In 2023, Singapore dominated the ranking of the world's health and health systems, followed by Japan and South Korea. The health index score is calculated by evaluating various indicators that assess the health of the population, and access to the services required to sustain good health, including health outcomes, health systems, sickness and risk factors, and mortality rates. The health and health system index score of the top ten countries with the best healthcare system in the world ranged between 82 and 86.9, measured on a scale of zero to 100.
Global Health Security Index Numerous health and health system indexes have been developed to assess various attributes and aspects of a nation's healthcare system. One such measure is the Global Health Security (GHS) index. This index evaluates the ability of 195 nations to identify, assess, and mitigate biological hazards in addition to political and socioeconomic concerns, the quality of their healthcare systems, and their compliance with international finance and standards. In 2021, the United States was ranked at the top of the GHS index, but due to multiple reasons, the U.S. government failed to effectively manage the COVID-19 pandemic. The GHS Index evaluates capability and identifies preparation gaps; nevertheless, it cannot predict a nation's resource allocation in case of a public health emergency.
Universal Health Coverage Index Another health index that is used globally by the members of the United Nations (UN) is the universal health care (UHC) service coverage index. The UHC index monitors the country's progress related to the sustainable developmental goal (SDG) number three. The UHC service coverage index tracks 14 indicators related to reproductive, maternal, newborn, and child health, infectious diseases, non-communicable diseases, service capacity, and access to care. The main target of universal health coverage is to ensure that no one is denied access to essential medical services due to financial hardships. In 2021, the UHC index scores ranged from as low as 21 to a high score of 91 across 194 countries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2024 based on 175 countries was 5.42 index points. The highest value was in Iran: 10 index points and the lowest value was in Iceland: 0.2 index points. The indicator is available from 2007 to 2024. Below is a chart for all countries where data are available.
Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundIt is increasingly apparent that access to healthcare without adequate quality of care is insufficient to improve population health outcomes. We assess whether the most commonly measured attribute of health facilities in low- and middle-income countries (LMICs)—the structural inputs to care—predicts the clinical quality of care provided to patients.Methods and findingsService Provision Assessments are nationally representative health facility surveys conducted by the Demographic and Health Survey Program with support from the US Agency for International Development. These surveys assess health system capacity in LMICs. We drew data from assessments conducted in 8 countries between 2007 and 2015: Haiti, Kenya, Malawi, Namibia, Rwanda, Senegal, Tanzania, and Uganda. The surveys included an audit of facility infrastructure and direct observation of family planning, antenatal care (ANC), sick-child care, and (in 2 countries) labor and delivery. To measure structural inputs, we constructed indices that measured World Health Organization-recommended amenities, equipment, and medications in each service. For clinical quality, we used data from direct observations of care to calculate providers’ adherence to evidence-based care guidelines. We assessed the correlation between these metrics and used spline models to test for the presence of a minimum input threshold associated with good clinical quality. Inclusion criteria were met by 32,531 observations of care in 4,354 facilities. Facilities demonstrated moderate levels of infrastructure, ranging from 0.63 of 1 in sick-child care to 0.75 of 1 for family planning on average. Adherence to evidence-based guidelines was low, with an average of 37% adherence in sick-child care, 46% in family planning, 60% in labor and delivery, and 61% in ANC. Correlation between infrastructure and evidence-based care was low (median 0.20, range from −0.03 for family planning in Senegal to 0.40 for ANC in Tanzania). Facilities with similar infrastructure scores delivered care of widely varying quality in each service. We did not detect a minimum level of infrastructure that was reliably associated with higher quality of care delivered in any service. These findings rely on cross-sectional data, preventing assessment of relationships between structural inputs and clinical quality over time; measurement error may attenuate the estimated associations.ConclusionInputs to care are poorly correlated with provision of evidence-based care in these 4 clinical services. Healthcare workers in well-equipped facilities often provided poor care and vice versa. While it is important to have strong infrastructure, it should not be used as a measure of quality. Insight into health system quality requires measurement of processes and outcomes of care.
The twenty countries with the worst human rights and rule of law index scores are located in Asia, Africa, Europe, the Middle East, and South America. On a scale from zero to ten, zero being the best human rights and rule of law conditions, Iran had the maximum index score of **, followed by Burma and China. On the contrary, Norway was the best country for human rights and rule of law.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2023 based on 193 countries was -0.03 points. The highest value was in Singapore: 2.31 points and the lowest value was in North Korea: -2.39 points. The indicator is available from 1996 to 2023. Below is a chart for all countries where data are available.
In 2023, North Korea was the worst country according to the Human Rights Index, followed by Afghanistan, Eritrea, and Turkmenistan. On the contrary, Estonia, New Zealand, and Sweden were the top-3 countries for human rights protection.
Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.
The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.
The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.
The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.
The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.
There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.
Households and individuals
The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.
If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.
The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.
Sample survey data [ssd]
SAMPLING GUIDELINES FOR WHS
Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.
The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.
The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.
All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO
STRATIFICATION
Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.
Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).
Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.
MULTI-STAGE CLUSTER SELECTION
A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.
In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.
In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.
It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
https://spdx.org/licenses/etalab-2.0.htmlhttps://spdx.org/licenses/etalab-2.0.html
1 Overview World Administrative Boundaries are available from various sources (UN, WHO, Global Administrative Areas [GADM], Natural Earth, World Bank). We would like to have the most accurate one with a reasonable size for an interactive world map in a Data Exploration Application, called CLIMINET. We provide a complete Geospatial Data that covers at least all 249 countries in the international ISO 3166-1 standard. We aim to maintain a reasonable data size, with countries' boundaries as accurate as possible, to ensure FLUIDITY in data visualization applications. The data are optimized for efficient performance and smooth interactions in interactive world maps for the best possible user experience. 2. Data Overview Number of Spatial Features: 275 countries/territories Data Sources: Compiled from multiple sources to ensure completeness and precision (WHO, Global Administrative Areas [GADM]) CRS Options: WGS84 [EPSG:4326] World Robinson (1963) [ESRI:54030] World Winkel-Tripel (Winkel III) - (1921) [ESRI:54042] Data Level: Level 0 (Countries) File Format: GeoJSON File Size: WGS84 [EPSG:4326]: 18.86 MB World Robinson (1963) [ESRI:54030]: 30.91 MB World Winkel-Tripel (Winkel III) - (1921) [ESRI:54042]: 30.90 MB 3. Data Revision Date The data were last updated on 2024-12-19. For further information on data structure and implementation, refer to the metadata files.
Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.
The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.
The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.
The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.
The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.
There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.
Households and individuals
The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.
If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.
The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.
Sample survey data [ssd]
SAMPLING GUIDELINES FOR WHS
Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.
The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.
The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.
All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO
STRATIFICATION
Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.
Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).
Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.
MULTI-STAGE CLUSTER SELECTION
A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.
In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.
In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.
It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which
A survey of people from 31 different countries around the world found that mental health was the biggest health problem respondents said was facing their country in 2024. Other health problems reported by respondents included cancer, stress, and obesity. The COVID-19 pandemic The COVID-19 pandemic impacted almost every country in the world and was the biggest global health crisis in recent history. It resulted in hundreds of millions of cases and millions of deaths, causing unprecedented disruption in health care systems. Lockdowns imposed in many countries to halt the spread of the virus also resulted in a rise of mental health issues as feelings of stress, isolation, and hopelessness arose. However, vaccines to combat the virus were developed at record speed, and many countries have now vaccinated large shares of their population. Nevertheless, in 2024, ** percent of respondents still stated that COVID-19 was the biggest health problem facing their country. Mental health issues One side effect of the COVID-19 pandemic has been a focus on mental health around the world. The two most common mental health issues worldwide are anxiety disorders and depression. In 2021, it was estimated that around *** percent of the global population had an anxiety disorder, while **** percent suffered from depression. Rates of depression are higher among females than males, with some *** percent of females suffering from depression, compared to *** percent of men. However, rates of suicide in most countries are higher among men than women. One positive outcome of the COVID-19 pandemic and the spotlight it shined on mental health may be a decrease in stigma surrounding mental health issues and seeking help for such issues. This would be a positive development as many people around the world do not or cannot receive the necessary treatment they need for their mental health.
This dataset provides the estimated number of women aged 15–49 years in each country. This age group is commonly defined as 'women of reproductive age' and is used as the denominator in calculating key sexual and reproductive health indicators. These estimates support health system planning, resource allocation, and monitoring of service coverage for women across the reproductive life course. Data Source:United Nations Population Division World Population Prospects (2024 revision): https://population.un.org/wpp/ Data Dictionary: The data is collated with the following columns:Column headingContent of this columnPossible valuesRefNumerical counter for each row of data, for ease of identification1+CountryShort name for the country195 countries in total – all 194 WHO member states plus PalestineISO3Three-digit alphabetical codes International Standard ISO 3166-1 assigned by the International Organization for Standardization (ISO). e.g. AFG (Afghanistan)ISO22 letter identifier code for the countrye.g. AF (Afghanistan)ICM_regionICM Region for countryAFR (Africa), AMR (Americas), EMR (Eastern Mediterranean), EUR (Europe), SEAR (South east Asia) or WPR (Western Pacific)CodeUnique project code for each indicator:GGTXXnnnGG=data group e.g. OU for outcomeT = N for novice or E for ExpertXX = identifier number 00 to 30nnn = identifier name eg mmre.g. OUN01sbafor Outcome Novice Indicator 01 skilled birth attendance Short_nameIndicator namee.g. maternal mortality ratioDescriptionText description of the indicator to be used on websitee.g. Maternal mortality ratio (maternal deaths per 100,000 live births)Value_typeDescribes the indicator typeNumeric: decimal numberPercentage: value between 0 & 100Text: value from list of text optionsY/N: yes or noValue_categoryExpect this to be ‘total’ for all indicators for Phase 1, but this could allow future disaggregation, e.g. male/female; urban/ruraltotalYearThe year that the indicator value was reported. For most indicators, we will only report if 2014 or more recente.g. 2020Latest_Value‘LATEST’ if this is the most recent reported value for the indicator since 2014, otherwise ‘No’. Useful for indicators with time trend data.LATEST or NOValueIndicator valuee.g. 99.8. NB Some indicators are calculated to several decimal places. We present the value to the number of decimal places that should be displayed on the Hub.SourceFor Caesarean birth rate [OUN13cbr] ONLY, this column indicates the source of the data, either OECD when reported, or UNICEF otherwise.OECD or UNICEFTargetHow does the latest value compare with Global guidelines / targets?meets targetdoes not meet targetmeets global standarddoes not meet global standardRankGlobal rank for indicator, i.e. the country with the best global score for this indicator will have rank = 1, next = 2, etc. This ranking is only appropriate for a few indicators, others will show ‘na’1-195Rank out ofThe total number of countries who have reported a value for this indicator. Ranking scores will only go as high as this number.Up to 195TrendIf historic data is available, an indication of the change over time. If there is a global target, then the trend is either getting better, static or getting worse. For mmr [OUN04mmr] and nmr [OUN05nmr] the average annual rate of reduction (arr) between 2016 and latest value is used to determine the trend:arr <-1.0 = getting worsearr >=-1.0 AND <=1.0 = staticarr >1.0 = getting betterFor other indicators, the trend is estimated by comparing the average of the last three years with the average ten years ago:decreasing if now < 95% 10 yrs agoincreasing if now > 105% 10 yrs agostatic otherwiseincreasingdecreasing Or, if there is a global target: getting better,static,getting worseNotesClarification comments, when necessary LongitudeFor use with mapping LatitudeFor use with mapping DateDate data uploaded to the Hub the following codes are also possible values: not reported does not apply don’t know This is one of many datasets featured on the Midwives’ Data Hub, a digital platform designed to strengthen midwifery and advocate for better maternal and newborn health services.
Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.
The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.
The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.
The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.
The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.
There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.
Households and individuals
The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.
If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.
The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.
Sample survey data [ssd]
SAMPLING GUIDELINES FOR WHS
Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.
The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.
The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.
All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO
STRATIFICATION
Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.
Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).
Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.
MULTI-STAGE CLUSTER SELECTION
A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.
In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.
In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.
It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which
Explore the Times Higher Education World University Rankings 2025 below. Trusted worldwide by students, teachers, governments and industry experts, the list ranks 2,092 institutions from 115 countries and territories.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2023 based on 193 countries was -0.07 points. The highest value was in Liechtenstein: 1.61 points and the lowest value was in Syria: -2.75 points. The indicator is available from 1996 to 2023. Below is a chart for all countries where data are available.
The authors combine data from 84 Demographic and Health Surveys from 46 countries to analyze trends and socioeconomic differences in adult mortality, calculating mortality based on the sibling mortality reports collected from female respondents aged 15-49.
The analysis yields four main findings. First, adult mortality is different from child mortality: while under-5 mortality shows a definite improving trend over time, adult mortality does not, especially in Sub-Saharan Africa. The second main finding is the increase in adult mortality in Sub-Saharan African countries. The increase is dramatic among those most affected by the HIV/AIDS pandemic. Mortality rates in the highest HIV-prevalence countries of southern Africa exceed those in countries that experienced episodes of civil war. Third, even in Sub-Saharan countries where HIV-prevalence is not as high, mortality rates appear to be at best stagnating, and even increasing in several cases. Finally, the main socioeconomic dimension along which mortality appears to differ in the aggregate is gender. Adult mortality rates in Sub-Saharan Africa have risen substantially higher for men than for women?especially so in the high HIV-prevalence countries. On the whole, the data do not show large gaps by urban/rural residence or by school attainment.
This paper is a product of the Human Development and Public Services Team, Development Research Group. It is part of a larger effort by the World Bank to provide open access to its research and make a contribution to development policy discussions around the world. Policy Research Working Papers are also posted on the Web at http://econ.worldbank.org.
We derive estimates of adult mortality from an analysis of Demographic and Health Survey (DHS) data from 46 countries, 33 of which are from Sub-Saharan Africa and 13 of which are from countries in other regions (Annex Table). Several of the countries have been surveyed more than once and we base our estimates on the total of 84 surveys that have been carried out (59 in Sub-Saharan Africa, 25 elsewhere).
The countries covered by DHS in Sub-Saharan Africa represent almost 90 percent of the region's population. Outside of Sub-Saharan Africa the DHS surveys we use cover a far smaller share of the population-even if this is restricted to countries whose GDP per capita never exceeds $10,000: overall about 14 percent of the population is covered by these countries, although this increases to 29 percent if China and India are excluded (countries for which we cannot calculate adult mortality using the DHS). It is therefore important to keep in mind that the sample of non-Sub-Saharan African countries we have cannot be thought of as "representative" of the rest of the world, or even the rest of the developing world.
Country
Sample survey data [ssd]
Face-to-face [f2f]
In the course of carrying out this study, the authors created two databases of adult mortality estimates based on the original DHS datasets, both of which are publicly available for analysts who wish to carry out their own analysis of the data.
The naming conventions for the adult mortality-related are as follows. Variables are named:
GGG_MC_AAAA
GGG refers to the population subgroup. The values it can take, and the corresponding definitions are in the following table:
All - All Fem - Female Mal - Male Rur - Rural Urb - Urban Rurm - Rural/Male Urbm - Urban/Male Rurf - Rural/Female Urbf - Urban/Female Noed - No education Pri - Some or completed primary only Sec - At least some secondary education Noedm - No education/Male Prim - Some or completed primary only/Male Secm - At least some secondary education/Male Noedf - No education/Female Prif - Some or completed primary only/Female Secf - At least some secondary education/Female Rch - Rural as child Uch - Urban as child Rchm - Rural as child/Male Uchm - Urban as child/Male Rchf - Rural as child/Female Uchf - Urban as child/Female Edltp - Less than primary schooling Edpom - Primary or more schooling Edltpm - Less than primary schooling/Male Edpomm - Primary or more schooling/Male Edltpf - Less than primary schooling/Female Edpomf - Primary or more schooling/Female Edltpu - Less than primary schooling/Urban Edpomu - Primary or more schooling/Urban Edltpr - Less than primary schooling/Rural Edpomr - Primary or more schooling/Rural Edltpmu - Less than primary schooling/Male/Urban Edpommu - Primary or more schooling/Male/Urban Edltpmr - Less than primary schooling/Male/Rural Edpommr - Primary or more schooling/Male/Rural Edltpfu - Less than primary schooling/Female/Urban Edpomfu - Primary or more schooling/Female/Urban Edltpfr - Less than primary schooling/Female/Rural Edpomfr - Primary or more schooling/Female/Rural
M refers to whether the variable is the number of observations used to calculate the estimate (in which case M takes on the value "n") or whether it is a mortality estimate (in which case M takes on the value "m").
C refers to whether the variable is for the unadjusted mortality rate calculation (in which case C takes on the value "u") or whether it adjusts for the number of surviving female siblings (in which case C takes on the value "a").
AAAA refers to the age group that the mortality estimate is calculated for. It takes on the values: 1554 - Ages 15-54 1524 - Ages 15-24 2534 - Ages 25-34 3544 - Ages 35-44 4554 - Ages 45-54
Other variables that are in the databases are:
period - Period for which mortality rate is calculated (takes on the values 1975-79, 1980-84 … 2000-04) svycountry - Name of country for DHS countries ccode3 - Country code u5mr - Under-5 mortality (from World Development Indicators) cname - Country name gdppc - GDP per capita (constant 2000 US$) (from World Development Indicators) gdppcppp - GDP per capita PPP (constant 2005 intl $) (from World Development Indicators) pop - Population (from World Development Indicators) hivprev2001 - HIV prevalence in 2001 (from UNAIDS 2010) region - Region
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This study examines the use and translation of epidemiological modelling by policy and decision makers in response to the COVID-19 outbreak. Prior to COVID-19, there was little readiness for global health systems, and many science-policy networks were assembled ad-hoc. Moreover, in the field of epidemiological modelling, one with significant sudden influence, there is still no international guidance or standard of practice on how modelled evidence should guide policy during major health crises. Here we use a multi-country case study on the use of epidemiological modelling in emergency COVID-19 response, to examine the effective integration of crisis science and policy in different countries. We investigated COVID-19 modelling-policy systems and practices in 13 countries, spanning all six UN geographic regions. Data collection took the form of expert interviews with a range of national policy/ decision makers, scientific advisors, and modellers. We examined the current use of epidemiological modelling, introduced a classification framework for outbreak modelling and policy on which best practice can be structured, and provided preliminary recommendations for future practice. Full analysis and interpretation of the breadth of interview responses is presented, providing evidence for the current and future use of modelling in disease outbreaks. We found that interviewees in countries with a similar size and type of modelling infrastructure, and similar level of government interaction with modelling reported similar experiences and recommendations on using modelling in outbreak response. From this, we introduced a helpful grouping of country experience upon which a tailored future best practice could be structured. We concluded the article by outlining context-specific activities that modellers and policy actors could consider implementing in their own countries. This article serves as a first evidence base for the current use of modelling in a recent major health crisis and provides a robust framework for developing epidemiological modelling-to-policy best practice.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2024 based on 138 countries was 5.56 points. The highest value was in Finland: 7.74 points and the lowest value was in Afghanistan: 1.72 points. The indicator is available from 2013 to 2024. Below is a chart for all countries where data are available.
This dataset indicates whether countries offer a single education programme that prepares individuals to practise as both nurses and midwives. It highlights integrated training pathways and dual professional roles, offering insight into how midwifery is situated within broader health systems and informing discussion on education models and workforce planning. Data Source: State of the World"s Midwifery (SoWMy) global and regional reports: https://internationalmidwives.org/resources/state-of-the-worlds-midwifery-2021/ The State of the World’s Midwifery (SoWMy) series of reports, led by ICM, UNFPA, and WHO, provides country-level data on the midwifery workforce, including national midwives" associations, education, leadership, and regulation. It highlights gaps and opportunities to strengthen midwife-led care and improve maternal and newborn health outcomes. Data were collected by the International Confederation of Midwives (ICM) in collaboration with Novametrics through a global midwifery regulatory survey. Data Dictionary: The data is collated with the following columns:Column headingContent of this columnPossible valuesRefNumerical counter for each row of data, for ease of identification1+CountryShort name for the country195 countries in total – all 194 WHO member states plus PalestineISO3Three-digit alphabetical codes International Standard ISO 3166-1 assigned by the International Organization for Standardization (ISO). e.g. AFG (Afghanistan)ISO22 letter identifier code for the countrye.g. AF (Afghanistan)ICM_regionICM Region for countryAFR (Africa), AMR (Americas), EMR (Eastern Mediterranean), EUR (Europe), SEAR (South east Asia) or WPR (Western Pacific)CodeUnique project code for each indicator:GGTXXnnnGG=data group e.g. OU for outcomeT = N for novice or E for ExpertXX = identifier number 00 to 30nnn = identifier name eg mmre.g. OUN01sbafor Outcome Novice Indicator 01 skilled birth attendance Short_nameIndicator namee.g. maternal mortality ratioDescriptionText description of the indicator to be used on websitee.g. Maternal mortality ratio (maternal deaths per 100,000 live births)Value_typeDescribes the indicator typeNumeric: decimal numberPercentage: value between 0 & 100Text: value from list of text optionsY/N: yes or noValue_categoryExpect this to be ‘total’ for all indicators for Phase 1, but this could allow future disaggregation, e.g. male/female; urban/ruraltotalYearThe year that the indicator value was reported. For most indicators, we will only report if 2014 or more recente.g. 2020Latest_Value‘LATEST’ if this is the most recent reported value for the indicator since 2014, otherwise ‘No’. Useful for indicators with time trend data.LATEST or NOValueIndicator valuee.g. 99.8. NB Some indicators are calculated to several decimal places. We present the value to the number of decimal places that should be displayed on the Hub.SourceFor Caesarean birth rate [OUN13cbr] ONLY, this column indicates the source of the data, either OECD when reported, or UNICEF otherwise.OECD or UNICEFTargetHow does the latest value compare with Global guidelines / targets?meets targetdoes not meet targetmeets global standarddoes not meet global standardRankGlobal rank for indicator, i.e. the country with the best global score for this indicator will have rank = 1, next = 2, etc. This ranking is only appropriate for a few indicators, others will show ‘na’1-195Rank out ofThe total number of countries who have reported a value for this indicator. Ranking scores will only go as high as this number.Up to 195TrendIf historic data is available, an indication of the change over time. If there is a global target, then the trend is either getting better, static or getting worse. For mmr [OUN04mmr] and nmr [OUN05nmr] the average annual rate of reduction (arr) between 2016 and latest value is used to determine the trend:arr <-1.0 = getting worsearr >=-1.0 AND <=1.0 = staticarr >1.0 = getting betterFor other indicators, the trend is estimated by comparing the average of the last three years with the average ten years ago:decreasing if now < 95% 10 yrs agoincreasing if now > 105% 10 yrs agostatic otherwiseincreasingdecreasing Or, if there is a global target: getting better,static,getting worseNotesClarification comments, when necessary LongitudeFor use with mapping LatitudeFor use with mapping DateDate data uploaded to the Hub the following codes are also possible values: not reported does not apply don’t know This is one of many datasets featured on the Midwives’ Data Hub, a digital platform designed to strengthen midwifery and advocate for better maternal and newborn health services.
In 2023, Singapore dominated the ranking of the world's health and health systems, followed by Japan and South Korea. The health index score is calculated by evaluating various indicators that assess the health of the population, and access to the services required to sustain good health, including health outcomes, health systems, sickness and risk factors, and mortality rates. The health and health system index score of the top ten countries with the best healthcare system in the world ranged between 82 and 86.9, measured on a scale of zero to 100.
Global Health Security Index Numerous health and health system indexes have been developed to assess various attributes and aspects of a nation's healthcare system. One such measure is the Global Health Security (GHS) index. This index evaluates the ability of 195 nations to identify, assess, and mitigate biological hazards in addition to political and socioeconomic concerns, the quality of their healthcare systems, and their compliance with international finance and standards. In 2021, the United States was ranked at the top of the GHS index, but due to multiple reasons, the U.S. government failed to effectively manage the COVID-19 pandemic. The GHS Index evaluates capability and identifies preparation gaps; nevertheless, it cannot predict a nation's resource allocation in case of a public health emergency.
Universal Health Coverage Index Another health index that is used globally by the members of the United Nations (UN) is the universal health care (UHC) service coverage index. The UHC index monitors the country's progress related to the sustainable developmental goal (SDG) number three. The UHC service coverage index tracks 14 indicators related to reproductive, maternal, newborn, and child health, infectious diseases, non-communicable diseases, service capacity, and access to care. The main target of universal health coverage is to ensure that no one is denied access to essential medical services due to financial hardships. In 2021, the UHC index scores ranged from as low as 21 to a high score of 91 across 194 countries.