Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Eggs US fell to 1.06 USD/Dozen on October 10, 2025, down 0.58% from the previous day. Over the past month, Eggs US's price has fallen 50.01%, and is down 49.99% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. This dataset includes a chart with historical data for Eggs US.
This dataset contains the predicted prices of the asset up or down over the next 16 years. This data is calculated initially using a default 5 percent annual growth rate, and after page load, it features a sliding scale component where the user can then further adjust the growth rate to their own positive or negative projections. The maximum positive adjustable growth rate is 100 percent, and the minimum adjustable growth rate is -100 percent.
The U.S. housing market continues to evolve, with the median price for existing homes forecast to fall to ******* U.S. dollars by 2027. This projection comes after a period of significant growth and recent fluctuations, reflecting the complex interplay of economic factors affecting the real estate sector. The rising costs have not only impacted home prices but also down payments, with the median down payment more than doubling since 2012. Regional variations in housing costs Home prices and down payments vary dramatically across the United States. While the national median down payment stood at approximately ****** U.S. dollars in early 2024, homebuyers in states like California, Massachusetts, and Hawaii faced down payments exceeding ****** U.S. dollars. This disparity highlights the challenges of homeownership in high-cost markets and underscores the importance of location in determining housing affordability. Market dynamics and future outlook The housing market has shown signs of cooling after years of rapid growth, with a modest price increase of *** percent in 2024. This slowdown can be attributed in part to rising mortgage rates, which have tempered demand. Despite these challenges, most states continued to see year-over-year price growth in 2025, with Rhode Island and West Virginia leading the packby home appreciation. As the market adjusts to new economic realities, potential homebuyers and investors alike will be watching closely for signs of stabilization or renewed growth in the coming years.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about House Prices Growth
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States CSI: Expected Inflation: Next Yr: Up by 1-2% data was reported at 29.000 % in May 2018. This stayed constant from the previous number of 29.000 % for Apr 2018. United States CSI: Expected Inflation: Next Yr: Up by 1-2% data is updated monthly, averaging 18.000 % from Jan 1978 (Median) to May 2018, with 485 observations. The data reached an all-time high of 34.000 % in Oct 2016 and a record low of 1.000 % in May 1980. United States CSI: Expected Inflation: Next Yr: Up by 1-2% data remains active status in CEIC and is reported by University of Michigan. The data is categorized under Global Database’s USA – Table US.H030: Consumer Sentiment Index: Unemployment, Interest Rates, Prices and Government Expectations. The questions were: 'During the next 12 months, do you think that prices in general will go up, or go down, or stay where they are now?' and 'By what percent do you expect prices to go up, on the average, during the next 12 months?'
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Lumber fell to 609.54 USD/1000 board feet on October 10, 2025, down 0.08% from the previous day. Over the past month, Lumber's price has risen 6.66%, and is up 15.88% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Lumber - values, historical data, forecasts and news - updated on October of 2025.
https://www.ycharts.com/termshttps://www.ycharts.com/terms
View weekly updates and historical trends for US Retail Gas Price. from United States. Source: Energy Information Administration. Track economic data with…
https://www.ycharts.com/termshttps://www.ycharts.com/terms
View monthly updates and historical trends for US Inflation Rate. from United States. Source: Bureau of Labor Statistics. Track economic data with YCharts…
After a period of rapid increase, house price growth in the UK has moderated. In 2025, house prices are forecast to increase by ****percent. Between 2025 and 2029, the average house price growth is projected at *** percent. According to the source, home building is expected to increase slightly in this period, fueling home buying. On the other hand, higher borrowing costs despite recent easing of mortgage rates and affordability challenges may continue to suppress transaction activity. Historical house price growth in the UK House prices rose steadily between 2015 and 2020, despite minor fluctuations. In the following two years, prices soared, leading to the house price index jumping by about 20 percent. As the market stood in April 2025, the average price for a home stood at approximately ******* British pounds. Rents are expected to continue to grow According to another forecast, the prime residential market is also expected to see rental prices grow in the next five years. Growth is forecast to be stronger in 2025 and slow slightly until 2029. The rental market in London is expected to follow a similar trend, with Outer London slightly outperforming Central London.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
House prices grew year-on-year in most states in the U.S. in the first quarter of 2025. Hawaii was the only exception, with a decline of **** percent. The annual appreciation for single-family housing in the U.S. was **** percent, while in Rhode Island—the state where homes appreciated the most—the increase was ******percent. How have home prices developed in recent years? House price growth in the U.S. has been going strong for years. In 2025, the median sales price of a single-family home exceeded ******* U.S. dollars, up from ******* U.S. dollars five years ago. One of the factors driving house prices was the cost of credit. The record-low federal funds effective rate allowed mortgage lenders to set mortgage interest rates as low as *** percent. With interest rates on the rise, home buying has also slowed, causing fluctuations in house prices. Why are house prices growing? Many markets in the U.S. are overheated because supply has not been able to keep up with demand. How many homes enter the housing market depends on the construction output, whereas the availability of existing homes for purchase depends on many other factors, such as the willingness of owners to sell. Furthermore, growing investor appetite in the housing sector means that prospective homebuyers have some extra competition to worry about. In certain metros, for example, the share of homes bought by investors exceeded ** percent in 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
CSI: Expected Inflation: Next 5 Yrs: Down data was reported at 4.000 % in May 2018. This records an increase from the previous number of 3.000 % for Apr 2018. CSI: Expected Inflation: Next 5 Yrs: Down data is updated monthly, averaging 3.000 % from Feb 1979 (Median) to May 2018, with 380 observations. The data reached an all-time high of 13.000 % in Mar 1982 and a record low of 1.000 % in Apr 2014. CSI: Expected Inflation: Next 5 Yrs: Down data remains active status in CEIC and is reported by University of Michigan. The data is categorized under Global Database’s USA – Table US.H030: Consumer Sentiment Index: Unemployment, Interest Rates, Prices and Government Expectations. The questions were: 'What about the outlook for prices over the next 5 to 10 years? Do you think prices will be higher, to go up, on the average, during the next 12 months?' and 'By about what percent per year do you expect prices to go up or down, on the average, during the next 5 to 10 years?'
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
CSI: Expected Inflation: Next 5 Yrs: Up by 6-9% data was reported at 3.000 % in May 2018. This records an increase from the previous number of 2.000 % for Apr 2018. CSI: Expected Inflation: Next 5 Yrs: Up by 6-9% data is updated monthly, averaging 4.000 % from Feb 1979 (Median) to May 2018, with 380 observations. The data reached an all-time high of 18.000 % in Jul 1982 and a record low of 1.000 % in Nov 2017. CSI: Expected Inflation: Next 5 Yrs: Up by 6-9% data remains active status in CEIC and is reported by University of Michigan. The data is categorized under Global Database’s USA – Table US.H030: Consumer Sentiment Index: Unemployment, Interest Rates, Prices and Government Expectations. The questions were: 'What about the outlook for prices over the next 5 to 10 years? Do you think prices will be higher, to go up, on the average, during the next 12 months?' and 'By about what percent per year do you expect prices to go up or down, on the average, during the next 5 to 10 years?'
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Consumer Price Index for All Urban Consumers: Food at Home in U.S. City Average (CUSR0000SAF11) from Jan 1952 to Aug 2025 about food, urban, consumer, CPI, housing, inflation, price index, indexes, price, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ethereum 2050 monthly price prediction dataset, including minimum, average, and maximum forecast values for each month.
This dataset contains the predicted prices of Pulse Predictions Market for the upcoming years based on user-defined projections.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Eggs US fell to 1.06 USD/Dozen on October 10, 2025, down 0.58% from the previous day. Over the past month, Eggs US's price has fallen 50.01%, and is down 49.99% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. This dataset includes a chart with historical data for Eggs US.