100+ datasets found
  1. Global population 2000-2023, by gender

    • statista.com
    Updated May 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global population 2000-2023, by gender [Dataset]. https://www.statista.com/statistics/1328107/global-population-gender/
    Explore at:
    Dataset updated
    May 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Over the past 23 years, there were constantly more men than women living on the planet. Of the 8.06 billion people living on the Earth in 2023, 4.05 billion were men and 4.01 billion were women. One-quarter of the world's total population in 2024 was below 15 years.

  2. Largest female population share 2024, by country

    • statista.com
    Updated Jul 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Largest female population share 2024, by country [Dataset]. https://www.statista.com/statistics/1238987/female-population-share-by-country/
    Explore at:
    Dataset updated
    Jul 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    World
    Description

    Worldwide, the male population is slightly higher than the female population, although this varies by country. As of 2024, Hong Kong has the highest share of women worldwide with almost ** percent. Moldova followed behind with around ** percent. Among the countries with the largest share of women in the total population, several were former Soviet states or were located in Eastern Europe. By contrast, Qatar, the United Arab Emirates, and Oman had some of the highest proportions of men in their populations.

  3. Population of Germany 1990-2024, by gender

    • statista.com
    Updated Jul 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Population of Germany 1990-2024, by gender [Dataset]. https://www.statista.com/statistics/454338/population-by-gender-germany/
    Explore at:
    Dataset updated
    Jul 1, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Germany
    Description

    There are more women than men in Germany, although the number of men has been slowly increasing in recent years, especially since 2015. In 2024, there were around **** million males and **** million females in Germany. Births and deaths Globally, the death rate had been slowly decreasing until 2019, but there was a sharp spike in 2020 and 2021, which can be attributed to the COVID-19 pandemic. The general decline, however, is probably due to medical advancements which mean that many diseases are now treatable or curable, that were not 50 years ago. The birth rate has also been decreasing across the world, but it is lowest in Europe and North America. Future challenges There are a number of challenges facing the German population in the future. Some of the most pressing ones are the growing urban population and especially its ageing structure in combination with slow birth rates, which will put increased pressure on the pension system. Because of this trend, old age security and pensions are already today in the top ten most pressing political issues in Germany.

  4. N

    San Diego, CA Population Breakdown by Gender and Age Dataset: Male and...

    • neilsberg.com
    csv, json
    Updated Feb 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). San Diego, CA Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/8e5d8af8-c989-11ee-9145-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 19, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    San Diego, California
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of San Diego by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for San Diego. The dataset can be utilized to understand the population distribution of San Diego by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in San Diego. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for San Diego.

    Key observations

    Largest age group (population): Male # 25-29 years (68,680) | Female # 25-29 years (62,701). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the San Diego population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the San Diego is shown in the following column.
    • Population (Female): The female population in the San Diego is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in San Diego for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for San Diego Population by Gender. You can refer the same here

  5. T

    United States - Population, Female (% Of Total)

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jul 21, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2013). United States - Population, Female (% Of Total) [Dataset]. https://tradingeconomics.com/united-states/population-female-percent-of-total-wb-data.html
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Jul 21, 2013
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    United States
    Description

    Population, female (% of total population) in United States was reported at 49.76 % in 2024, according to the World Bank collection of development indicators, compiled from officially recognized sources. United States - Population, female (% of total) - actual values, historical data, forecasts and projections were sourced from the World Bank on August of 2025.

  6. Population of Estonia, by gender 1950-2020

    • statista.com
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population of Estonia, by gender 1950-2020 [Dataset]. https://www.statista.com/statistics/1009074/male-female-population-estonia-1950-2020/
    Explore at:
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Estonia
    Description

    In 1950, when Estonia's population was estimated at 1.1 million people, approximately 57 percent of the population was female, while 43 percent was male; this equated to a difference of more than 160,000 people. In the past century, as with many former-Soviet states, Estonia has consistently had one of the most disproportionate gender ratios in the world. The reason for this was due to the large number of men who were killed in wars during the first half of the twentieth century, which was particularly high across the Soviet Union, as well as a much higher life expectancy among women. The difference in the number of men and women in Estonia has gradually decreased over the past seven decades, but in 2020, there are still 70,000 more females than males, in a population of 1.3 million people; this equates to total shares of roughly 53 percent and 47 percent of the total population respectively.

  7. T

    World - Population, Female (% Of Total)

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 29, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). World - Population, Female (% Of Total) [Dataset]. https://tradingeconomics.com/world/population-female-percent-of-total-wb-data.html
    Explore at:
    json, xml, csv, excelAvailable download formats
    Dataset updated
    May 29, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    World, World
    Description

    Population, female (% of total population) in World was reported at 49.71 % in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. World - Population, female (% of total) - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.

  8. N

    Ontario, New York Population Breakdown by Gender and Age Dataset: Male and...

    • neilsberg.com
    csv, json
    Updated Feb 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Ontario, New York Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/8e3c4d54-c989-11ee-9145-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 19, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New York, Ontario
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Ontario town by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Ontario town. The dataset can be utilized to understand the population distribution of Ontario town by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Ontario town. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Ontario town.

    Key observations

    Largest age group (population): Male # 60-64 years (502) | Female # 60-64 years (527). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Ontario town population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Ontario town is shown in the following column.
    • Population (Female): The female population in the Ontario town is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Ontario town for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Ontario town Population by Gender. You can refer the same here

  9. G

    Percent female population in South America | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated Nov 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2019). Percent female population in South America | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/percent_female_population/South-America/
    Explore at:
    csv, xml, excelAvailable download formats
    Dataset updated
    Nov 29, 2019
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1960 - Dec 31, 2023
    Area covered
    South America, Americas, World
    Description

    The average for 2023 based on 12 countries was 50.47 percent. The highest value was in Uruguay: 51.51 percent and the lowest value was in Paraguay: 49.85 percent. The indicator is available from 1960 to 2023. Below is a chart for all countries where data are available.

  10. Male-female ratio expressed as men per 100 women in Mexico 1995-2020

    • statista.com
    Updated Jun 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Male-female ratio expressed as men per 100 women in Mexico 1995-2020 [Dataset]. https://www.statista.com/statistics/1407944/male-female-ratio-mexico/
    Explore at:
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Mexico
    Description

    In 2020, the male-female ratio expressed as men per 100 women in Mexico amounted to approximately *****. Between 1995 and 2020, the figure dropped by around ****, though the decline followed an uneven course rather than a steady trajectory.

  11. d

    Replication Data for: The Gender Gap is a Race Gap: Women Voters in U.S....

    • search.dataone.org
    Updated Nov 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Junn, Jane; Masuoka, Natalie (2023). Replication Data for: The Gender Gap is a Race Gap: Women Voters in U.S. Presidential Elections [Dataset]. http://doi.org/10.7910/DVN/XQYJKN
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Junn, Jane; Masuoka, Natalie
    Area covered
    United States
    Description

    Scholarship on women voters in the United States has focused on the gender gap showing that women are more likely to vote for Democratic Party candidates than men since the 1980s. The persistence of the gender gap has nurtured the conclusion that women are Democrats. This article presents evidence upending that conventional wisdom. Data from the American National Election Study are analyzed to demonstrate that white women are the only group of female voters who support Republican Party candidates for president. They have done so by a majority in all but 2 of the last 18 elections. The relevance of race for partisan choice among women voters is estimated with data collected in 2008, 2012, and 2016, and the significance of being white is identified after accounting for political party identification and other predictors.

  12. T

    United States - Sex Ratio At Birth (male Births Per Female Births)

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jun 25, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). United States - Sex Ratio At Birth (male Births Per Female Births) [Dataset]. https://tradingeconomics.com/united-states/sex-ratio-at-birth-male-births-per-female-births-wb-data.html
    Explore at:
    csv, xml, json, excelAvailable download formats
    Dataset updated
    Jun 25, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    United States
    Description

    Sex ratio at birth (male births per female births) in United States was reported at 1.049 in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. United States - Sex ratio at birth (male births per female births) - actual values, historical data, forecasts and projections were sourced from the World Bank on August of 2025.

  13. N

    Camden, TN Population Breakdown by Gender Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Camden, TN Population Breakdown by Gender Dataset: Male and Female Population Distribution // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/camden-tn-population-by-gender/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Camden, Tennessee
    Variables measured
    Male Population, Female Population, Male Population as Percent of Total Population, Female Population as Percent of Total Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Camden by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Camden across both sexes and to determine which sex constitutes the majority.

    Key observations

    There is a slight majority of male population, with 50.52% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.

    Variables / Data Columns

    • Gender: This column displays the Gender (Male / Female)
    • Population: The population of the gender in the Camden is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each gender as a proportion of Camden total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Camden Population by Race & Ethnicity. You can refer the same here

  14. N

    China, TX annual median income by work experience and sex dataset: Aged 15+,...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). China, TX annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a50ace5c-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    China, Texas
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in China. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In China, the median income for all workers aged 15 years and older, regardless of work hours, was $58,750 for males and $30,313 for females.

    These income figures highlight a substantial gender-based income gap in China. Women, regardless of work hours, earn 52 cents for each dollar earned by men. This significant gender pay gap, approximately 48%, underscores concerning gender-based income inequality in the city of China.

    - Full-time workers, aged 15 years and older: In China, among full-time, year-round workers aged 15 years and older, males earned a median income of $62,188, while females earned $69,375

    Surprisingly, within the subset of full-time workers, women earn a higher income than men, earning 1.12 dollars for every dollar earned by men. This suggests that within full-time roles, womens median incomes significantly surpass mens, contrary to broader workforce trends.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for China median household income by race. You can refer the same here

  15. G

    Percent female population in Africa | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated Nov 28, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2019). Percent female population in Africa | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/percent_female_population/Africa/
    Explore at:
    xml, csv, excelAvailable download formats
    Dataset updated
    Nov 28, 2019
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1960 - Dec 31, 2023
    Area covered
    Africa, World
    Description

    The average for 2023 based on 53 countries was 50.08 percent. The highest value was in Zimbabwe: 52.38 percent and the lowest value was in the Seychelles: 44.82 percent. The indicator is available from 1960 to 2023. Below is a chart for all countries where data are available.

  16. H

    Replication Data for: Male and Female Candidates Are Similarly Persistent...

    • dataverse.harvard.edu
    Updated Jun 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rachel Bernhard; Justin de Benedictis-Kessner (2021). Replication Data for: Male and Female Candidates Are Similarly Persistent After Losing Elections [Dataset]. http://doi.org/10.7910/DVN/TL22H9
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 28, 2021
    Dataset provided by
    Harvard Dataverse
    Authors
    Rachel Bernhard; Justin de Benedictis-Kessner
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Are women more likely to quit politics after losing their first race than men? Women's first-time candidacies skyrocketed in the wake of the 2016 presidential election. Yet we have little sense of the long-term impact of this surge in women candidates on women's representation writ large: inexperienced candidates are more likely to lose, and women might be especially discouraged by a loss. This might make the benefits of such a surge in candidacies fleeting. Using a regression discontinuity design and data that feature 212,805 candidates across 22,473 jurisdictions between 1950 and 2018, we find that women who narrowly lose these elections are no more likely to quit politics than men who narrowly lose. Drawing on scholarship on women's lower political ambition, we interpret these findings to mean that women’s decision-making differs from men's at the point of entry into politics---not at the point of re-entry.

  17. Colombia: total population 2008-2024, by gender

    • statista.com
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Colombia: total population 2008-2024, by gender [Dataset]. https://www.statista.com/statistics/788400/population-total-gender-colombia/
    Explore at:
    Dataset updated
    Jul 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Latin America, Colombia
    Description

    In 2024, the total population of Colombia amounted to over 52 million. The number of women who lived in Colombia exceeded the number of men by approximately 690,000. Population figures in this South American country show a maintained upward trend at least since 2008.

  18. N

    Weston Town, Dunn County, Wisconsin annual median income by work experience...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Weston Town, Dunn County, Wisconsin annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a53ffae9-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Dunn County, Wisconsin
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Weston town. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Weston town, the median income for all workers aged 15 years and older, regardless of work hours, was $39,219 for males and $41,136 for females.

    Contrary to expectations, women in Weston town, women, regardless of work hours, earn a higher income than men, earning 1.05 dollars for every dollar earned by men. This analysis indicates a significant shift in income dynamics favoring females.

    - Full-time workers, aged 15 years and older: In Weston town, among full-time, year-round workers aged 15 years and older, males earned a median income of $53,125, while females earned $44,926, resulting in a 15% gender pay gap among full-time workers. This illustrates that women earn 85 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the town of Weston town.

    Surprisingly, across all roles (including non-full-time employment), women had a higher median income compared to men in Weston town. This might indicate a more favorable income scenario for female workers across different employment patterns within the town of Weston town, especially in non-full-time positions.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Weston town median household income by race. You can refer the same here

  19. N

    Winton, MN annual median income by work experience and sex dataset: Aged...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Winton, MN annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/winton-mn-income-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Winton, Minnesota
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Winton. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Winton, the median income for all workers aged 15 years and older, regardless of work hours, was $24,444 for males and $42,750 for females.

    Contrary to expectations, women in Winton, women, regardless of work hours, earn a higher income than men, earning 1.75 dollars for every dollar earned by men. This analysis indicates a significant shift in income dynamics favoring females.

    - Full-time workers, aged 15 years and older: In Winton, for full-time, year-round workers aged 15 years and older, the Census reported a median income of $44,625 for females, while data for males was unavailable due to an insufficient number of sample observations.

    As there was no available median income data for males, conducting a comprehensive assessment of gender-based pay disparity in Winton was not feasible.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Winton median household income by race. You can refer the same here

  20. N

    Union Town, Rock County, Wisconsin annual median income by work experience...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Union Town, Rock County, Wisconsin annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a53c7db7-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Rock County, Wisconsin
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Union town. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Union town, the median income for all workers aged 15 years and older, regardless of work hours, was $54,698 for males and $42,333 for females.

    These income figures indicate a substantial gender-based pay disparity, showcasing a gap of approximately 23% between the median incomes of males and females in Union town. With women, regardless of work hours, earning 77 cents to each dollar earned by men, this income disparity reveals a concerning trend toward wage inequality that demands attention in thetown of Union town.

    - Full-time workers, aged 15 years and older: In Union town, among full-time, year-round workers aged 15 years and older, males earned a median income of $58,625, while females earned $63,145

    Surprisingly, within the subset of full-time workers, women earn a higher income than men, earning 1.08 dollars for every dollar earned by men. This suggests that within full-time roles, womens median incomes significantly surpass mens, contrary to broader workforce trends.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Union town median household income by race. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Global population 2000-2023, by gender [Dataset]. https://www.statista.com/statistics/1328107/global-population-gender/
Organization logo

Global population 2000-2023, by gender

Explore at:
13 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
May 30, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
Worldwide
Description

Over the past 23 years, there were constantly more men than women living on the planet. Of the 8.06 billion people living on the Earth in 2023, 4.05 billion were men and 4.01 billion were women. One-quarter of the world's total population in 2024 was below 15 years.

Search
Clear search
Close search
Google apps
Main menu