https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimate of Median Household Income for Santa Clara County, CA (MHICA06085A052NCEN) from 1989 to 2023 about Santa Clara County, CA; San Jose; CA; households; median; income; and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for 90% Confidence Interval Upper Bound of Estimate of Median Household Income for Santa Clara County, CA (MHICIUBCA06085A052NCEN) from 1989 to 2023 about Santa Clara County, CA; San Jose; CA; households; median; income; and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in San Jose: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2022 1-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for San Jose median household income by age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the distribution of median household income among distinct age brackets of householders in San Jose. Based on the latest 2019-2023 5-Year Estimates from the American Community Survey, it displays how income varies among householders of different ages in San Jose. It showcases how household incomes typically rise as the head of the household gets older. The dataset can be utilized to gain insights into age-based household income trends and explore the variations in incomes across households.
Key observations: Insights from 2023
In terms of income distribution across age cohorts, in San Jose, the median household income stands at $100,250 for householders within the 25 to 44 years age group, followed by $53,750 for the 45 to 64 years age group. Notably, householders within the 65 years and over age group, had the lowest median household income at $41,250.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Age groups classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for San Jose median household income by age. You can refer the same here
In 2022, San Francisco had the highest median household income of cities ranking within the top 25 in terms of population, with a median household income in of 136,692 U.S. dollars. In that year, San Jose in California was ranked second, and Seattle, Washington third.
Following a fall after the great recession, median household income in the United States has been increasing in recent years. As of 2022, median household income by state was highest in Maryland, Washington, D.C., Utah, and Massachusetts. It was lowest in Mississippi, West Virginia, and Arkansas. Families with an annual income of 25,000 and 49,999 U.S. dollars made up the largest income bracket in America, with about 25.26 million households.
Data on median household income can be compared to statistics on personal income in the U.S. released by the Bureau of Economic Analysis. Personal income rose to around 21.8 trillion U.S. dollars in 2022, the highest value recorded. Personal income is a measure of the total income received by persons from all sources, while median household income is “the amount with divides the income distribution into two equal groups,” according to the U.S. Census Bureau. Half of the population in question lives above median income and half lives below. Though total personal income has increased in recent years, this wealth is not distributed throughout the population. In practical terms, income of most households has decreased. One additional statistic illustrates this disparity: for the lowest quintile of workers, mean household income has remained more or less steady for the past decade at about 13 to 16 thousand constant U.S. dollars annually. Meanwhile, income for the top five percent of workers has actually risen from about 285,000 U.S. dollars in 1990 to about 499,900 U.S. dollars in 2020.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Real Per Capita Personal Income for San Jose-Sunnyvale-Santa Clara, CA (MSA) (RPIPC41940) from 2008 to 2023 about San Jose, personal income, per capita, CA, personal, income, real, and USA.
In 2023, San Jose-Sunnyvale-Santa Clara Metro area in California was ranked first with median household income of 153,202 U.S. dollars. The Washington-Arlington-Alexandria metro area had a median household income of 121,469 U.S. dollars.
VITAL SIGNS INDICATOR
Housing Permits (LU3)
FULL MEASURE NAME
Permitted housing units
LAST UPDATED
February 2023
DESCRIPTION
Housing growth is measured in terms of the number of units that local jurisdictions permit throughout a given year. A permitted unit is a unit that a city or county has authorized for construction.
DATA SOURCE
California Housing Foundation/Construction Industry Research Board (CIRB) - https://www.cirbreport.org/
Construction Review report (1967-2022)
Association of Bay Area Governments (ABAG) – Metropolitan Transportation Commission (MTC) - https://data.bayareametro.gov/Development/HCD-Annual-Progress-Report-Jurisdiction-Summary/nxbj-gfv7
Housing Permits Database (2014-2021)
Census Bureau Building Permit Survey - https://www2.census.gov/econ/bps/County/
Building permits by county (annual, monthly)
CONTACT INFORMATION
vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator)
Bay Area housing permits data by single/multi family come from the California Housing Foundation/Construction Industry Research Board (CIRB). Affordability breakdowns from 2014 to 2021 come from the Association of Bay Area Governments (ABAG) – Metropolitan Transportation Commission (MTC) Housing Permits Database.
Single-family housing units include detached, semi-detached, row house and town house units. Row houses and town houses are included as single-family units when each unit is separated from the adjacent unit by an unbroken ground-to-roof party or fire wall. Condominiums are included as single-family units when they are of zero-lot-line or zero-property-line construction; when units are separated by an air space; or, when units are separated by an unbroken ground-to-roof party or fire wall. Multi-family housing includes duplexes, three-to-four-unit structures and apartment-type structures with five units or more. Multi-family also includes condominium units in structures of more than one living unit that do not meet the single-family housing definition.
Each multi-family unit is counted separately even though they may be in the same building. Total units is the sum of single-family and multi-family units. County data is available from 1967 whereas city data is available from 1990. City data is only available for incorporated cities and towns. All permits in unincorporated cities and towns are included under their respective county’s unincorporated total. Permit data is not available for years when the city or town was not incorporated.
Affordable housing is the total number of permitted units affordable to low and very low income households. Housing affordable to very low income households are households making below 50% of the area median income. Housing affordable to low income households are households making between 50% and 80% of the area median income. Housing affordable to moderate income households are households making below 80% and 120% of the area median income. Housing affordable to above moderate income households are households making above 120% of the area median income.
Permit data is missing for the following cities and years:
Clayton, 1990-2007
Lafayette, 1990-2007
Moraga, 1990-2007
Orinda, 1990-2007
San Ramon, 1990
Building permit data for metropolitan areas for each year is the sum of non-seasonally adjusted monthly estimates from the Census Building Permit Survey. The Bay Area values are the sum of the San Francisco-Oakland-Hayward MSA and the San Jose-Sunnyvale-Santa Clara MSA. The counties included in these areas are: San Francisco, Marin, Contra Costa, Alameda, San Mateo, Santa Clara, and San Benito.
Permit values reflect the number of units permitted in each respective year. Note that the data columns come from difference sources. The columns (SFunits, MFunits, TOTALunits, SF_Share and MF_Share) are sourced from CIRB. The columns (VeryLowunits, Lowunits, Moderateunits, AboveModerateunits, VeryLow_Share, Low_Share, Moderate_Share, AboveModerate_Share, Affordableunits and Affordableunits_Share) are sourced from the ABAG Housing Permits Database. Due to the slightly different methodologies that exist within each of those datasets, the total units from each of the two sources might not be consistent with each other.
As shown, three different data sources are used for this analysis of housing permits issued in the Bay Area. Data from the Construction Industry Research Board (CIRB) represents the best available data source for examining housing permits issued over time in cities and counties across the Bay Area, dating back to 1967. In recent years, Annual Progress Report (APR) data collected by the California Department of Housing and Community Development has been available for analyzing housing permits issued by affordability levels. Since CIRB data is only available for California jurisdictions, the U.S. Census Bureau provides the best data source for comparing housing permits issued across different metropolitan areas. Notably, annual permit totals for the Bay Area differ across these three data sources, reflecting the limitations of needing to use different data sources for different purposes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
San Jose Area - Per Capita Personal Income: 54 years of historical data from 1969 to 2023.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for 90% Confidence Interval Lower Bound of Estimate of Median Household Income for San Benito County, CA (MHICILBCA06069A052NCEN) from 1989 to 2023 about San Benito County, CA; San Jose; CA; households; median; income; and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household incomes over the past decade across various racial categories identified by the U.S. Census Bureau in San Jose. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. It also showcases the annual income trends, between 2013 and 2023, providing insights into the economic shifts within diverse racial communities.The dataset can be utilized to gain insights into income disparities and variations across racial categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for San Jose median household income by race. You can refer the same here
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset provides a framework for prioritizing investments from an equity standpoint using a simple scoring system. The index generates scores in four component areas: race (percent BIPOC), income (median household income), language (percent limited English proficiency), and education (percent of adults with less than HS diploma or equivalent). Each component score is on a scale of 1 (low priority) to 5 (high priority), where each value (1-5) covers approximately 20 percent of the population. A combined score is also provided in the EQUITYSCORECOMBINED field. The combined score is the sum of the race and income scores and is based on a scale of 2 to 10. The combined score has been adopted as the standard equity score. Language and education scores are provided for reference only and do not factor into the combined score.Source: American Community Survey (ACS) 2021 5-year estimatesData is updated annually.
In 20212, the San Jose-Sunnyvale-Santa Clara metro area in California had the highest per capita income at 64,169 U.S. dollars. The second highest, San Francisco-Oakland-Berkeley metro area is also located in California.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Normalized raster output of Median Household Income by block group in the State of Iowa based on U.S. Census Bureau, 2013-2017 American Community Survey 5-Year Estimates. Used in the Transit Dependency Analysis as part of the 2020 Iowa DOT Public Transit Long Range Plan update. This factor was one of seven utilized in the analysis that was based on MTI Report 12-30 "Investigating the Determining Factors for Transit Travel Demand by Bus Mode in US Metropolitan Statistical Areas" by the Mineta Transportation Institute of San José State University (SJSU) in May 2015. https://transweb.sjsu.edu/research/investigating-determining-factors-transit-travel-demand-bus-mode-us-metropolitan
In many metros in the United States, the median household income was insufficient to qualify for the median-priced home. Among the ** largest metros in the U.S., San Jose-Sunnyvale-Santa Clara, CA was the least affordable one in 2022, with the housing affordability index at **** index points. This means that the median household income, when accounting for monthly housing expenses, was less than ** percent of the necessary income to qualify for a mortgage. An index value over 100, on the other hand, shows that the median income is sufficient for a mortgage. Metros, such as Cleveland-Elyria, OH, and St. Louis, MO-IL had a median household income much higher than the income needed to buy the median-priced home.
In 2022, the Midland metro area in Texas had the highest per capita personal income in the United States. This was followed by the San Jose-Sunnyvale-Santa Clara metropolitan area in California.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in San Jose. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In San Jose, the median income for all workers aged 15 years and older, regardless of work hours, was $64,508 for males and $43,600 for females.
These income figures highlight a substantial gender-based income gap in San Jose. Women, regardless of work hours, earn 68 cents for each dollar earned by men. This significant gender pay gap, approximately 32%, underscores concerning gender-based income inequality in the city of San Jose.
- Full-time workers, aged 15 years and older: In San Jose, among full-time, year-round workers aged 15 years and older, males earned a median income of $101,368, while females earned $78,536, leading to a 23% gender pay gap among full-time workers. This illustrates that women earn 77 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in San Jose.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for San Jose median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset illustrates the median household income in San Jose, spanning the years from 2010 to 2023, with all figures adjusted to 2023 inflation-adjusted dollars. Based on the latest 2019-2023 5-Year Estimates from the American Community Survey, it displays how income varied over the last decade. The dataset can be utilized to gain insights into median household income trends and explore income variations.
Key observations:
From 2010 to 2023, the median household income for San Jose increased by $1,006 (1.70%), as per the American Community Survey estimates. In comparison, median household income for the United States increased by $5,602 (7.68%) between 2010 and 2023.
Analyzing the trend in median household income between the years 2010 and 2023, spanning 13 annual cycles, we observed that median household income, when adjusted for 2023 inflation using the Consumer Price Index retroactive series (R-CPI-U-RS), experienced growth year by year for 6 years and declined for 7 years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.
Years for which data is available:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for San Jose median household income. You can refer the same here
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset provides a framework for prioritizing investments from an equity standpoint using a simple scoring system. The index generates scores in four component areas: race (percent BIPOC), income (median household income), language (percent limited English proficiency), and education (percent of adults with less than HS diploma or equivalent). Each component score is on a scale of 1 (low priority) to 5 (high priority), where each value (1-5) covers approximately 20 percent of the population. A combined score is also provided in the EQUITYSCORECOMBINED field. The combined score is the sum of the race and income scores and is based on a scale of 2 to 10. The combined score has been adopted as the standard equity score. Language and education scores are provided for reference only and do not factor into the combined score.This layer is based on demographics from ACS 2023 5-year estimates at the census tract level. New versions of the index are produced annually when ACS estimates are released.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimate of Median Household Income for Santa Clara County, CA (MHICA06085A052NCEN) from 1989 to 2023 about Santa Clara County, CA; San Jose; CA; households; median; income; and USA.