The Unpublished Digital Geologic-GIS Map of Tuzigoot National Monument, Arizona is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (tuzi_geology.gdb), a 10.1 ArcMap (.MXD) map document (tuzi_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (moca_tuzi_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (moca_tuzi_geology_gis_readme.pdf). Please read the moca_tuzi_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (tuzi_geology_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/tuzi/tuzi_geology_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:48,000 and United States National Map Accuracy Standards features are within (horizontally) 24.4 meters or 80 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 12N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Tuzigoot National Monument.
The Unpublished Digital Geologic-GIS Map of Navajo National Monument and Vicinity, Arizona is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (nava_geology.gdb), a 10.1 ArcMap (.mxd) map document (nava_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (nava_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (nava_geology_gis_readme.pdf). Please read the nava_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (nava_geology_metadata.txt or nava_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:125,000 and United States National Map Accuracy Standards features are within (horizontally) 63.5 meters or 208.3 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, UTM Zone 12N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Navajo National Monument.
Vector polygon map data of property parcels from the State of Arizona containing 1,422,231 features.
​
Property parcel GIS map data consists of detailed information about individual land parcels, including their boundaries, ownership details, and geographic coordinates.
​
Property parcel data can be used to analyze and visualize land-related information for purposes such as real estate assessment, urban planning, or environmental management.
​
Available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
This dataset includes the polygon features representing the spatial extent and boundaries of the Bureau of Land Management (BLM) National Landscape Conservation System (NLCS) Wilderness Areas (WLD), Wilderness Study Areas (WSA), and Other Related Lands with wilderness characteristics (LWC) or managed for wilderness characteristics (MWC).The data standard for these boundaries will assist in the management of all eleven designations within the NLCS. Particularly, NLCS data pertains to the following BLM groups and their purposes: Land Use Planners, GIS Specialists, NLCS team leads, BLM managers, and public stakeholder groups.As early as 1926, the earliest advocates of wilderness preservation had acknowledged the beauty and important ecological values of the desert lands under the BLM’s administration as candidates for wilderness protection. In 1964, Congress established the National Wilderness Preservation System and designated the first Wilderness Areas in passing the Wilderness Act. The uniquely American idea of wilderness has become an increasingly significant tool to ensure long-term protection of natural landscapes. Wilderness protects the habitat of numerous wildlife species and serves as a biodiversity bank for many species of plants and animals. Wilderness is also a source of clean water.The Federal Land Policy and Management Act of 1976 directed the BLM to inventory and study its roadless areas for wilderness characteristics. Here identified areas became WSAs. The establishment of a WSA served to identify areas for Congress to consider for addition to the National Wilderness Preservation System. To be designated as a WSA, an area must have the following characteristics: Size - roadless areas of at least 5,000 acres of public lands or of a manageable size; Naturalness - generally appears to have been affected primarily by the forces of nature; Opportunities - provides outstanding opportunities for solitude or primitive and unconfined types of recreation. In addition, WSAs often have special qualities such as ecological, geological, educational, historical, scientific and scenic values.In June 2000, the BLM responded to growing concern over the loss of open space by creating the NLCS. The NLCS brings into a single system some of the BLM's premier designations. The Wilderness Areas, WSAs, and Other Related Lands represent three of these eleven premier designations. By putting these lands into an organized system, the BLM hopes to increase public awareness of these areas' scientific, cultural, educational, ecological and other values.The BLM's management of all public lands included data within the NLCS is guided by the Federal Land Policy and Management Act (FLPMA). FLPMA ensures that many of BLM's traditional activities such as grazing and hunting, continue on the lands within the NLCS, provided these activities are consistent with the overall purpose of the area.A Wilderness is a special place where the earth and its community of life are essentially undisturbed; they retain a primeval character, without permanent improvements and generally appear to have been affected primarily by the forces of nature. BLM NLCS Other Related Lands are lands not in Wilderness or WSAs that have been determined to have wilderness character through inventory or land use planning. These lands fall into one of two categories. The first category are lands with "wilderness value and characteristics". These are inventoried areas not in Wilderness or WSAs that have been determined to meet the size, naturalness, and the outstanding solitude and/or the outstanding primitive and unconfined recreation criteria. The second category are "wilderness characteristic protection areas". These are former lands with "wilderness value and characteristics" where a plan decision has been made to protect them.To be designated as a WSA, an area must have the following characteristics: Size - roadless areas of at least 5,000 acres of public lands or of a manageable size; Naturalness - generally appears to have been affected primarily by the forces of nature; Opportunities - provides outstanding opportunities for solitude or primitive and unconfined types of recreation. In addition, WSAs often have special qualities such as ecological, geological, educational, historical, scientific and scenic values.There were forty-seven Wilderness Areas established under the Arizona Wilderness Act of 1984 and Arizona Desert Wilderness Act of 1990. These Acts require the BLM to file boundary legal descriptions and maps to Congress for each Wilderness Area. The standards, format, and language for the legal descriptions and boundary maps were developed during regular meetings of the NLCS Coordinator, GIS specialists and the Cadastral Surveyors. Guidance was provided from congressionally-required map and legal boundary descriptions detailed in the NLCS Designation Manual 6120 (March, 2010). All Arizona BLM Wilderness Area boundary legal descriptions and maps have been transmitted to Congress and certified by the Chief of Cadastral Survey and Arizona State Director. There should be no changes to Wilderness Boundary GIS data. Boundary changes can only be made through an amendment to the legal description and this would need to be sent back to Congress.
Please click here to view the Data Dictionary, a description of the fields in this table.
This data set consists of a set of 136 ESRI formatted GRID data sets representing elevations in meters for the state of Arizona. Each file covers a half degree block and as a collection they cover the entire State of Arizona. The data were created by processing U.S.Geological Survey 30 meter Digital Elevation Model files for all of the 7.5 minute quadrangle map areas in Arizona. The processing produced ESRI formatted lattices (GRIDs) for each quadrangle. These were then merged into the half degree blocks.
This dataset represents the GIS Version of the Public Land Survey System in Arizona including both rectangular and non-rectangular surveys. This dataset is optimized for data publication and sharing rather than for specific "production" or operation and maintenance. This dataset includes the following: PLSS Fully Intersected (all of the PLSS feature at the atomic or smallest polygon level), PLSS Townships, First Divisions and Second Divisions (the hierarchical break down of the PLSS Rectangular surveys) PLSS Special surveys (non rectangular components of the PLSS) Meandered Water, Corners.
The Unpublished Digital Geologic-GIS Map of Casa Grande Ruins National Monument and Vicinity, Arizona is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (cagr_geology.gdb), a 10.1 ArcMap (.MXD) map document (cagr_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (cagr_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (cagr_geology_gis_readme.pdf). Please read the cagr_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Arizona Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (cagr_geology_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/cagr/cagr_geology_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 12N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Casa Grande Ruins National Monument.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Lake Havasu City Extent of Public GIS Map Viewer
This statewide dataset features next generation 9-1-1 Fire Emergency Service Boundaries (ESB) for the State of Arizona, managed by the Arizona Department of Administrations (ADOA) Arizona 9-1-1 Program. Essential for emergency response and public safety, the dataset helps ensure accurate dispatch and resource allocation. It outlines fire service coverage areas and serves a variety of functions, including analysis, mapping, and visualization. This dataset is an ADOA Arizona 9-1-1 Program offering, accessible via ArcGIS Online. It comes with tags like Arizona, Next Generation 9-1-1, Fire ESB, ADOA, Arizona 9-1-1 Program, Emergency Services, Public Safety, Spatial Data, and Statewide Dataset. Spatial Reference: WGS 1984.
These data were compiled to perform analyses of hydrologic change, changes in sediment transport, and channel change within Moenkopi Wash, Arizona. Objective(s) of our study were to quantify the magnitude and timing of changes in hydrology, sediment transport, and channel form within Moenkopi Wash and to determine the downstream effects of those changes on sediment delivery downstream to the Little Colorado River, and the Colorado River. These data represent instantaneous discharge records, suspended-sediment sample records, topographic survey data, historical aerial imagery, and channel polygons and centerlines mapped on the historical imagery. Instantaneous discharge records in this study began in 1926 and extend to 2022 and were collected at 5 different stream gages within Moenkopi Wash. Suspended-sediment samples were collected between 1948 and 2022 at four stream gage locations. Topographic datasets were collected by field surveys between 1940 and 2016 at five stream gage locations. Aerial imagery datasets were collected in the 1930s, 1952, 1968, 1979, 1992, 1997, 2007, 2013, and 2019. The 1968 and 1979 aerial imagery was collected by the U. S. Geological Survey. The 1952 imagery was collected by the U.S. Army Map Service. The 1992 and 1997 imagery were collected by the National Aerial Imagery Program. The 2007, 2013 and 2019 aerial images were collected by the National Agricultural Program. These data can be used to analyze changes in hydrology, sediment transport, and channel change within Moenkopi Wash.
The Unpublished Digital Geologic-GIS Map of Organ Pipe Cactus National Monument and Vicinity, Arizona is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (orpi_geology.gdb), a 10.1 ArcMap (.mxd) map document (orpi_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (orpi_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (orpi_geology_gis_readme.pdf). Please read the orpi_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Northern Arizona University. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (orpi_geology_metadata.txt or orpi_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, UTM Zone 12N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Organ Pipe Cactus National Monument.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Google Base Map content for Mohave County, Arizona.
Development based on the following article: Add Google Maps to ArcMap and Pro
Vector polygon map data of property parcels from Yavapai County, Arizona containing 184,470 features.
Property parcel GIS map data consists of detailed information about individual land parcels, including their boundaries, ownership details, and geographic coordinates.
Property parcel data can be used to analyze and visualize land-related information for purposes such as real estate assessment, urban planning, or environmental management.
Available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
Detailed land-cover mapping is essential for a range of research issues addressed by sustainability science, especially for questions posed of urban areas, such as those of the Central Arizona-Phoenix Long-Term Ecological Research (CAP LTER) program. This project provides a 1-meter land-cover mapping of the CAP LTER study area (greater Phoenix metropolitan area and surrounding Sonoran desert). The mapping is generated primarily using 2015 National Agriculture Imagery Program (NAIP) four-band data, with auxiliary GIS data used to improve accuracy. Auxiliary data include the 2015 cadastral parcel data, the 2014 USGS LiDAR data (1-meter), the 2014 Microsoft/OpenStreetMap Building Footprint data, the 2015 Street TIGER/Line, and a previous (2010) NAIP-based land-cover map of the study area (https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-cap&identifier=623). Among auxiliary data, building footprints and LiDAR data significantly improved the boundary detection of above-ground objects. Post-classification, manual editing was applied to minimize classification errors. As a result, the land-cover map achieves an overall accuracy of 94 per cent. The map contains eight land cover classes, including: (1) building, (2) asphalt, (3) bare soil and concrete, (4) tree and shrub, (5) grass, (6) water, (7) active cropland, and (8) fallow. When compared to the aforementioned, previous (2010) NAIP-based land-cover map for the study area, buildings and tree canopies are classified more accurately in this 2015 land-cover map.
The Digital Geologic-GIS Map of Canyon de Chelly National Monument and Vicinity, Arizona and New Mexico is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (cach_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (cach_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (cach_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (cach_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (cach_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (cach_geology_metadata_faq.pdf). Please read the cach_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (cach_geology_metadata.txt or cach_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:250,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 416.7 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The Digital Geologic-GIS Map of the Sonsela Butte 4 SE Quadrangle, Arizona and New Mexico is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sobt_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sobt_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sobt_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (cach_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (cach_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sobt_geology_metadata_faq.pdf). Please read the cach_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sobt_geology_metadata.txt or sobt_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The Digital Geologic-GIS Map of Coronado National Memorial and Vicinity, Arizona is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (coro_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (coro_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (coro_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (coro_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (coro_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (coro_geology_metadata_faq.pdf). Please read the coro_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (coro_geology_metadata.txt or coro_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The Unpublished Digital Geologic-GIS Map of Walnut Canyon National Monument and Vicinity, Arizona is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (waca_geology.gdb), a 10.1 ArcMap (.mxd) map document (waca_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (waca_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (waca_geology_gis_readme.pdf). Please read the waca_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Northern Arizona University. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (waca_geology_metadata.txt or waca_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:12,000 and United States National Map Accuracy Standards features are within (horizontally) 6.1 meters or 20 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, UTM Zone 12N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Walnut Canyon National Monument.
description: The Digital Geologic Map of the Sonsela Butte 4 SE Quadrangle, Arizona and New Mexico is composed of GIS data layers complete with ArcMap 9.2 layer (.LYR) files, two ancillary GIS tables, a Windows Help File with ancillary map text, figures and tables, a FGDC metadata record and a 9.2 ArcMap (.MXD) Document that displays the digital map in 9.2 ArcGIS. The data were completed as a component of the Geologic Resource Evaluation (GRE) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRE digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRE product are listed in the Source Citation sections(s) of this metadata record (sobt_metadata.txt; available at http://nrdata.nps.gov/cach/nrdata/geology/gis/sobt_metadata.xml). All GIS and ancillary tables were produced as per the NPS GRE Geology-GIS Geodatabase Data Model v. 2.0. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.2 personal geodatabase (sobt_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 12N. That data is within the area of interest of Canyon de Chelly National Monument.; abstract: The Digital Geologic Map of the Sonsela Butte 4 SE Quadrangle, Arizona and New Mexico is composed of GIS data layers complete with ArcMap 9.2 layer (.LYR) files, two ancillary GIS tables, a Windows Help File with ancillary map text, figures and tables, a FGDC metadata record and a 9.2 ArcMap (.MXD) Document that displays the digital map in 9.2 ArcGIS. The data were completed as a component of the Geologic Resource Evaluation (GRE) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRE digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRE product are listed in the Source Citation sections(s) of this metadata record (sobt_metadata.txt; available at http://nrdata.nps.gov/cach/nrdata/geology/gis/sobt_metadata.xml). All GIS and ancillary tables were produced as per the NPS GRE Geology-GIS Geodatabase Data Model v. 2.0. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.2 personal geodatabase (sobt_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 12N. That data is within the area of interest of Canyon de Chelly National Monument.
The Unpublished Digital Geologic-GIS Map of Tuzigoot National Monument, Arizona is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (tuzi_geology.gdb), a 10.1 ArcMap (.MXD) map document (tuzi_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (moca_tuzi_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (moca_tuzi_geology_gis_readme.pdf). Please read the moca_tuzi_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (tuzi_geology_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/tuzi/tuzi_geology_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:48,000 and United States National Map Accuracy Standards features are within (horizontally) 24.4 meters or 80 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 12N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Tuzigoot National Monument.