPPOPGROWJPN) from 1961 to 2024 about Japan, population, and rate.

  18. N

    Erie, PA Annual Population and Growth Analysis Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Erie, PA Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Erie from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/erie-pa-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Erie, Pennsylvania
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Erie population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Erie across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Erie was 92,957, a 0.68% decrease year-by-year from 2022. Previously, in 2022, Erie population was 93,595, a decline of 0.58% compared to a population of 94,141 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Erie decreased by 10,588. In this period, the peak population was 103,545 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Erie is shown in this column.
    • Year on Year Change: This column displays the change in Erie population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Erie Population by Year. You can refer the same here

  19. u

    Data from: Patterns of Widespread Decline in North American Bumble Bees

    • agdatacommons.nal.usda.gov
    • datasetcatalog.nlm.nih.gov
    zip
    Updated Feb 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sydney A. Cameron; Jeffrey D. Lozier; James P. Strange; Jonathan B. Koch; Nils Cordes; Leellen F. Solter; Terry L. Griswold (2024). Data from: Patterns of Widespread Decline in North American Bumble Bees [Dataset]. http://doi.org/10.15482/USDA.ADC/1529234
    Explore at:
    zipAvailable download formats
    Dataset updated
    Feb 8, 2024
    Dataset provided by
    USDA-ARS Pollinating Insect-Biology, Management, Systematics Research
    Authors
    Sydney A. Cameron; Jeffrey D. Lozier; James P. Strange; Jonathan B. Koch; Nils Cordes; Leellen F. Solter; Terry L. Griswold
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Bumble bees (Bombus) are vitally important pollinators of wild plants and agricultural crops worldwide. Fragmentary observations, however, have suggested population declines in several North American species. Despite rising concern over these observations in the United States, highlighted in a recent National Academy of Sciences report, a national assessment of the geographic scope and possible causal factors of bumble bee decline is lacking. Here, we report results of a 3-y interdisciplinary study of changing distributions, population genetic structure, and levels of pathogen infection in bumble bee populations across the United States. We compare current and historical distributions of eight species, compiling a database of >73,000 museum records for comparison with data from intensive nationwide surveys of >16,000 specimens. We show that the relative abundances of four species have declined by up to 96% and that their surveyed geographic ranges have contracted by 23–87%, some within the last 20 y. We also show that declining populations have significantly higher infection levels of the microsporidian pathogen Nosema bombi and lower genetic diversity compared with co-occurring populations of the stable (nondeclining) species. Higher pathogen prevalence and reduced genetic diversity are, thus, realistic predictors of these alarming patterns of decline in North America, although cause and effect remain uncertain. Bumble bees (Bombus) are integral wild pollinators within native plant communities throughout temperate ecosystems, and recent domestication has boosted their economic importance in crop pollination to a level surpassed only by the honey bee. Their robust size, long tongues, and buzz-pollination behavior (high-frequency buzzing to release pollen from flowers) significantly increase the efficiency of pollen transfer in multibillion dollar crops such as tomatoes and berries. Disturbing reports of bumble bee population declines in Europe have recently spilled over into North America, fueling environmental and economic concerns of global decline. However, the evidence for large-scale range reductions across North America is lacking. Many reports of decline are unpublished, and the few published studies are limited to independent local surveys in northern California/southern Oregon, Ontario, Canada, and Illinois. Furthermore, causal factors leading to the alleged decline of bumble bee populations in North America remain speculative. One compelling but untested hypothesis for the cause of decline in the United States entails the spread of a putatively introduced pathogen, Nosema bombi, which is an obligate intracellular microsporidian parasite found commonly in bumble bees throughout Europe but largely unstudied in North America. Pathogenic effects of N. bombi may vary depending on the host species and reproductive caste and include reductions in colony growth and individual life span and fitness. Population genetic factors could also play a role in Bombus population decline. For instance, small effective population sizes and reduced gene flow among fragmented habitats can result in losses of genetic diversity with negative consequences, and the detrimental impacts of these genetic factors can be especially intensified in bees. Population genetic studies of Bombus are rare worldwide. A single study in the United States identified lower genetic diversity and elevated genetic differentiation (FST) among Illinois populations of the putatively declining B. pensylvanicus relative to those of a codistributed stable species. Similar patterns have been observed in comparative studies of some European species, but most investigations have been geographically restricted and based on limited sampling within and among populations. Although the investigations to date have provided important information on the increasing rarity of some bumble bee species in local populations, the different survey protocols and limited geographic scope of these studies cannot fully capture the general patterns necessary to evaluate the underlying processes or overall gravity of declines. Furthermore, valid tests of the N. bombi hypothesis and its risk to populations across North America call for data on its geographic distribution and infection prevalence among species. Likewise, testing the general importance of population genetic factors in bumble bee decline requires genetic comparisons derived from sampling of multiple stable and declining populations on a large geographic scale. From such range-wide comparisons, we provide incontrovertible evidence that multiple Bombus species have experienced sharp population declines at the national level. We also show that declining populations are associated with both high N. bombi infection levels and low genetic diversity. This data was used in the paper "Patterns of widespread decline in North American bumble bees" published in the Proceedings of the National Academy of United States of America. For more information about this dataset contact: Sydney A. Cameron: scameron@life.illinois.edu James Strange: James.Strange@ars.usda.gov Resources in this dataset:Resource Title: Data from: Patterns of Widespread Decline in North American Bumble Bees (Data Dictionary). File Name: meta.xmlResource Description: This is an XML data dictionary for Data from: Patterns of Widespread Decline in North American Bumble Bees.Resource Title: Patterns of Widespread Decline in North American Bumble Bees (DWC Archive). File Name: occurrence.csvResource Description: File modified to remove fields with no recorded values.Resource Title: Patterns of Widespread Decline in North American Bumble Bees (DWC Archive). File Name: dwca-usda-ars-patternsofwidespreaddecline-bumblebees-v1.1.zipResource Description: Data from: Patterns of Widespread Decline in North American Bumble Bees -- this is a Darwin Core Archive file. The Darwin Core Archive is a zip file that contains three documents.

    The occurrence data is stored in the occurrence.txt file. The metadata that describes the columns of this document is called meta.xml. This document is also the data dictionary for this dataset. The metadata that describes the dataset, including author and contact information for this dataset is called eml.xml.

    Find the data files at https://bison.usgs.gov/ipt/resource?r=usda-ars-patternsofwidespreaddecline-bumblebees

  20. n

    Data from: Demographic compensation does not rescue populations at a...

    • data.niaid.nih.gov
    • search.dataone.org
    • +2more
    zip
    Updated Feb 9, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Seema Nayan Sheth; Amy Lauren Angert (2019). Demographic compensation does not rescue populations at a trailing range edge [Dataset]. http://doi.org/10.5061/dryad.271nf43
    Explore at:
    zipAvailable download formats
    Dataset updated
    Feb 9, 2019
    Dataset provided by
    Colorado State University
    Authors
    Seema Nayan Sheth; Amy Lauren Angert
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    California (USA), Oregon (USA)
    Description

    Species' geographic ranges and climatic niches are likely to be increasingly mismatched due to rapid climate change. If a species' range and niche are out of equilibrium, then population performance should decrease from high-latitude "leading" range edges, where populations are expanding into recently ameliorated habitats, to low-latitude "trailing" range edges, where populations are contracting from newly unsuitable areas. Demographic compensation is a phenomenon whereby declines in some vital rates are offset by increases in others across time or space. In theory, demographic compensation could increase the range of environments over which populations can succeed and forestall range contraction at trailing edges. An outstanding question is whether range limits and range contractions reflect inadequate demographic compensation across environmental gradients, causing population declines at range edges. We collected demographic data from 32 populations of the scarlet monkeyflower (Erythranthe cardinalis) spanning 11˚ latitude in western North America and used integral projection models to evaluate population dynamics and assess demographic compensation across the species' range. During the 5-year study period, which included multiple years of severe drought and warming, population growth rates decreased from north to south, consistent with leading-trailing dynamics. Southern populations at the trailing range edge declined due to reduced survival, growth, and recruitment, despite compensatory increases in reproduction and faster life history characteristics. These results suggest that demographic compensation may only delay population collapse without the return of more favorable conditions or the contribution of other buffering mechanisms such as evolutionary rescue.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista, Countries with the highest population decline rate 2024 [Dataset]. https://www.statista.com/statistics/264689/countries-with-the-highest-population-decline-rate/
Organization logo

Countries with the highest population decline rate 2024

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2024
Area covered
Worldwide
Description

In the Cook Islands in 2024, the population decreased by about 2.24 percent compared to the previous year, making it the country with the highest population decline rate in 2024. Of the 20 countries with the highest rate of population decline, the majority are island nations, where emigration rates are high (especially to Australia, New Zealand, and the United States), or they are located in Eastern Europe, which suffers from a combination of high emigration rates and low birth rates.

Search
Clear search
Close search
Google apps
Main menu