71 datasets found
  1. F

    Estimate of Median Household Income for Orange County, CA

    • fred.stlouisfed.org
    json
    Updated Dec 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Estimate of Median Household Income for Orange County, CA [Dataset]. https://fred.stlouisfed.org/series/MHICA06059A052NCEN
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 20, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Orange County, California
    Description

    Graph and download economic data for Estimate of Median Household Income for Orange County, CA (MHICA06059A052NCEN) from 1989 to 2023 about Orange County, CA; Los Angeles; CA; households; median; income; and USA.

  2. F

    90% Confidence Interval Upper Bound of Estimate of Median Household Income...

    • fred.stlouisfed.org
    json
    Updated Dec 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). 90% Confidence Interval Upper Bound of Estimate of Median Household Income for Orange County, CA [Dataset]. https://fred.stlouisfed.org/series/MHICIUBCA06059A052NCEN
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 20, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Orange County, California
    Description

    Graph and download economic data for 90% Confidence Interval Upper Bound of Estimate of Median Household Income for Orange County, CA (MHICIUBCA06059A052NCEN) from 1989 to 2023 about Orange County, CA; Los Angeles; CA; households; median; income; and USA.

  3. N

    Orange County, CA Median Income by Age Groups Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Feb 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Orange County, CA Median Income by Age Groups Dataset: A Comprehensive Breakdown of Orange County Annual Median Income Across 4 Key Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e94e00a2-f353-11ef-8577-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 25, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Orange County, California
    Variables measured
    Income for householder under 25 years, Income for householder 65 years and over, Income for householder between 25 and 44 years, Income for householder between 45 and 64 years
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across four age groups (Under 25 years, 25 to 44 years, 45 to 64 years, and 65 years and over) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the distribution of median household income among distinct age brackets of householders in Orange County. Based on the latest 2019-2023 5-Year Estimates from the American Community Survey, it displays how income varies among householders of different ages in Orange County. It showcases how household incomes typically rise as the head of the household gets older. The dataset can be utilized to gain insights into age-based household income trends and explore the variations in incomes across households.

    Key observations: Insights from 2023

    In terms of income distribution across age cohorts, in Orange County, householders within the 45 to 64 years age group have the highest median household income at $131,722, followed by those in the 25 to 44 years age group with an income of $121,376. Meanwhile householders within the 65 years and over age group report the second lowest median household income of $82,350. Notably, householders within the under 25 years age group, had the lowest median household income at $52,709.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Age groups classifications include:

    • Under 25 years
    • 25 to 44 years
    • 45 to 64 years
    • 65 years and over

    Variables / Data Columns

    • Age Of The Head Of Household: This column presents the age of the head of household
    • Median Household Income: Median household income, in 2023 inflation-adjusted dollars for the specific age group

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Orange County median household income by age. You can refer the same here

  4. Orange County, CA, US Demographics 2025

    • point2homes.com
    html
    Updated 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Point2Homes (2025). Orange County, CA, US Demographics 2025 [Dataset]. https://www.point2homes.com/US/Neighborhood/CA/Orange-County-Demographics.html
    Explore at:
    htmlAvailable download formats
    Dataset updated
    2025
    Dataset authored and provided by
    Point2Homeshttps://plus.google.com/116333963642442482447/posts
    Time period covered
    2025
    Area covered
    United States, Orange County, California
    Variables measured
    Asian, Other, White, 2 units, Over 65, Median age, Blue collar, Mobile home, 3 or 4 units, 5 to 9 units, and 70 more
    Description

    Comprehensive demographic dataset for Orange County, CA, US including population statistics, household income, housing units, education levels, employment data, and transportation with year-over-year changes.

  5. T

    Estimate of Median Household Income for Orange County, CA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Apr 21, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2018). Estimate of Median Household Income for Orange County, CA [Dataset]. https://tradingeconomics.com/united-states/estimate-of-median-household-income-for-orange-county-ca-fed-data.html
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset updated
    Apr 21, 2018
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    Orange County, California
    Description

    Estimate of Median Household Income for Orange County, CA was 109768.00000 $ in January of 2023, according to the United States Federal Reserve. Historically, Estimate of Median Household Income for Orange County, CA reached a record high of 109768.00000 in January of 2023 and a record low of 39592.00000 in January of 1989. Trading Economics provides the current actual value, an historical data chart and related indicators for Estimate of Median Household Income for Orange County, CA - last updated from the United States Federal Reserve on December of 2025.

  6. N

    Income Distribution by Quintile: Mean Household Income in Orange County, CA...

    • neilsberg.com
    csv, json
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Income Distribution by Quintile: Mean Household Income in Orange County, CA // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/4838eca2-f81d-11ef-a994-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Orange County, California
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Orange County, CA, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 23,564, while the mean income for the highest quintile (20% of households with the highest income) is 380,227. This indicates that the top earners earn 16 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 663,324, which is 174.45% higher compared to the highest quintile, and 2814.99% higher compared to the lowest quintile.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2023 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Orange County median household income. You can refer the same here

  7. F

    Per Capita Personal Income in Orange County, CA

    • fred.stlouisfed.org
    json
    Updated Mar 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Per Capita Personal Income in Orange County, CA [Dataset]. https://fred.stlouisfed.org/series/PCPI06059
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Mar 4, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Orange County, California
    Description

    Graph and download economic data for Per Capita Personal Income in Orange County, CA (PCPI06059) from 1969 to 2023 about Orange County, CA; Los Angeles; personal income; per capita; CA; personal; income; and USA.

  8. N

    Median Household Income by Racial Categories in Orange County, CA (2022)

    • neilsberg.com
    csv, json
    Updated Jan 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Median Household Income by Racial Categories in Orange County, CA (2022) [Dataset]. https://www.neilsberg.com/research/datasets/362ae322-8904-11ee-9302-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 3, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Orange County, California
    Variables measured
    Median Household Income for Asian Population, Median Household Income for Black Population, Median Household Income for White Population, Median Household Income for Some other race Population, Median Household Income for Two or more races Population, Median Household Income for American Indian and Alaska Native Population, Median Household Income for Native Hawaiian and Other Pacific Islander Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2022 1-Year Estimates. To portray the median household income within each racial category idetified by the US Census Bureau, we conducted an initial analysis and categorization of the data. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). It is important to note that the median household income estimates exclusively represent the identified racial categories and do not incorporate any ethnicity classifications. Households are categorized, and median incomes are reported based on the self-identified race of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the median household income across different racial categories in Orange County. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.

    Key observations

    Based on our analysis of the distribution of Orange County population by race & ethnicity, the population is predominantly White. This particular racial category constitutes the majority, accounting for 53.65% of the total residents in Orange County. Notably, the median household income for White households is $116,018. Interestingly, White is both the largest group and the one with the highest median household income, which stands at $116,018.

    https://i.neilsberg.com/ch/orange-county-ca-median-household-income-by-race.jpeg" alt="Orange County median household income diversity across racial categories">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2022 1-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race of the head of household: This column presents the self-identified race of the household head, encompassing all relevant racial categories (excluding ethnicity) applicable in Orange County.
    • Median household income: Median household income, adjusting for inflation, presented in 2022-inflation-adjusted dollars

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Orange County median household income by race. You can refer the same here

  9. a

    CERF - Disinvested Communities (Low Income, Disadvantaged, Race and Tribe...

    • hub.arcgis.com
    Updated Apr 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mapping Black California (2023). CERF - Disinvested Communities (Low Income, Disadvantaged, Race and Tribe Information) [Dataset]. https://hub.arcgis.com/maps/14536b05212240ddb93585eb5e9a71d7
    Explore at:
    Dataset updated
    Apr 5, 2023
    Dataset authored and provided by
    Mapping Black California
    Area covered
    Description

    CERF’s predefined definition of “disinvested communities” includes a variety of overlapping factors prioritizing specific Census tracts in need of immediate investment. While the challenges CERF qualifying “disinvested communities'' face are intersectional, this map also highlights areas of Orange County in which a single factor such as making below Orange County’s annual median income of $95,280 is a signifier of a Census tract at risk for becoming disadvantaged. For this reason, this map takes into consideration and identifies both Census tract communities that meet all of the criteria for qualifying as “disinvested communities” alongside Census tracts with only medium income as disadvantaged and thus, a warning signifier for risk of becoming a “disinvested community.”Data taken from ACS 2017-2021, SB 535 Map: https://oehha.ca.gov/calenviroscreen/sb535, Tribal Boundaries: https://services.arcgis.com/jDGuO8tYggdCCnUJ/arcgis/rest/services/California_Tribal_Land_Boundaries/FeatureServer

  10. T

    Per Capita Personal Income in Orange County, CA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Apr 18, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2018). Per Capita Personal Income in Orange County, CA [Dataset]. https://tradingeconomics.com/united-states/per-capita-personal-income-in-orange-county-ca-fed-data.html
    Explore at:
    json, excel, csv, xmlAvailable download formats
    Dataset updated
    Apr 18, 2018
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    Orange County, California
    Description

    Per Capita Personal Income in Orange County, CA was 88897.00000 $ in January of 2023, according to the United States Federal Reserve. Historically, Per Capita Personal Income in Orange County, CA reached a record high of 88897.00000 in January of 2023 and a record low of 4821.00000 in January of 1969. Trading Economics provides the current actual value, an historical data chart and related indicators for Per Capita Personal Income in Orange County, CA - last updated from the United States Federal Reserve on December of 2025.

  11. i

    Wealth Statistics for Orange County, California

    • interactive-map-ai.com
    Updated Nov 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Map AI (2025). Wealth Statistics for Orange County, California [Dataset]. https://interactive-map-ai.com/explore/us/CA/orange-county/wealth
    Explore at:
    Dataset updated
    Nov 27, 2025
    Dataset authored and provided by
    Map AI
    Time period covered
    2020 - Present
    Area covered
    Variables measured
    Gini Index, Unemployment Rate, Median Household Income
    Description

    Orange County, CA has a B wealth grade. Median household income: $113,880. Unemployment rate: 5.3%. Income grows 5.5% yearly.

  12. N

    Income Bracket Analysis by Age Group Dataset: Age-Wise Distribution of...

    • neilsberg.com
    csv, json
    Updated Feb 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Income Bracket Analysis by Age Group Dataset: Age-Wise Distribution of Orange County, CA Household Incomes Across 16 Income Brackets // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/f363f501-f353-11ef-8577-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 25, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Orange County, California
    Variables measured
    Number of households with income $200,000 or more, Number of households with income less than $10,000, Number of households with income between $15,000 - $19,999, Number of households with income between $20,000 - $24,999, Number of households with income between $25,000 - $29,999, Number of households with income between $30,000 - $34,999, Number of households with income between $35,000 - $39,999, Number of households with income between $40,000 - $44,999, Number of households with income between $45,000 - $49,999, Number of households with income between $50,000 - $59,999, and 6 more
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across 16 income brackets (mentioned above) following an initial analysis and categorization. Using this dataset, you can find out the total number of households within a specific income bracket along with how many households with that income bracket for each of the 4 age cohorts (Under 25 years, 25-44 years, 45-64 years and 65 years and over). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Orange County: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..

    Key observations

    • Upon closer examination of the distribution of households among age brackets, it reveals that there are 26,583(2.47%) households where the householder is under 25 years old, 337,853(31.44%) households with a householder aged between 25 and 44 years, 435,535(40.53%) households with a householder aged between 45 and 64 years, and 274,683(25.56%) households where the householder is over 65 years old.
    • In Orange County, the age group of 45 to 64 years stands out with both the highest median income and the maximum share of households. This alignment suggests a financially stable demographic, indicating an established community with stable careers and higher incomes.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • Less than $10,000
    • $10,000 to $14,999
    • $15,000 to $19,999
    • $20,000 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $59,999
    • $60,000 to $74,999
    • $75,000 to $99,999
    • $100,000 to $124,999
    • $125,000 to $149,999
    • $150,000 to $199,999
    • $200,000 or more

    Variables / Data Columns

    • Household Income: This column showcases 16 income brackets ranging from Under $10,000 to $200,000+ ( As mentioned above).
    • Under 25 years: The count of households led by a head of household under 25 years old with income within a specified income bracket.
    • 25 to 44 years: The count of households led by a head of household 25 to 44 years old with income within a specified income bracket.
    • 45 to 64 years: The count of households led by a head of household 45 to 64 years old with income within a specified income bracket.
    • 65 years and over: The count of households led by a head of household 65 years and over old with income within a specified income bracket.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Orange County median household income by age. You can refer the same here

  13. N

    Age-wise distribution of Orange County, CA household incomes: Comparative...

    • neilsberg.com
    csv, json
    Updated Jan 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Age-wise distribution of Orange County, CA household incomes: Comparative analysis across 16 income brackets [Dataset]. https://www.neilsberg.com/research/datasets/861ff2b3-8dec-11ee-9302-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 9, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Orange County, California
    Variables measured
    Number of households with income $200,000 or more, Number of households with income less than $10,000, Number of households with income between $15,000 - $19,999, Number of households with income between $20,000 - $24,999, Number of households with income between $25,000 - $29,999, Number of households with income between $30,000 - $34,999, Number of households with income between $35,000 - $39,999, Number of households with income between $40,000 - $44,999, Number of households with income between $45,000 - $49,999, Number of households with income between $50,000 - $59,999, and 6 more
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2022 1-Year Estimates. It delineates income distributions across 16 income brackets (mentioned above) following an initial analysis and categorization. Using this dataset, you can find out the total number of households within a specific income bracket along with how many households with that income bracket for each of the 4 age cohorts (Under 25 years, 25-44 years, 45-64 years and 65 years and over). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Orange County: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..

    Key observations

    • Upon closer examination of the distribution of households among age brackets, it reveals that there are 28,084(2.59%) households where the householder is under 25 years old, 337,408(31.09%) households with a householder aged between 25 and 44 years, 431,476(39.76%) households with a householder aged between 45 and 64 years, and 288,257(26.56%) households where the householder is over 65 years old.
    • In Orange County, the age group of 45 to 64 years stands out with both the highest median income and the maximum share of households. This alignment suggests a financially stable demographic, indicating an established community with stable careers and higher incomes.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2022 1-Year Estimates.

    Income brackets:

    • Less than $10,000
    • $10,000 to $14,999
    • $15,000 to $19,999
    • $20,000 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $59,999
    • $60,000 to $74,999
    • $75,000 to $99,999
    • $100,000 to $124,999
    • $125,000 to $149,999
    • $150,000 to $199,999
    • $200,000 or more

    Variables / Data Columns

    • Household Income: This column showcases 16 income brackets ranging from Under $10,000 to $200,000+ ( As mentioned above).
    • Under 25 years: The count of households led by a head of household under 25 years old with income within a specified income bracket.
    • 25 to 44 years: The count of households led by a head of household 25 to 44 years old with income within a specified income bracket.
    • 45 to 64 years: The count of households led by a head of household 45 to 64 years old with income within a specified income bracket.
    • 65 years and over: The count of households led by a head of household 65 years and over old with income within a specified income bracket.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Orange County median household income by age. You can refer the same here

  14. a

    OCACS 2020 Economic Characteristics for ZIP Code Tabulation Areas

    • hub.arcgis.com
    Updated May 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OC Public Works (2023). OCACS 2020 Economic Characteristics for ZIP Code Tabulation Areas [Dataset]. https://hub.arcgis.com/datasets/63207344d7654b129bf549dff6681ff2
    Explore at:
    Dataset updated
    May 5, 2023
    Dataset authored and provided by
    OC Public Works
    Area covered
    Description

    US Census American Community Survey (ACS) 2020, 5-year estimates of the key economic characteristics of ZIP Code Tabulation Areas geographic level in Orange County, California. The data contains 397 fields for the variable groups E01: Employment status (universe: population 16 years and over, table X23, 7 fields); E02: Work status by age of worker (universe: population 16 years and over, table X23, 36 fields); E03: Commuting to work (universe: workers 16 years and over, table X8, 8 fields); E04: Travel time to work (universe: workers 16 years and over who did not work at home, table X8, 14 fields); E05: Number of vehicles available for workers (universe: workers 16 years and over in households, table X8, 8 fields); E06: Median age by means of transportation to work (universe: median age, workers 16 years and over, table X8, 7 fields); E07: Means of transportation to work by race (universe: workers 16 years and over, table X8, 64 fields); E08: Occupation (universe: civilian employed population 16 years and over, table X24, 53 fields); E09: Industry (universe: civilian employed population 16 years and over, table X24, 43 fields); E10: Class of worker (universe: civilian employed population 16 years and over, table X24, 19 fields); E11: Household income and earnings in the past 12 months (universe: total households, table X19, 37 fields); E12: Income and earnings in dollars (universe: inflation-adjusted dollars, tables X19-X20, 31 fields); E13: Family income in dollars (universe: total families, table X19, 17 fields); E14: Health insurance coverage (universe: total families, table X19, 17 fields); E15: Ratio of income to Poverty level (universe: total population for whom Poverty level is determined, table X17, 8 fields); E16: Poverty in population in the past 12 months (universe: total population for whom Poverty level is determined, table X17, 7 fields); E17: Poverty in households in the past 12 months (universe: total households, table X17, 9 fields); E18: Percentage of families and people whose income in the past 12 months is below the poverty level (universe: families, population, table X17, 8 fields), and; X19: Poverty and income deficit (dollars) in the past 12 months for families (universe: families with income below Poverty level in the past 12 months, table X17, 4 fields). The US Census geodemographic data are based on the 2020 TigerLines across multiple geographies. The spatial geographies were merged with ACS data tables. See full documentation at the OCACS project GitHub page (https://github.com/ktalexan/OCACS-Geodemographics).

  15. a

    OCACS 2021 Economic Characteristics for Urban Areas

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated May 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OC Public Works (2023). OCACS 2021 Economic Characteristics for Urban Areas [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/d1de6f8d034245b6ad494892e1c776a2
    Explore at:
    Dataset updated
    May 5, 2023
    Dataset authored and provided by
    OC Public Works
    Area covered
    Description

    US Census American Community Survey (ACS) 2021, 5-year estimates of the key economic characteristics of Urban Areas geographic level in Orange County, California. The data contains 397 fields for the variable groups E01: Employment status (universe: population 16 years and over, table X23, 7 fields); E02: Work status by age of worker (universe: population 16 years and over, table X23, 36 fields); E03: Commuting to work (universe: workers 16 years and over, table X8, 8 fields); E04: Travel time to work (universe: workers 16 years and over who did not work at home, table X8, 14 fields); E05: Number of vehicles available for workers (universe: workers 16 years and over in households, table X8, 8 fields); E06: Median age by means of transportation to work (universe: median age, workers 16 years and over, table X8, 7 fields); E07: Means of transportation to work by race (universe: workers 16 years and over, table X8, 64 fields); E08: Occupation (universe: civilian employed population 16 years and over, table X24, 53 fields); E09: Industry (universe: civilian employed population 16 years and over, table X24, 43 fields); E10: Class of worker (universe: civilian employed population 16 years and over, table X24, 19 fields); E11: Household income and earnings in the past 12 months (universe: total households, table X19, 37 fields); E12: Income and earnings in dollars (universe: inflation-adjusted dollars, tables X19-X20, 31 fields); E13: Family income in dollars (universe: total families, table X19, 17 fields); E14: Health insurance coverage (universe: total families, table X19, 17 fields); E15: Ratio of income to Poverty level (universe: total population for whom Poverty level is determined, table X17, 8 fields); E16: Poverty in population in the past 12 months (universe: total population for whom Poverty level is determined, table X17, 7 fields); E17: Poverty in households in the past 12 months (universe: total households, table X17, 9 fields); E18: Percentage of families and people whose income in the past 12 months is below the poverty level (universe: families, population, table X17, 8 fields), and; X19: Poverty and income deficit (dollars) in the past 12 months for families (universe: families with income below Poverty level in the past 12 months, table X17, 4 fields). The US Census geodemographic data are based on the 2021 TigerLines across multiple geographies. The spatial geographies were merged with ACS data tables. See full documentation at the OCACS project GitHub page (https://github.com/ktalexan/OCACS-Geodemographics).

  16. N

    Orange County, CA annual median income by work experience and sex dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Orange County, CA annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a52df0e8-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Orange County, California
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Orange County. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Orange County, the median income for all workers aged 15 years and older, regardless of work hours, was $55,662 for males and $37,813 for females.

    These income figures highlight a substantial gender-based income gap in Orange County. Women, regardless of work hours, earn 68 cents for each dollar earned by men. This significant gender pay gap, approximately 32%, underscores concerning gender-based income inequality in the county of Orange County.

    - Full-time workers, aged 15 years and older: In Orange County, among full-time, year-round workers aged 15 years and older, males earned a median income of $82,537, while females earned $68,141, leading to a 17% gender pay gap among full-time workers. This illustrates that women earn 83 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.

    Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in Orange County.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Orange County median household income by race. You can refer the same here

  17. a

    OCACS 2017 Economic Characteristics for Urban Areas

    • data-ocpw.opendata.arcgis.com
    Updated Jan 22, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OC Public Works (2020). OCACS 2017 Economic Characteristics for Urban Areas [Dataset]. https://data-ocpw.opendata.arcgis.com/datasets/ocacs-2017-economic-characteristics-for-urban-areas
    Explore at:
    Dataset updated
    Jan 22, 2020
    Dataset authored and provided by
    OC Public Works
    Area covered
    Description

    US Census American Community Survey (ACS) 2017, 5-year estimates of the key economic characteristics of Urban Areas geographic level in Orange County, California. The data contains 397 fields for the variable groups E01: Employment status (universe: population 16 years and over, table X23, 7 fields); E02: Work status by age of worker (universe: population 16 years and over, table X23, 36 fields); E03: Commuting to work (universe: workers 16 years and over, table X8, 8 fields); E04: Travel time to work (universe: workers 16 years and over who did not work at home, table X8, 14 fields); E05: Number of vehicles available for workers (universe: workers 16 years and over in households, table X8, 8 fields); E06: Median age by means of transportation to work (universe: median age, workers 16 years and over, table X8, 7 fields); E07: Means of transportation to work by race (universe: workers 16 years and over, table X8, 64 fields); E08: Occupation (universe: civilian employed population 16 years and over, table X24, 53 fields); E09: Industry (universe: civilian employed population 16 years and over, table X24, 43 fields); E10: Class of worker (universe: civilian employed population 16 years and over, table X24, 19 fields); E11: Household income and earnings in the past 12 months (universe: total households, table X19, 37 fields); E12: Income and earnings in dollars (universe: inflation-adjusted dollars, tables X19-X20, 31 fields); E13: Family income in dollars (universe: total families, table X19, 17 fields); E14: Health insurance coverage (universe: total families, table X19, 17 fields); E15: Ratio of income to Poverty level (universe: total population for whom Poverty level is determined, table X17, 8 fields); E16: Poverty in population in the past 12 months (universe: total population for whom Poverty level is determined, table X17, 7 fields); E17: Poverty in households in the past 12 months (universe: total households, table X17, 9 fields); E18: Percentage of families and people whose income in the past 12 months is below the poverty level (universe: families, population, table X17, 8 fields), and; X19: Poverty and income deficit (dollars) in the past 12 months for families (universe: families with income below Poverty level in the past 12 months, table X17, 4 fields). The US Census geodemographic data are based on the 2017 TigerLines across multiple geographies. The spatial geographies were merged with ACS data tables. See full documentation at the OCACS project github page (https://github.com/ktalexan/OCACS-Geodemographics).

  18. N

    Median Household Income Variation by Family Size in Orange County, CA:...

    • neilsberg.com
    csv, json
    Updated Jan 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Median Household Income Variation by Family Size in Orange County, CA: Comparative analysis across 7 household sizes [Dataset]. https://www.neilsberg.com/research/datasets/1b49f400-73fd-11ee-949f-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Orange County, California
    Variables measured
    Household size, Median Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It delineates income distributions across 7 household sizes (mentioned above) following an initial analysis and categorization. Using this dataset, you can find out how household income varies with the size of the family unit. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median household incomes for various household sizes in Orange County, CA, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.

    Key observations

    • Of the 7 household sizes (1 person to 7-or-more person households) reported by the census bureau, all of the household sizes were found in Orange County. Across the different household sizes in Orange County the mean income is $123,186, and the standard deviation is $32,979. The coefficient of variation (CV) is 26.77%. This high CV indicates high relative variability, suggesting that the incomes vary significantly across different sizes of households.
    • In the most recent year, 2021, The smallest household size for which the bureau reported a median household income was 1-person households, with an income of $55,808. It then further increased to $157,668 for 7-person households, the largest household size for which the bureau reported a median household income.

    https://i.neilsberg.com/ch/orange-county-ca-median-household-income-by-household-size.jpeg" alt="Orange County, CA median household income, by household size (in 2022 inflation-adjusted dollars)">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Household Sizes:

    • 1-person households
    • 2-person households
    • 3-person households
    • 4-person households
    • 5-person households
    • 6-person households
    • 7-or-more-person households

    Variables / Data Columns

    • Household Size: This column showcases 7 household sizes ranging from 1-person households to 7-or-more-person households (As mentioned above).
    • Median Household Income: Median household income, in 2022 inflation-adjusted dollars for the specific household size.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Orange County median household income. You can refer the same here

  19. a

    OCACS 2017 Economic Characteristics for ZIP Code Tabulation Areas

    • data-ocpw.opendata.arcgis.com
    • hub.arcgis.com
    Updated Jan 22, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OC Public Works (2020). OCACS 2017 Economic Characteristics for ZIP Code Tabulation Areas [Dataset]. https://data-ocpw.opendata.arcgis.com/maps/OCPW::ocacs-2017-economic-characteristics-for-zip-code-tabulation-areas
    Explore at:
    Dataset updated
    Jan 22, 2020
    Dataset authored and provided by
    OC Public Works
    Area covered
    Description

    US Census American Community Survey (ACS) 2017, 5-year estimates of the key economic characteristics of ZIP Code Tabulation Areas geographic level in Orange County, California. The data contains 397 fields for the variable groups E01: Employment status (universe: population 16 years and over, table X23, 7 fields); E02: Work status by age of worker (universe: population 16 years and over, table X23, 36 fields); E03: Commuting to work (universe: workers 16 years and over, table X8, 8 fields); E04: Travel time to work (universe: workers 16 years and over who did not work at home, table X8, 14 fields); E05: Number of vehicles available for workers (universe: workers 16 years and over in households, table X8, 8 fields); E06: Median age by means of transportation to work (universe: median age, workers 16 years and over, table X8, 7 fields); E07: Means of transportation to work by race (universe: workers 16 years and over, table X8, 64 fields); E08: Occupation (universe: civilian employed population 16 years and over, table X24, 53 fields); E09: Industry (universe: civilian employed population 16 years and over, table X24, 43 fields); E10: Class of worker (universe: civilian employed population 16 years and over, table X24, 19 fields); E11: Household income and earnings in the past 12 months (universe: total households, table X19, 37 fields); E12: Income and earnings in dollars (universe: inflation-adjusted dollars, tables X19-X20, 31 fields); E13: Family income in dollars (universe: total families, table X19, 17 fields); E14: Health insurance coverage (universe: total families, table X19, 17 fields); E15: Ratio of income to Poverty level (universe: total population for whom Poverty level is determined, table X17, 8 fields); E16: Poverty in population in the past 12 months (universe: total population for whom Poverty level is determined, table X17, 7 fields); E17: Poverty in households in the past 12 months (universe: total households, table X17, 9 fields); E18: Percentage of families and people whose income in the past 12 months is below the poverty level (universe: families, population, table X17, 8 fields), and; X19: Poverty and income deficit (dollars) in the past 12 months for families (universe: families with income below Poverty level in the past 12 months, table X17, 4 fields). The US Census geodemographic data are based on the 2017 TigerLines across multiple geographies. The spatial geographies were merged with ACS data tables. See full documentation at the OCACS project github page (https://github.com/ktalexan/OCACS-Geodemographics).

  20. N

    Dataset for Orange County, CA Census Bureau Income Distribution by Gender

    • neilsberg.com
    Updated Jan 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Dataset for Orange County, CA Census Bureau Income Distribution by Gender [Dataset]. https://www.neilsberg.com/research/datasets/b3c930d0-abcb-11ee-8b96-3860777c1fe6/
    Explore at:
    Dataset updated
    Jan 9, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Orange County, California
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Orange County household income by gender. The dataset can be utilized to understand the gender-based income distribution of Orange County income.

    Content

    The dataset will have the following datasets when applicable

    Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).

    • Orange County, CA annual median income by work experience and sex dataset : Aged 15+, 2010-2022 (in 2022 inflation-adjusted dollars)
    • Orange County, CA annual income distribution by work experience and gender dataset (Number of individuals ages 15+ with income, 2022)

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Interested in deeper insights and visual analysis?

    Explore our comprehensive data analysis and visual representations for a deeper understanding of Orange County income distribution by gender. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2024). Estimate of Median Household Income for Orange County, CA [Dataset]. https://fred.stlouisfed.org/series/MHICA06059A052NCEN

Estimate of Median Household Income for Orange County, CA

MHICA06059A052NCEN

Explore at:
jsonAvailable download formats
Dataset updated
Dec 20, 2024
License

https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

Area covered
Orange County, California
Description

Graph and download economic data for Estimate of Median Household Income for Orange County, CA (MHICA06059A052NCEN) from 1989 to 2023 about Orange County, CA; Los Angeles; CA; households; median; income; and USA.

Search
Clear search
Close search
Google apps
Main menu