ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
The Census Bureau does not recognize or release data for Boston neighborhoods. However, Census tracts can be aggregated to approximate Boston neighborhood boundaries to allow for reporting and visualization of Census data at the neighborhood level. Census tracts are created by the U.S. Census Bureau as statistical geographic subdivisions of a county defined for the tabulation and presentation of data from the decennial census and the American Community Survey. The 2020 Census tract boundary files for Boston can be found here. These tract-approximated neighborhood boundaries are used for work with Census data. Work that does not rely on Census data generally uses the Boston neighborhood boundaries found here.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
This layer represents Zoning District boundaries indicating geographic areas subject to specific zoning guidelines. Developed and maintained by the Planning Department GIS in accordance with the Boston Zoning Code.
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. After the field sampling was complete, aerial photograph signatures were verified for all of the associations using the classification plot data, Bell et al. (2002), and Elliman (2004) and (2005) data. These signatures were extrapolated to other areas within the park boundary that were not sampled. Using ARCGIS 9.1, polygon boundaries in the preliminary vegetation map were further edited and refined to develop a draft association-level vegetation map. Polygons were updated with USNVC association names and codes based on the classification plot data. Polygons that were attributed with land use - land cover categories in the preliminary vegetation map retained their attributes. The aerial photointerpretation key was updated. The thematic accuracy of this 2006 draft association-level vegetation association and land use map was then assessed for accuracy.
This reference contains the imagery data used in the completion of the baseline vegetation inventory project for the NPS park unit. Orthophotos, raw imagery, and scanned aerial photos are common files held here. High-quality existing photography housed by the Commonwealth of Massachusetts Office of Geographic and Environmental Information (MassGIS) was used as the base for the BOHA vegetation map. A true color orthophotomosaic was developed from a set of digital 1:5,000 scale medium resolution true color aerial images that are considered the new "basemap" for the Commonwealth of Massachusetts by MassGIS and the Executive Office of Environmental Affairs (EOEA) until 2005 DOQs became available in 2006 (MassGIS 2007). The photography for the entire commonwealth was captured in April 2005 when deciduous trees were mostly bare and the ground was generally free of snow. The image type is 4-band (RGBN) natural color (Red, Green, Blue) and Near infrared in 8 bits (values ranging 0-255) per band format.
These ESRI shape files are of National Park Service tract and boundary data that was created by the Land Resources Division. Bounds of the tracts and islands are photo interpreted from 1996 ortho photo mosaics created by the University of Rhode Island for the park. Tracts and islands are consistent with the legislated boundaries defined by PL 104-333 which also references map number BOHA 80,002. Tracts are numbered and created by the regional cartographic staff at the Land Resources Program Centers and are associated to the Land Status Maps. This data should be used to display properties that NPS owns and properties that NPS may have some type of interest such as scenic easements or right of ways.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Boston Main Street districts are a network of 20 Main Street Organizations that use a comprehensive revitalization approach to create, build, and sustain healthy commercial districts.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Boston Neighborhood Boundaries represent a combination of zoning neighborhood boundaries, zip code boundaries and 2010 census tract boundaries. These boundaries are used in the broad sense for visualization purposes, research analysis and planning studies. However these boundaries are not official neighborhood boundaries for the City of Boston. The BPDA is not responsible for any districts or boundaries within the City of Boston except for the districts we use for planning purposes.
The 1:100,000-scale geologic map of the South Boston 30' x 60' quadrangle, Virginia and North Carolina, provides geologic information for the Piedmont along the I-85 and U.S. Route 58 corridors and in the Roanoke River watershed, which includes the John H. Kerr Reservoir and Lake Gaston. The Raleigh terrane (located on the eastern side of the map) contains Neoproterozoic to early Paleozoic(?) polydeformed, amphibolite-facies gneisses and schists. The Carolina slate belt of the Carolina terrane (located in the central part of the map) contains Neoproterozoic metavolcanic and metasedimentary rocks at greenschist facies. Although locally complicated, the slate-belt structure mapped across the South Boston map area is generally a broad, complex anticlinorium of the Hyco Formation (here called the Chase City anticlinorium) and is flanked to the west and east by synclinoria, which are cored by the overlying Aaron and Virgilina Formations. The western flank of the Carolina terrane (located in the western-central part of the map) contains similar rocks at higher metamorphic grade. This terrane includes epidote-amphibolite-facies to amphibolite-facies gneisses of the Neoproterozoic Country Line complex, which extends north-northeastward across the map. The Milton terrane (located on the western side of the map) contains Ordovician amphibolite-facies metavolcanic and metasedimentary gneisses of the Cunningham complex. Crosscutting relations and fabrics in mafic to felsic plutonic rocks constrain the timing of Neoproterozoic to late Paleozoic deformations across the Piedmont. In the eastern part of the map, a 5- to 9-kilometer-wide band of tectonic elements that contains two late Paleozoic mylonite zones (Nutbush Creek and Lake Gordon) and syntectonic granite (Buggs Island pluton) separates the Raleigh and Carolina terranes. Amphibolite-facies, infrastructural metaigneous and metasedimentary rocks east of the Lake Gordon mylonite zone are generally assigned to the Raleigh terrane. In the western part of the map area, a 5- to 8-kilometer-wide band of late Paleozoic tectonic elements includes the Hyco and Clover shear zones, syntectonic granitic sheets, and amphibolite-facies gneisses along the western margin of the Carolina terrane at its boundary with the Milton terrane. This band of tectonic elements is also the locus for early Mesozoic extensional faults associated with the early Mesozoic Scottsburg, Randolph, and Roanoke Creek rift basins. The map shows fluvial terrace deposits of sand and gravel on hills and slopes near the Roanoke and Dan Rivers. The terrace deposits that are highest in altitude are the oldest. Saprolite regolith is spatially associated with geologic source units and is not shown separately on the map. Mineral resources in the area include gneiss and granite quarried for crushed stone, tungsten-bearing vein deposits of the Hamme district, and copper and gold deposits of the Virgilina district. Surface-water resources are abundant and include rivers, tributaries, the John H. Kerr Reservoir, and Lake Gaston. Groundwater flow is concentrated in saprolite regolith, along fractures in the crystalline bedrock, and along fractures and bedding-plane partings in the Mesozoic rift basins.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Authoritative police districts dataset for the City of Boston.
This map contains demographic variables for block groups in the Boston area. The map shows a comparison of two variables: per capita income growth from 2015-2020 and unemployment. Size and color are used to show the two variables.The size of the circle represents the unemployed population over the age of 16, so the largest circles show the areas with the most unemployment. The colors showcase a range of personal income growth from 2015 to 2020. Green areas have the least projected growth, and yellow areas have the highest projected income growth.The data comes from Esri's ArcGIS Online data enrichment using the Living Atlas Block Group Analysis layer. The vintage of the data is 2015.
This data set contains the sea floor topographic contours, sun-illuminated topographic imagery, and backscatter intensity generated from a multibeam sonar survey of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts, an area of approximately 1100 square nautical miles. The Stellwagen Bank NMS Mapping Project is designed to provide detailed maps of the Stellwagen Bank region's environments and habitats and the first complete multibeam topographic and sea floor characterization maps of a significant region of the shallow EEZ. Data were collected on four cruises over a two year period from the fall of 1994 to the fall of 1996. The surveys were conducted aboard the Candian Hydrographic Service vessel Frederick G. Creed, a SWATH (Small Waterplane Twin Hull) ship that surveys at speeds of 16 knots. The multibeam data were collected utilizing a Simrad Subsea EM 1000 Multibeam Echo Sounder (95 kHz) that is permanently installed in the hull of the Creed.
2020 Census data for the city of Boston, Boston neighborhoods, census tracts, block groups, and voting districts. In the 2020 Census, the U.S. Census Bureau divided Boston into 207 census tracts (~4,000 residents) made up of 581 smaller block groups. The Boston Planning and Development Agency uses the 2020 tracts to approximate Boston neighborhoods. The 2020 Census Redistricting data also identify Boston’s voting districts.
For analysis of Boston’s 2020 Census data including graphs and maps by the BPDA Research Division and Office of Digital Cartography and GIS, see 2020 Census Research Publications
For a complete official data dictionary, please go to 2020 Census State Redistricting Data (Public Law 94-171) Summary File, Chapter 6. Data Dictionary. 2020 Census State Redistricting Data (Public Law 94-171) Summary File
2020 Census Block Groups In Boston
Boston Neighborhood Boundaries Approximated By 2020 Census Tracts
Crosswalk numbers for the city of Boston. Generated in July 2008 from original maps dated 1951-1962 and related sketches. Placed using centerlines from Water and Sewer as well as block defintions. Shapefiles for individual districts were merged into this one file but do not have an active connection. Some discrepency between centerlines and earlier maps was allowed, though obvious problems were marked in red. The legend is consistent between all districts, except for Roxbury where the map did not distinguish mid-block or school crosswalks.
About the App This app hosts data from Heat Resilience Solutions for Boston (the Heat Plan). It features maps that include daytime and nighttime air temperature, urban heat island index, and extreme heat duration. About the DataA citywide urban canopy model was developed to produce modeled air temperature maps for the City of Boston Heat Resilience Study in 2021. Sasaki Associates served as the lead consultant working with the City of Boston. The technical methodology for the urban canopy model was produced by Klimaat Consulting & Innovation Inc. A weeklong analysis period during July 18th-24th, 2019 was selected to produce heat characteristics maps for the study (one of the hottest weeks in Boston that year). The data array represents the modelled, average hourly urban meteorological condition at 100 meter spatial resolution. This dataset was processed into urban heat indices and delivered as georeferenced image layers. The data layers have been resampled to 10 meter resolution for visualization purposes. For the detailed methodology of the urban canopy model, visit the Heat Resilience Study project website.
This layer represents all the public and many of the private roadways in Massachusetts, including designations for Interstate, U.S. and State routes. Formerly known as the Massachusetts Highway Department (MHD) Roads, then the Executive Office of Transportation - Office of Transportation Planning (EOT-OTP) Roads, the MassDOT roads layer includes linework from the 1:5,000 road and rail centerlines data that were interpreted as part of the 1990s Black and White Digital Orthophoto project. The Massachusetts Department of Transportation - Office of Transportation Planning, which maintains this layer, continues to add linework from municipal and other sources and update existing linework using the most recent color ortho imagery as a base. The attribute table includes many "road inventory" items maintained in MassDOT's linear referencing system. The data layer published in November 2018 is based on the MassDOT 2017 year-end Road Inventory layer and results of a 2014-2015 MassDOT-Central Transportation Planning Staff project to conflate street names and other attributes from MassGIS' "base streets" to the MassDOT Road Inventory linework. The base streets are continually maintained by MassGIS as part of the NextGen 911 and Master Address Database projects. MassGIS staff reviewed the conflated layer and added many base street arcs digitized after the completion of the conflation work. MassGIS added several fields to support legacy symbology and labeling. Other edits included modifying some linework in areas of recent construction and roadway reconfiguration to align to 2017-2018 Google ortho imagery, and making minor fixes to attributes and linework.In ArcSDE this layer is named EOTROADS_ARC.From this data layer MassGIS extracted the Major Roads and Major Highway Routes layers.
Geospatial data about Boston, Massachusetts Police Districts. Export to CAD, GIS, PDF, CSV and access via API.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Noise pollution in cities has major negative effects on the health of both humans and wildlife. Using iPhones, we collected sound-level data at hundreds of locations in four areas of Boston, Massachusetts (USA) before, during, and after the fall 2020 pandemic lockdown, during which most people were required to remain at home. These spatially dispersed measurements allowed us to make detailed maps of noise pollution that are not possible when using standard fixed sound equipment. The four sites were: the Boston University campus (which sits between two highways), the Fenway/Longwood area (which includes an urban park and several hospitals), Harvard Square (home of Harvard University), and East Boston (a residential area near Logan Airport). Across all four sites, sound levels averaged 6.4 dB lower during the pandemic lockdown than after. Fewer high noise measurements occurred during lockdown as well. The resulting sound maps highlight noisy locations such as traffic intersections and quiet locations such as parks. This project demonstrates that changes in human activity can reduce noise pollution and that simple smartphone technology can be used to make highly detailed maps of noise pollution that identify sources of high sound levels potentially harmful to humans in urban environments. Methods We collected sound measurements within four different urban sites in Boston, Massachusetts. Working in small teams of 2-4 people, we used the mobile app SPLnFFT to collect sound level data in A-weighted decibel readings using smartphones. We exclusively used iPhones for data collection for consistency in hardware and software. Before each collection, we calibrated each iPhone to the same standard, which was used for every collection outing. We recorded the L50 value (the median sound level) for each recording because the L50 value is less affected by short bursts of loud sound than the mean reading. Recordings ran for approximately 20 seconds each. We recorded all sound measurements between 9 am and 5 pm on workdays to avoid the influence of rush-hour traffic, and only collected data on days without rain, snow, or strong wind to prevent inaccuracies due to weather. Within these conditions, we collected sound measurements over multiple days and at different times to ensure representative data. We followed these procedures for both collection cycles (2020 during lockdown and 2021 after lockdown had been lifted). The 2017 data were collected for an unrelated noise pollution project conducted by previous members of the Primack Lab and were not collected with the exact parameters established for the 2020 and 2021 collections. However, we found these noise data to be valuable given that they could be used to compare lockdown sound levels to the soundscape before the COVID-19 pandemic. We used R Studio to create sound maps from the individual data points in a way that allows for spatial visualization of the soundscape before, during, and after the pandemic lockdown. To test for statistically significant differences in sound level between years, we performed Welch’s t-tests on the raw data for all sites comparing lockdown (2020) measurements to pre (2017) and post (2021) lockdown measurements. Given the hypothesis that 2020 would have lower sound levels at each site, we report the results of one-tailed t-tests.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
The Census Bureau does not recognize or release data for Boston neighborhoods. However, Census block groups can be aggregated to approximate Boston neighborhood boundaries to allow for reporting and visualization of Census data at the neighborhood level. Census block groups are created by the U.S. Census Bureau as statistical geographic subdivisions of a census tract defined for the tabulation and presentation of data from the decennial census and the American Community Survey. The 2020 Census block group boundary files for Boston can be found here. These block group-approximated neighborhood boundaries are used for work with Census data. Work that does not rely on Census data generally uses the Boston neighborhood boundaries found here.
This data is a qualitatively-derived interpretative polygon shapefile defining the bottom types of the seafloor from Boston Harbor and the harbor approaches, Massachusetts. Approximately 170 km square of sidescan sonar and bathymetric data were collected by the National Oceanic and Atmospheric Administration (NOAA) Ship Whiting in 2000 and 2001 and reprocessed and gridded by the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS).
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
The Census Bureau does not recognize or release data for Boston neighborhoods. However, Census tracts can be aggregated to approximate Boston neighborhood boundaries to allow for reporting and visualization of Census data at the neighborhood level. Census tracts are created by the U.S. Census Bureau as statistical geographic subdivisions of a county defined for the tabulation and presentation of data from the decennial census and the American Community Survey. The 2020 Census tract boundary files for Boston can be found here. These tract-approximated neighborhood boundaries are used for work with Census data. Work that does not rely on Census data generally uses the Boston neighborhood boundaries found here.