Facebook
TwitterThe U.S. Army Corps of Engineers Geospatial Open Data provides shared and trusted USACE geospatial data, services and applications for use by our partner agencies and the public.
Facebook
TwitterPolygons showing USACE Civil Works District boundaries. This dataset was digitized from the NRCS Watershed Boundary Dataset (WBD). Where districts follow administrative boundaries, such as County and State lines, National Atlas and Census datasets were used. USACE District GIS POCs also submitted data to incorporate into this dataset. This dataset has been simplified +/- 30 feet to reduce file size and speed up drawing time.
Facebook
TwitterPoint and area locations for active projects from the US Army Corps of Engineers' Corps Project Notebook (CPN). The purpose of the CPN is to provide a single authoritative reference database of the locations of all Corps Civil Works, Military, and Interagency and International support projects. A location is defined as a "site" where work has been or is being executed, operation and maintenance appropriation related to Flood and Coastal Storm Damage Reduction, Hydropower, Navigation, Recreation and Water Supply. Non-Environmental Continuing Authority Program (CAP) Projects and projects that USACE is executing in partnershop with other agencies through the Interagency Support Program are also included.
Facebook
TwitterThe US Army Corps of Engineers has been regulating activities in the nation's waters since 1890. Until the 1960s the primary purpose of the regulatory program was to protect navigation. Since then, as a result of laws and court decisions, the program has been broadened so that it now considers the full public interest for both the protection and utilization of water resources. These boundaries represent USACE regulatory districts. Attribute information includes an address, telephone number and url for each district. Metadata
Facebook
TwitterPolygon boundaries for the US Army Corps of Engineers districts in the Commonwealth of Kentucky.Data Download: https://ky.box.com/v/kymartian-us-coe-districts
Facebook
TwitterPolygonal extents of federal (US Army Corps of Engineers) dredge projects along the Massachusetts marine coastline; historical to 16 December 1998; includes navigational channels, anchorages, harbors, beaches and dikes. Feature attributes include hyperlinks to respective USACE project descriptions, histories, and maps.
Facebook
TwitterThe data contained in these files are hydrographic and topographic data collected by the SHOALS-1000T system along the Delaware, Maryland, New Jersey, New York, North Carolina and Virginia coastline as part of the National Coastal Mapping Program. The lidar data for DE, MD, NJ and VA was collected from 20050824-20050908. The lidar data for NY and NC was collected from 20051001-20051126.
Origin...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
National Levee Database This feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Army Corps of Engineers (USACE), displays levees within the United States. Per USACE, “The National Levee Database captures all known levees in the United States. It provides users with the ability to search for specific data about levees and serves as a national resource to support awareness and preparedness around flooding. The USACE is responsible for maintaining the National Levee Database and works in partnership with the Federal Emergency Management Agency (FEMA), and in close collaboration with other federal, state, and local governments and entities responsible for levees to obtain and share accurate and complete information.” Leveed area in Morrisville, PennsylvaniaData downloaded: 9/22/2025Data source: NLD/PublicNGDAID: 161 (National Levee Database)OGC API Features Link: (National Levee Database - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: National Levee DatabaseSupport documentation: NLD Data DictionaryFor feedback please contact: Esri_US_Federal_Data@esri.com NGDA Data Set This data set is part of the NGDA Water - Inland Theme Community. Per the Federal Geospatial Data Committee (FGDC), Water - Inland is defined as the “interior hydrologic features and characteristics, including classification, measurements, location, and extent. Includes aquifers, watersheds, wetlands, navigation, water quality, water quantity, and groundwater information.” For other NGDA Content: Esri Federal Datasets
Facebook
TwitterThis dataset represents locations of USACE District, Division and Laboratory offices. This dataset does not include field offices.Metadata
Facebook
TwitterThe flood plains were created using the USACE Engineering Research Development Center – AutoRoute hydraulic modeling software. AutoRoute utilizes a steady-state, normal flow solver, making AutoRoute incapable of assessing some of the more typical, yet complex, hydraulic phenomena, such as backwater effects. The floodplains were developed to rapidly assess the increased flood risk that is generally associated with post-wildfire hydrology or large changes to a watershed from a wildfire. The floodplains are intended to be used as a tool by flood disaster responders and other officials so they can prepare resources for a potential post-wildfire flood event. The limits of flooding shown should only be used as a guideline for emergency planning and response actions. A detailed hydrologic and hydraulic calibration effort was not completed to validate the results of this assessment.
Facebook
TwitterInput description of the content here and how often it is updated.Data Source(s) Input list of data sources here.Customer(s) The dashboard was requested by Unknown for inclusion into the Roads and Railroads - With Project on Unknown date.Contact InformationPlease reach out to ceswg-ecg-geospatial@usace.army.mil with any questions/concerns.Release NotesUnknown
Facebook
TwitterThe flood plains were created using the USACE Engineering Research Development Center – AutoRoute hydraulic modeling software. AutoRoute utilizes a steady-state, normal flow solver, making AutoRoute incapable of assessing some of the more typical, yet complex, hydraulic phenomena, such as backwater effects. The floodplains were developed to rapidly assess the increased flood risk that is generally associated with post-wildfire hydrology or large changes to a watershed from a wildfire. The floodplains are intended to be used as a tool by flood disaster responders and other officials so they can prepare resources for a potential post-wildfire flood event. The limits of flooding shown should only be used as a guideline for emergency planning and response actions. A detailed hydrologic and hydraulic calibration effort was not completed to validate the results of this assessment.
Facebook
TwitterThe dataset presented here represents a circa 1932 land/water delineation of coastal Louisiana used in part of a larger study to quantify landscape changes from 1932 to 2016. The original dataset was created by Dunbar, and Britsch, and Kemp (2006). The original dataset is citable as: Dunbar, J. B. and Britsch, L. D., 2006. Land Loss in Coastal Louisiana 1932-2001. Map 1. Engineer Research and Development Center, Vicksburg, MS, Technical Report, ERDC/GSL TR-05-13, Land Loss Map 1 through 7. The USGS Wetland and Aquatic Research Center altered the original data by improving the geo-rectification in specific areas known to contain geo-rectification error, most notably in coastal wetland areas in the vicinity of Four League Bay in western Terrebonne Basin. The dataset contains two categories, land and water. For the purposes of this effort, land includes areas characterized by emergent vegetation, upland, wetland forest, or scrub-shrub were classified as land, while open water, aquatic beds, and mudflats were classified as water. For additional information regarding this dataset (other than geo-rectification revisions), please contact the dataset originator, the U.S. Army Corps of Engineers (USACE).
Facebook
TwitterCSPI - Map data last updated 9/12/2018. Visit http://navigation.usace.army.mil/cspi/ for user interface.The Coastal Systems Portfolio Initiative (CSPI) databases provide an archive for data to support many of the CSPI initiatives. As the federal agency authorized by Congress to study, plan, design, construct, and renourish coastal risk reduction projects, the USACE is tasked with providing technical input on current and future needs for coastal projects. Accurate, up-to-date, and accessible technical information serves as a valuable resource for decision makers responsible for making balanced, information-based decisions for managing coastal programs. This web database presents the “big picture” about current and future needs for coastal projects within USACE. As the nation’s engineer, the USACE collected and presented technical data and estimated costs, with consideration of project reliability and risk. The process used by the USACE to examine federal projects as a total system instead of as individual projects will continue to be refined over time. This technical review is an initial systems-based tool that decision makers at any level can use to make more informed judgments as they manage coastal risk reduction projects in the United States, both now and in the near future.
Facebook
TwitterThe FUDS Public GIS dataset contains point location information for the 2,709 Formerly Used Defense Sites (FUDS) properties where the U.S. Army Corps of Engineers is actively working or will take necessary cleanup actions. These data are accurate as of the 2012 Defense Environmental Restoration Program Annual Report to Congress. Property location information is subject to change as new data become available.
Facebook
TwitterThe flood plains were created using the USACE Engineering Research Development Center – AutoRoute for all areas with the exception of using the USACE Engineering Research Development Center – River Analysis System (HEC-RAS) hydraulic modeling software, version 6.2 in the Mora area. AutoRoute utilizes a steady-state, normal flow solver, making AutoRoute incapable of assessing some of the more typical, yet complex, hydraulic phenomena, such as backwater effects. HEC-RAS utilizes a two-dimensional (2D) unsteady flow analysis algorithm. This analysis incorporated breaklines and 2D mesh modifications to better represent terrain features in the simulation. Wood and scrub vegetation features were not represented in the bare earth LIDAR but were considered via Manning’s roughness values. Bridges and buildings were not included in the bare earth LiDAR terrain surface and were not implemented via modifications in HEC-RAS RASMapper. The floodplains were developed to rapidly assess the increased flood risk that is generally associated with post-wildfire hydrology or large changes to a watershed from a wildfire. The floodplains are intended to be used as a tool by flood disaster responders and other officials so they can prepare resources for a potential post-wildfire flood event. The limits of flooding shown should only be used as a guideline for emergency planning and response actions. A detailed hydrologic and hydraulic calibration effort was not completed to validate the results of this assessment.
Facebook
TwitterJALBTCX National Coastal Mapping Program Derived Products: Great Lakes & Ohio River DivisionThe layers depicted in this web map were developed to serve regional geospatial data needs of USACE Districts and agency partners to discover and download products derived from USACE National Coastal Mapping Program (NCMP) high resolution, topo-bathymetric lidar and imagery. The USACE NCMP acquires high-resolution, high-accuracy topographic/bathymetric lidar elevation and imagery on a recurring basis along the sandy shorelines of the US. The program's survey footprint includes an approximately 1-mile wide swath of topography, bathymetry and imagery 500-m onshore and 1000-m offshore. The standard suite of NCMP data products include topographic/bathymetric lidar point clouds, digital surface and elevation models, shoreline vectors and both true-color and hyperspectral imagery mosaics. Value-added derivative information products may include laser reflectance images, landcover classification images, volume change metrics, and the products to help address District project requirements. USACE Headquarters initiated the NCMP in 2004. The program's update cycle follows counter-clockwise along the US West Coast, Gulf Coast, East Coast and Great Lakes approximately every 5 years. Surveys in support of USACE project-specific missions and external partners are included constituent to the current NCMP schedule and reimbursable funding. All work is coordinated with Federal mapping partners through the Interagency Working Group on Ocean and Coastal Mapping (IWGOCM) and the 3D Elevation Program (3DEP).NCMP operations are executed by the Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX). The JALBTCX mission is to perform operations, research and development in airborne lidar bathymetry and complementary technologies to support the coastal mapping and charting requirements of the US Army Corps of Engineers, the US Naval Meteorology and Oceanography Command and the National Oceanic and Atmospheric Administration. Survey operations are conducted worldwide using the Coastal Zone Mapping and Imaging (CZMIL) system and other industry-based coastal mapping and charting systems. CZMIL is JALBTCX's in-house survey capability that includes and Optech International, CZMIL 03-1 lidar instrument with simultaneous topographic and bathymetric capabilities. CZMIL is integrated with an Itres CASI-1500 hyperspectral imager and an 80 MP Leica RCD30 RGBN camera. CZMIL collects 10-kHz lidar data with spatially- and temporally-concurrent digital true-color and hyperspectral imagery.
Facebook
TwitterThe flood plains were created using the USACE Engineering Research Development Center – AutoRoute hydraulic modeling software. AutoRoute utilizes a steady-state, normal flow solver, making AutoRoute incapable of assessing some of the more typical, yet complex, hydraulic phenomena, such as backwater effects. The floodplains were developed to rapidly assess the increased flood risk that is generally associated with post-wildfire hydrology or large changes to a watershed from a wildfire. The floodplains are intended to be used as a tool by flood disaster responders and other officials so they can prepare resources for a potential post-wildfire flood event. The limits of flooding shown should only be used as a guideline for emergency planning and response actions. A detailed hydrologic and hydraulic calibration effort was not completed to validate the results of this assessment.
Facebook
TwitterThe following permits are administered by the U.S. Army Corps of Engineers (ACOE). A Section 10 permit is required for all work, including structures, seaward of the mean high water line in navigable waters of the United States, defined as waters subject to the ebb and flow of the tide, as well as a few of the major rivers used to transport interstate or foreign commerce. A Section 404 permit is required for activities which involve the discharge of dredged or fill material into waters of the United States, including not only navigable waters, but also coastal waters, inland rivers, lakes, streams, and wetlands. A Section 103 permit is required to transport dredged material for the purpose of disposal in the ocean. Please note: These permits are considered together as they are administered by the U.S. Army Corps of Engineers under a single permit application. The U.S. Army Corps of Engineers, New England District has issued a Programmatic General Permit (PGP) for work in Massachusetts. The PGP provides for three levels of regulatory review: * Category I: Activities of minimal environmental impact that do not require Corps regulatory review and are classified as non-reporting. While no written notification to the Corps is required for these "minor" projects, they must comply with the conditions contained in the PGP. * Category II: Activities likely to be of minimal environmental impact but that have the potential to have adverse effects. A project-specific review and authorization from the Corps in writing are required. Copies of the Massachusetts Chapter 91 application and plans, or the Water Quality Certification application and plans, are usually sufficient for Category II review. * Category III: Activities that have potential to cause adverse environmental impacts. These projects must get an Individual Corps license, and therefore require project-specific review, are available for public review and comment, and may require preparation of an Environmental Impact Statement. Review Process: PGP, applications for projects meeting the PGP criteria must include a brief project description, vicinity map, site plan, and a plan view of the proposed structure. Federal and state resource agencies meet every three weeks to review PGP applications. A PGP is usually issued, with or without special conditions, ten days after the review closes. Individual Permits: Applications for Individual Permits must include site location, a description of the project and its purpose, and related maps and plans. Within 15 days of receiving the required application material, the Corps issues a Public Notice seeking comments from abutters, regulatory agencies and the public. Comments are accepted for up to 30 days. The Corps evaluates comments received, compliance with section 404(b)(1) of the federal Clean Water Act, public interest criteria and issues a permit. If denied, the applicant is informed of the reason(s). Neither a PGP nor an Individual Permit is valid until the applicant has obtained a 401 Water Quality Certification from DEP. Individual permits are not valid until CZM concurs that the project is consistent with state coastal policies. Applicability to Aquaculture: Shellfish culture projects smaller than one acre are generally found to be eligible for a PGP. Larger projects, such as hatcheries, may exceed the thresholds of PGP eligibility, and therefore may be required to obtain an Individual Permit. Any project in or affecting the waters of the United States must comply with the conditions of the PGP or, in the case of larger projects, the conditions of an Individual Permit. Forms: PGP - None; Individual - ENG Form 4345: www.nae.usace.army.mil/ Fees PGP - None; Individual - Commercial Activity $100.00 Contact: U.S. Army Corps of Engineers, New England District, Regulatory Branch, (978) 318-8338 and (800) 362-4367.
Facebook
TwitterThe USGS Protected Areas Database of the United States (PAD-US) is the nation's inventory of protected areas, including public open space and voluntarily provided, private protected areas, identified as an A-16 National Geospatial Data Asset in the Cadastral Theme (http://www.fgdc.gov/ngda-reports/NGDA_Datasets.html). PAD-US is an ongoing project with several published versions of a spatial database of areas dedicated to the preservation of biological diversity, and other natural, recreational or cultural uses, managed for these purposes through legal or other effective means. The geodatabase maps and describes public open space and other protected areas. Most areas are public lands owned in fee; however, long-term easements, leases, and agreements or administrative designations documented in agency management plans may be included. The PAD-US database strives to be a complete “best available” inventory of protected areas (lands and waters) including data provided by managing agencies and organizations. The dataset is built in collaboration with several partners and data providers (http://gapanalysis.usgs.gov/padus/stewards/). See Supplemental Information Section of this metadata record for more information on partnerships and links to major partner organizations. As this dataset is a compilation of many data sets; data completeness, accuracy, and scale may vary. Federal and state data are generally complete, while local government and private protected area coverage is about 50% complete, and depends on data management capacity in the state. For completeness estimates by state: http://www.protectedlands.net/partners. As the federal and state data are reasonably complete; focus is shifting to completing the inventory of local gov and voluntarily provided, private protected areas. The PAD-US geodatabase contains over twenty-five attributes and four feature classes to support data management, queries, web mapping services and analyses: Marine Protected Areas (MPA), Fee, Easements and Combined. The data contained in the MPA Feature class are provided directly by the National Oceanic and Atmospheric Administration (NOAA) Marine Protected Areas Center (MPA, http://marineprotectedareas.noaa.gov ) tracking the National Marine Protected Areas System. The Easements feature class contains data provided directly from the National Conservation Easement Database (NCED, http://conservationeasement.us ) The MPA and Easement feature classes contain some attributes unique to the sole source databases tracking them (e.g. Easement Holder Name from NCED, Protection Level from NOAA MPA Inventory). The "Combined" feature class integrates all fee, easement and MPA features as the best available national inventory of protected areas in the standard PAD-US framework. In addition to geographic boundaries, PAD-US describes the protection mechanism category (e.g. fee, easement, designation, other), owner and managing agency, designation type, unit name, area, public access and state name in a suite of standardized fields. An informative set of references (i.e. Aggregator Source, GIS Source, GIS Source Date) and "local" or source data fields provide a transparent link between standardized PAD-US fields and information from authoritative data sources. The areas in PAD-US are also assigned conservation measures that assess management intent to permanently protect biological diversity: the nationally relevant "GAP Status Code" and global "IUCN Category" standard. A wealth of attributes facilitates a wide variety of data analyses and creates a context for data to be used at local, regional, state, national and international scales. More information about specific updates and changes to this PAD-US version can be found in the Data Quality Information section of this metadata record as well as on the PAD-US website, http://gapanalysis.usgs.gov/padus/data/history/.) Due to the completeness and complexity of these data, it is highly recommended to review the Supplemental Information Section of the metadata record as well as the Data Use Constraints, to better understand data partnerships as well as see tips and ideas of appropriate uses of the data and how to parse out the data that you are looking for. For more information regarding the PAD-US dataset please visit, http://gapanalysis.usgs.gov/padus/. To find more data resources as well as view example analysis performed using PAD-US data visit, http://gapanalysis.usgs.gov/padus/resources/. The PAD-US dataset and data standard are compiled and maintained by the USGS Gap Analysis Program, http://gapanalysis.usgs.gov/ . For more information about data standards and how the data are aggregated please review the “Standards and Methods Manual for PAD-US,” http://gapanalysis.usgs.gov/padus/data/standards/ .
Facebook
TwitterThe U.S. Army Corps of Engineers Geospatial Open Data provides shared and trusted USACE geospatial data, services and applications for use by our partner agencies and the public.