Over the past 23 years, there were constantly more men than women living on the planet. Of the 8.06 billion people living on the Earth in 2023, 4.05 billion were men and 4.01 billion were women. One-quarter of the world's total population in 2024 was below 15 years.
In terms of population size, the sex ratio in the United States favors females, although the gender gap is remaining stable. In 2010, there were around 5.17 million more women, with the difference projected to decrease to around 3 million by 2027.
Gender ratios by U.S. state In the United States, the resident population was estimated to be around 331.89 million in 2021. The gender distribution of the nation has remained steady for several years, with women accounting for approximately 51.1 percent of the population since 2013. Females outnumbered males in the majority of states across the country in 2020, and there were eleven states where the gender ratio favored men.
Metro areas by population National differences between male and female populations can also be analyzed by metropolitan areas. In general, a metropolitan area is a region with a main city at its center and adjacent communities that are all connected by social and economic factors. The largest metro areas in the U.S. are New York, Los Angeles, and Chicago. In 2019, there were more women than men in all three of those areas, but Jackson, Missouri was the metro area with the highest share of female population.
Alaska had the highest male to female ratio in the United States in 2020, with 109.2 men for every 100 women. The male to female ration was lowest in the District of Columbia, with 90.3 men for every 100 women.
The final frontier
Alaska, which was purchased from the Russian Empire in 1867, is the largest state in the U.S. and one of the newest states, having been admitted to the U.S. in 1959. Although oil production dominates the economy, Alaska has a very high poverty rate and consistently has the highest unemployment rate in the country.
It’s a man’s world
Alaska is one of 10 states in the U.S. that has more men than women. The male to female ratio in the United States as a whole is about even, but as the population ages, there tend to be more females than males. Even though the sex ratio in the U.S. is almost one to one, a little more than 56 percent all females participated in the labor force in 2021, compared with 67.6 percent of men.
Worldwide, the male population is slightly higher than the female population, although this varies by country. As of 2023, Hong Kong has the highest share of women worldwide with almost 55 percent. Moldova followed behind with 54 percent. Among the countries with the largest share of women in the total population, several were former Soviet-states or were located in Eastern Europe. By contrast, Qatar, the United Arab Emirates, and Oman had some of the highest proportions of men in their populations.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Globe by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Globe. The dataset can be utilized to understand the population distribution of Globe by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Globe. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Globe.
Key observations
Largest age group (population): Male # 40-44 years (386) | Female # 50-54 years (413). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Globe Population by Gender. You can refer the same here
Worldwide, the male population is slightly higher than the female population. As of 2023, the country with the highest percentage of men was Qatar with only slightly more than one quarter of the total population being women. The United Arab Emirates followed with 36 percent. Different factors can influence the gender distribution in a population, such as life expectancy, the sex ratio at birth, and immigration. For instance, in Qatar the large share of male is due to the high immigration flows of male labor in the country.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of White Earth by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for White Earth. The dataset can be utilized to understand the population distribution of White Earth by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in White Earth. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for White Earth.
Key observations
Largest age group (population): Male # 10-14 years (17) | Female # 40-44 years (13). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for White Earth Population by Gender. You can refer the same here
As of February 2025, the share of women worldwide using the internet was relatively low compared to men. According to the latest data, 65.7 percent of women in the world accessed the internet, while the share of men going online was 70 percent. Overall, as of the measured period, the global internet penetration rate was 67.9 percent.
The authors combine data from 84 Demographic and Health Surveys from 46 countries to analyze trends and socioeconomic differences in adult mortality, calculating mortality based on the sibling mortality reports collected from female respondents aged 15-49.
The analysis yields four main findings. First, adult mortality is different from child mortality: while under-5 mortality shows a definite improving trend over time, adult mortality does not, especially in Sub-Saharan Africa. The second main finding is the increase in adult mortality in Sub-Saharan African countries. The increase is dramatic among those most affected by the HIV/AIDS pandemic. Mortality rates in the highest HIV-prevalence countries of southern Africa exceed those in countries that experienced episodes of civil war. Third, even in Sub-Saharan countries where HIV-prevalence is not as high, mortality rates appear to be at best stagnating, and even increasing in several cases. Finally, the main socioeconomic dimension along which mortality appears to differ in the aggregate is gender. Adult mortality rates in Sub-Saharan Africa have risen substantially higher for men than for women?especially so in the high HIV-prevalence countries. On the whole, the data do not show large gaps by urban/rural residence or by school attainment.
This paper is a product of the Human Development and Public Services Team, Development Research Group. It is part of a larger effort by the World Bank to provide open access to its research and make a contribution to development policy discussions around the world. Policy Research Working Papers are also posted on the Web at http://econ.worldbank.org.
We derive estimates of adult mortality from an analysis of Demographic and Health Survey (DHS) data from 46 countries, 33 of which are from Sub-Saharan Africa and 13 of which are from countries in other regions (Annex Table). Several of the countries have been surveyed more than once and we base our estimates on the total of 84 surveys that have been carried out (59 in Sub-Saharan Africa, 25 elsewhere).
The countries covered by DHS in Sub-Saharan Africa represent almost 90 percent of the region's population. Outside of Sub-Saharan Africa the DHS surveys we use cover a far smaller share of the population-even if this is restricted to countries whose GDP per capita never exceeds $10,000: overall about 14 percent of the population is covered by these countries, although this increases to 29 percent if China and India are excluded (countries for which we cannot calculate adult mortality using the DHS). It is therefore important to keep in mind that the sample of non-Sub-Saharan African countries we have cannot be thought of as "representative" of the rest of the world, or even the rest of the developing world.
Country
Sample survey data [ssd]
Face-to-face [f2f]
In the course of carrying out this study, the authors created two databases of adult mortality estimates based on the original DHS datasets, both of which are publicly available for analysts who wish to carry out their own analysis of the data.
The naming conventions for the adult mortality-related are as follows. Variables are named:
GGG_MC_AAAA
GGG refers to the population subgroup. The values it can take, and the corresponding definitions are in the following table:
All - All Fem - Female Mal - Male Rur - Rural Urb - Urban Rurm - Rural/Male Urbm - Urban/Male Rurf - Rural/Female Urbf - Urban/Female Noed - No education Pri - Some or completed primary only Sec - At least some secondary education Noedm - No education/Male Prim - Some or completed primary only/Male Secm - At least some secondary education/Male Noedf - No education/Female Prif - Some or completed primary only/Female Secf - At least some secondary education/Female Rch - Rural as child Uch - Urban as child Rchm - Rural as child/Male Uchm - Urban as child/Male Rchf - Rural as child/Female Uchf - Urban as child/Female Edltp - Less than primary schooling Edpom - Primary or more schooling Edltpm - Less than primary schooling/Male Edpomm - Primary or more schooling/Male Edltpf - Less than primary schooling/Female Edpomf - Primary or more schooling/Female Edltpu - Less than primary schooling/Urban Edpomu - Primary or more schooling/Urban Edltpr - Less than primary schooling/Rural Edpomr - Primary or more schooling/Rural Edltpmu - Less than primary schooling/Male/Urban Edpommu - Primary or more schooling/Male/Urban Edltpmr - Less than primary schooling/Male/Rural Edpommr - Primary or more schooling/Male/Rural Edltpfu - Less than primary schooling/Female/Urban Edpomfu - Primary or more schooling/Female/Urban Edltpfr - Less than primary schooling/Female/Rural Edpomfr - Primary or more schooling/Female/Rural
M refers to whether the variable is the number of observations used to calculate the estimate (in which case M takes on the value "n") or whether it is a mortality estimate (in which case M takes on the value "m").
C refers to whether the variable is for the unadjusted mortality rate calculation (in which case C takes on the value "u") or whether it adjusts for the number of surviving female siblings (in which case C takes on the value "a").
AAAA refers to the age group that the mortality estimate is calculated for. It takes on the values: 1554 - Ages 15-54 1524 - Ages 15-24 2534 - Ages 25-34 3544 - Ages 35-44 4554 - Ages 45-54
Other variables that are in the databases are:
period - Period for which mortality rate is calculated (takes on the values 1975-79, 1980-84 … 2000-04) svycountry - Name of country for DHS countries ccode3 - Country code u5mr - Under-5 mortality (from World Development Indicators) cname - Country name gdppc - GDP per capita (constant 2000 US$) (from World Development Indicators) gdppcppp - GDP per capita PPP (constant 2005 intl $) (from World Development Indicators) pop - Population (from World Development Indicators) hivprev2001 - HIV prevalence in 2001 (from UNAIDS 2010) region - Region
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Black Earth by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Black Earth. The dataset can be utilized to understand the population distribution of Black Earth by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Black Earth. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Black Earth.
Key observations
Largest age group (population): Male # 65-69 years (196) | Female # 35-39 years (111). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Black Earth Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Stats NZ introduced questions on sexual identity and gender to HES for the year ended June 2021, to help provide a more accurate and inclusive picture of New Zealanders that, amongst other dimensions, would reflect the diversity of genders and sexual identities in Aotearoa.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Earth by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Earth. The dataset can be utilized to understand the population distribution of Earth by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Earth. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Earth.
Key observations
Largest age group (population): Male # 65-69 years (51) | Female # 10-14 years (76). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Earth Population by Gender. You can refer the same here
Over the last decade, there were constantly more men than women living in Iceland. Moreover, the gap increased from 2013 to 2023. While there were around 1,000 more men than women in 2013, this number had increased to over 10,000 by 2023. That year, there were around 200,000 men and 188,000 women living in Iceland. The total number of inhabitants in the country was 387,758 at the beginning of 2023.
The gender or sex ratio in China has been a contentious issue since the introduction of the one-child policy in 1979, intended to limit the population of the country. Although the policy is no longer in place, the population gender difference throughout the country is still evident. In 2023, fifteen to nineteen-year-old children had the largest gender disparity of 115.3 males to every 100 females. Gender imbalance While the difference of gender at birth has been decreasing in the country over the past decade, China still boasts the world’s most skewed sex ratio at birth at around 110 males born for every 100 females as of 2023. That means there are about 31 million more men in the country than women. This imbalance likely came from the country’s traditional preference for male children to continue the family lineage, in combination with the population control policies enforced. Where does that leave the population? The surplus of young, single men across the country poses a risk for China in many different socio-economic areas. Some of the roll-on effects include males overrepresenting specific labor markets, savings rates increasing, consumption reducing and violent crime increasing across the country. However, the adult mortality rate in China, that is, the probability of a 15-year-old dying before reaching age 60, was significantly higher for men than for women. For the Chinese population over 60 years of age, the gender ratio is in favor of women, with more females outliving their male counterparts.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cameroon CM: Population: as % of Total: Female: Aged 15-64 data was reported at 55.623 % in 2023. This records an increase from the previous number of 55.324 % for 2022. Cameroon CM: Population: as % of Total: Female: Aged 15-64 data is updated yearly, averaging 53.039 % from Dec 1960 (Median) to 2023, with 64 observations. The data reached an all-time high of 56.935 % in 1960 and a record low of 50.423 % in 1991. Cameroon CM: Population: as % of Total: Female: Aged 15-64 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Cameroon – Table CM.World Bank.WDI: Population and Urbanization Statistics. Female population between the ages 15 to 64 as a percentage of the total female population. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.;United Nations Population Division. World Population Prospects: 2024 Revision.;Weighted average;Relevance to gender indicator: Knowing how many girls, adolescents and women there are in a population helps a country in determining its provision of services.
The second National Family Health Survey (NFHS-2), conducted in 1998-99, provides information on fertility, mortality, family planning, and important aspects of nutrition, health, and health care. The International Institute for Population Sciences (IIPS) coordinated the survey, which collected information from a nationally representative sample of more than 90,000 ever-married women age 15-49. The NFHS-2 sample covers 99 percent of India's population living in all 26 states. This report is based on the survey data for 25 of the 26 states, however, since data collection in Tripura was delayed due to local problems in the state.
IIPS also coordinated the first National Family Health Survey (NFHS-1) in 1992-93. Most of the types of information collected in NFHS-2 were also collected in the earlier survey, making it possible to identify trends over the intervening period of six and one-half years. In addition, the NFHS-2 questionnaire covered a number of new or expanded topics with important policy implications, such as reproductive health, women's autonomy, domestic violence, women's nutrition, anaemia, and salt iodization.
The NFHS-2 survey was carried out in two phases. Ten states were surveyed in the first phase which began in November 1998 and the remaining states (except Tripura) were surveyed in the second phase which began in March 1999. The field staff collected information from 91,196 households in these 25 states and interviewed 89,199 eligible women in these households. In addition, the survey collected information on 32,393 children born in the three years preceding the survey. One health investigator on each survey team measured the height and weight of eligible women and children and took blood samples to assess the prevalence of anaemia.
SUMMARY OF FINDINGS
POPULATION CHARACTERISTICS
Three-quarters (73 percent) of the population lives in rural areas. The age distribution is typical of populations that have recently experienced a fertility decline, with relatively low proportions in the younger and older age groups. Thirty-six percent of the population is below age 15, and 5 percent is age 65 and above. The sex ratio is 957 females for every 1,000 males in rural areas but only 928 females for every 1,000 males in urban areas, suggesting that more men than women have migrated to urban areas.
The survey provides a variety of demographic and socioeconomic background information. In the country as a whole, 82 percent of household heads are Hindu, 12 percent are Muslim, 3 percent are Christian, and 2 percent are Sikh. Muslims live disproportionately in urban areas, where they comprise 15 percent of household heads. Nineteen percent of household heads belong to scheduled castes, 9 percent belong to scheduled tribes, and 32 percent belong to other backward classes (OBCs). Two-fifths of household heads do not belong to any of these groups.
Questions about housing conditions and the standard of living of households indicate some improvements since the time of NFHS-1. Sixty percent of households in India now have electricity and 39 percent have piped drinking water compared with 51 percent and 33 percent, respectively, at the time of NFHS-1. Sixty-four percent of households have no toilet facility compared with 70 percent at the time of NFHS-1.
About three-fourths (75 percent) of males and half (51 percent) of females age six and above are literate, an increase of 6-8 percentage points from literacy rates at the time of NFHS-1. The percentage of illiterate males varies from 6-7 percent in Mizoram and Kerala to 37 percent in Bihar and the percentage of illiterate females varies from 11 percent in Mizoram and 15 percent in Kerala to 65 percent in Bihar. Seventy-nine percent of children age 6-14 are attending school, up from 68 percent in NFHS-1. The proportion of children attending school has increased for all ages, particularly for girls, but girls continue to lag behind boys in school attendance. Moreover, the disparity in school attendance by sex grows with increasing age of children. At age 6-10, 85 percent of boys attend school compared with 78 percent of girls. By age 15-17, 58 percent of boys attend school compared with 40 percent of girls. The percentage of girls 6-17 attending school varies from 51 percent in Bihar and 56 percent in Rajasthan to over 90 percent in Himachal Pradesh and Kerala.
Women in India tend to marry at an early age. Thirty-four percent of women age 15-19 are already married including 4 percent who are married but gauna has yet to be performed. These proportions are even higher in the rural areas. Older women are more likely than younger women to have married at an early age: 39 percent of women currently age 45-49 married before age 15 compared with 14 percent of women currently age 15-19. Although this indicates that the proportion of women who marry young is declining rapidly, half the women even in the age group 20-24 have married before reaching the legal minimum age of 18 years. On average, women are five years younger than the men they marry. The median age at marriage varies from about 15 years in Madhya Pradesh, Bihar, Uttar Pradesh, Rajasthan, and Andhra Pradesh to 23 years in Goa.
As part of an increasing emphasis on gender issues, NFHS-2 asked women about their participation in household decisionmaking. In India, 91 percent of women are involved in decision-making on at least one of four selected topics. A much lower proportion (52 percent), however, are involved in making decisions about their own health care. There are large variations among states in India with regard to women's involvement in household decisionmaking. More than three out of four women are involved in decisions about their own health care in Himachal Pradesh, Meghalaya, and Punjab compared with about two out of five or less in Madhya Pradesh, Orissa, and Rajasthan. Thirty-nine percent of women do work other than housework, and more than two-thirds of these women work for cash. Only 41 percent of women who earn cash can decide independently how to spend the money that they earn. Forty-three percent of working women report that their earnings constitute at least half of total family earnings, including 18 percent who report that the family is entirely dependent on their earnings. Women's work-participation rates vary from 9 percent in Punjab and 13 percent in Haryana to 60-70 percent in Manipur, Nagaland, and Arunachal Pradesh.
FERTILITY AND FAMILY PLANNING
Fertility continues to decline in India. At current fertility levels, women will have an average of 2.9 children each throughout their childbearing years. The total fertility rate (TFR) is down from 3.4 children per woman at the time of NFHS-1, but is still well above the replacement level of just over two children per woman. There are large variations in fertility among the states in India. Goa and Kerala have attained below replacement level fertility and Karnataka, Himachal Pradesh, Tamil Nadu, and Punjab are at or close to replacement level fertility. By contrast, fertility is 3.3 or more children per woman in Meghalaya, Uttar Pradesh, Rajasthan, Nagaland, Bihar, and Madhya Pradesh. More than one-third to less than half of all births in these latter states are fourth or higher-order births compared with 7-9 percent of births in Kerala, Goa, and Tamil Nadu.
Efforts to encourage the trend towards lower fertility might usefully focus on groups within the population that have higher fertility than average. In India, rural women and women from scheduled tribes and scheduled castes have somewhat higher fertility than other women, but fertility is particularly high for illiterate women, poor women, and Muslim women. Another striking feature is the high level of childbearing among young women. More than half of women age 20-49 had their first birth before reaching age 20, and women age 15-19 account for almost one-fifth of total fertility. Studies in India and elsewhere have shown that health and mortality risks increase when women give birth at such young ages?both for the women themselves and for their children. Family planning programmes focusing on women in this age group could make a significant impact on maternal and child health and help to reduce fertility.
INFANT AND CHILD MORTALITY
NFHS-2 provides estimates of infant and child mortality and examines factors associated with the survival of young children. During the five years preceding the survey, the infant mortality rate was 68 deaths at age 0-11 months per 1,000 live births, substantially lower than 79 per 1,000 in the five years preceding the NFHS-1 survey. The child mortality rate, 29 deaths at age 1-4 years per 1,000 children reaching age one, also declined from the corresponding rate of 33 per 1,000 in NFHS-1. Ninety-five children out of 1,000 born do not live to age five years. Expressed differently, 1 in 15 children die in the first year of life, and 1 in 11 die before reaching age five. Child-survival programmes might usefully focus on specific groups of children with particularly high infant and child mortality rates, such as children who live in rural areas, children whose mothers are illiterate, children belonging to scheduled castes or scheduled tribes, and children from poor households. Infant mortality rates are more than two and one-half times as high for women who did not receive any of the recommended types of maternity related medical care than for mothers who did receive all recommended types of care.
HEALTH, HEALTH CARE, AND NUTRITION
Promotion of maternal and child health has been one of the most important components of the Family Welfare Programme of the Government of India. One goal is for each pregnant woman to receive at least three antenatal check-ups plus two tetanus toxoid injections and a full course of iron and folic acid supplementation. In India, mothers of 65 percent of the children
Employment-to-population among youth worldwide was significantly higher among men than women between 2000 and 2023. In 2023, more than 40 percent of young men were employed, compared to less than 30 percent of young women, reflecting the fact that women are still underrepresented in working life around the world, and that girls often have to help out in the household when boys are sent to school.
Male to female ratio of Baja California Sur grew by 0.29% from 104.1 % in 2005 to 104.4 % in 2010. Ratio of male population to female population multiplied by 100. It is interpreted as the number of men per hundred women. Figures for the following census dates: February 14 (2000), 17 October (2005) and June 12 (2010).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Earth. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Earth, the median income for all workers aged 15 years and older, regardless of work hours, was $37,763 for males and $16,019 for females.
These income figures highlight a substantial gender-based income gap in Earth. Women, regardless of work hours, earn 42 cents for each dollar earned by men. This significant gender pay gap, approximately 58%, underscores concerning gender-based income inequality in the city of Earth.
- Full-time workers, aged 15 years and older: In Earth, among full-time, year-round workers aged 15 years and older, males earned a median income of $49,236, while females earned $35,750, leading to a 27% gender pay gap among full-time workers. This illustrates that women earn 73 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in Earth.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Earth median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Blue Earth City township by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Blue Earth City township. The dataset can be utilized to understand the population distribution of Blue Earth City township by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Blue Earth City township. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Blue Earth City township.
Key observations
Largest age group (population): Male # 60-64 years (24) | Female # 10-14 years (27). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Blue Earth City township Population by Gender. You can refer the same here
Over the past 23 years, there were constantly more men than women living on the planet. Of the 8.06 billion people living on the Earth in 2023, 4.05 billion were men and 4.01 billion were women. One-quarter of the world's total population in 2024 was below 15 years.