In 2023, the around 11.1 percent of the population was living below the national poverty line in the United States. Poverty in the United StatesAs shown in the statistic above, the poverty rate among all people living in the United States has shifted within the last 15 years. The United Nations Educational, Scientific and Cultural Organization (UNESCO) defines poverty as follows: “Absolute poverty measures poverty in relation to the amount of money necessary to meet basic needs such as food, clothing, and shelter. The concept of absolute poverty is not concerned with broader quality of life issues or with the overall level of inequality in society.” The poverty rate in the United States varies widely across different ethnic groups. American Indians and Alaska Natives are the ethnic group with the most people living in poverty in 2022, with about 25 percent of the population earning an income below the poverty line. In comparison to that, only 8.6 percent of the White (non-Hispanic) population and the Asian population were living below the poverty line in 2022. Children are one of the most poverty endangered population groups in the U.S. between 1990 and 2022. Child poverty peaked in 1993 with 22.7 percent of children living in poverty in that year in the United States. Between 2000 and 2010, the child poverty rate in the United States was increasing every year; however,this rate was down to 15 percent in 2022. The number of people living in poverty in the U.S. varies from state to state. Compared to California, where about 4.44 million people were living in poverty in 2022, the state of Minnesota had about 429,000 people living in poverty.
In 2023, about four percent of the people with a Bachelor's degree or higher were living below the poverty line in the United States. This is far below the poverty rate of those without a high school diploma, which was 25.1 percent in 2023.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Percentage of people in poverty by state using 3-year averages: 2009–11. http://www.census.gov/hhes/www/poverty/data/incpovhlth/2011/tables.html.Geographic distribution of poverty in the United States.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Note: Updates to this data product are discontinued. Over 1 in 4 rural children are living in families that are poor, according to the official poverty measure, up from 1 in 5 in 1999, but this change was uneven across the rural landscape. Counties with high vulnerability to child poverty, those with both low young adult education levels and high proportions of children in single-parent families, were generally the most hard-hit by the recession of the past decade and experienced substantial increases in their already high child poverty rates. Along with the recession, an increase in rural children in single-parent households, continuing from the 1990s, was a major contributor to the rise in child poverty after 2000. Three factors that shape the geography of high and increasing rural child poverty are explored below: economic conditions, young adult education levels, and family structure. This collection of maps complements the July 2015 Amber Waves feature, Understanding the Geography of Growth in Rural Child Poverty.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Current Population Survey Food Security Supplement (CPS-FSS) is the source of national and State-level statistics on food insecurity used in USDA's annual reports on household food security. The CPS is a monthly labor force survey of about 50,000 households conducted by the Census Bureau for the Bureau of Labor Statistics. Once each year, after answering the labor force questions, the same households are asked a series of questions (the Food Security Supplement) about food security, food expenditures, and use of food and nutrition assistance programs. Food security data have been collected by the CPS-FSS each year since 1995. Four data sets that complement those available from the Census Bureau are available for download on the ERS website. These are available as ASCII uncompressed or zipped files. The purpose and appropriate use of these additional data files are described below: 1) CPS 1995 Revised Food Security Status data--This file provides household food security scores and food security status categories that are consistent with procedures and variable naming conventions introduced in 1996. This includes the "common screen" variables to facilitate comparisons of prevalence rates across years. This file must be matched to the 1995 CPS Food Security Supplement public-use data file. 2) CPS 1998 Children's and 30-day Food Security data--Subsequent to the release of the April 1999 CPS-FSS public-use data file, USDA developed two additional food security scales to describe aspects of food security conditions in interviewed households not captured by the 12-month household food security scale. This file provides three food security variables (categorical, raw score, and scale score) for each of these scales along with household identification variables to allow the user to match this supplementary data file to the CPS-FSS April 1998 data file. 3) CPS 1999 Children's and 30-day Food Security data--Subsequent to the release of the April 1999 CPS-FSS public-use data file, USDA developed two additional food security scales to describe aspects of food security conditions in interviewed households not captured by the 12-month household food security scale. This file provides three food security variables (categorical, raw score, and scale score) for each of these scales along with household identification variables to allow the user to match this supplementary data file to the CPS-FSS April 1999 data file. 4) CPS 2000 30-day Food Security data--Subsequent to the release of the September 2000 CPS-FSS public-use data file, USDA developed a revised 30-day CPS Food Security Scale. This file provides three food security variables (categorical, raw score, and scale score) for the 30-day scale along with household identification variables to allow the user to match this supplementary data file to the CPS-FSS September 2000 data file. Food security is measured at the household level in three categories: food secure, low food security and very low food security. Each category is measured by a total count and as a percent of the total population. Categories and measurements are broken down further based on the following demographic characteristics: household composition, race/ethnicity, metro/nonmetro area of residence, and geographic region. The food security scale includes questions about households and their ability to purchase enough food and balanced meals, questions about adult meals and their size, frequency skipped, weight lost, days gone without eating, questions about children meals, including diversity, balanced meals, size of meals, skipped meals and hunger. Questions are also asked about the use of public assistance and supplemental food assistance. The food security scale is 18 items that measure insecurity. A score of 0-2 means a house is food secure, from 3-7 indicates low food security, and 8-18 means very low food security. The scale and the data also report the frequency with which each item is experienced. Data are available as .dat files which may be processed in statistical software or through the United State Census Bureau's DataFerret http://dataferrett.census.gov/. Data from 2010 onwards is available below and online. Data from 1995-2009 must be accessed through DataFerrett. DataFerrett is a data analysis and extraction tool to customize federal, state, and local data to suit your requirements. Through DataFerrett, the user can develop an unlimited array of customized spreadsheets that are as versatile and complex as your usage demands then turn those spreadsheets into graphs and maps without any additional software. Resources in this dataset:Resource Title: December 2014 Food Security CPS Supplement. File Name: dec14pub.zipResource Title: December 2013 Food Security CPS Supplement. File Name: dec13pub.zipResource Title: December 2012 Food Security CPS Supplement. File Name: dec12pub.zipResource Title: December 2011 Food Security CPS Supplement. File Name: dec11pub.zipResource Title: December 2010 Food Security CPS Supplement. File Name: dec10pub.zip
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Percent of Population Below the Poverty Level (5-year estimate) in Crawford County, KS (S1701ACS020037) from 2012 to 2023 about Crawford County, KS; KS; percent; poverty; 5-year; population; and USA.
In 2023, about 12.3 percent of Florida's population lived below the poverty line. This accounts for persons or families whose collective income in the preceding 12 months was below the national poverty level of the United States.
https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de451063https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de451063
Abstract (en): Nearly 9 million Americans live in extreme-poverty neighborhoods, places that also tend to be racially segregated and dangerous. Yet, the effects on the well-being of residents of moving out of such communities into less distressed areas remain uncertain. Moving to Opportunity (MTO) is a randomized housing experiment administered by the United States Department of Housing and Urban Development that gave low-income families living in high-poverty areas in five cities the chance to move to lower-poverty areas. Families were randomly assigned to one of three groups: (1) the low-poverty voucher (LPV) group (also called the experimental group) received Section 8 rental assistance certificates or vouchers that they could use only in census tracts with 1990 poverty rates below 10 percent. The families received mobility counseling and help in leasing a new unit. One year after relocating, families could use their voucher to move again if they wished, without any special constraints on location; (2) the traditional voucher (TRV) group (also called the Section 8 group) received regular Section 8 certificates or vouchers that they could use anywhere; these families received no special mobility counseling; (3) the control group received no certificates or vouchers through MTO, but continued to be eligible for project-based housing assistance and whatever other social programs and services to which they would otherwise be entitled. Families were tracked from baseline (1994-1998) through the long-term evaluation survey fielding period (2008-2010) with the purpose of determining the effects of "neighborhood" on participating families. This data collection includes data from the 3,273 adult interviews completed as part of the MTO long-term evaluation. Using data from the long-term evaluation, the associated article reports that moving from a high-poverty to lower-poverty neighborhood was associated in the long-term (10 to 15 years) with modest, but potentially important, reductions in the prevalence of extreme obesity and diabetes. The data contain all outcomes and mediators analyzed for the associated article (with the exception of a few mediator variables from the interim MTO evaluation) as well as a variety of demographic and other baseline measures that were controlled for in the analysis. All analysis of the data should be weighted using the total survey weight. The cell-level file includes a separate weight for each outcome and mediator measure that is the sum of weights for all observations in the cell with valid data for the measure (for example, wt_f_db_hba1c_diab_final is the weight for the glycated hemoglobin measure, mn_f_db_hba1c_diab_final). In the pseudo-individual file, mn_f_wt_totsvy is the average of the total survey weight variable for all observations in the cell. In the original individual-level file, the total survey weight (f_wt_totsvy) is calculated as the product of three component weights: (1) Randomization ratio weight -- At the start of the MTO program, random assignment (RA) ratios were set to produce equal numbers of leased-up families in the low-poverty and traditional voucher groups based on expected leased-up rates. The initial ratios were "8 to 3 to 5": eight low-poverty voucher group families to three traditional voucher families to five control families. During the demonstration program, these RA ratios were adjusted to accommodate higher than anticipated leased-up rates among low-poverty voucher group families. This weight ensures that the proportion of families in a given site is the same across all three treatment groups. This component weight value ranges from 0.59 to 2.09. (2) Survey sample selection weight -- For budgetary reasons, adults from only a random two-thirds of traditional voucher group households were selected for the long-term survey interview sample (while adults from all low-poverty voucher and control group families were selected), so this component weights up the selected traditional voucher group adults so that they are representative of all traditional voucher group adults. This weight component is equal to the inverse probability of selection into the subsample (~1.52). (3) Phase 2 subsample weight -- The long-term survey data collection was completed as a two-phase process. In the first phase, we sought to interview all selected respondents. Phase 2 of fielding was triggered when the response rate reached approximately 74 percent. In the second phase, we su...
Overall, both the number of people living in poverty and the number of people living in extreme poverty in Latin America increased between 2015 and 2022, reaching 202 million and 81 million people, respectively. Since then, the number of people living in poverty has declined. In 2024, an estimated 170 million people were projected to be living in poverty in the region. . Moreover, indigenous peoples in Latin America continue to experience extremely high poverty rates.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Poverty Universe, All Ages for Lubbock County, TX (PUAATX48303A647NCEN) from 1998 to 2023 about Lubbock County, TX; Lubbock; poverty; TX; and USA.
In 2023, 13.9 percent of South Carolina's population lived below the poverty line. This was a slight decrease from the previous year, when about 14 percent of South Carolina residents lived below the poverty line. The poverty rate of the United States since 1990 can be accessed here.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analyses S1. Supporting statistical analyses containing tests of (1) potential non-linear relationships between variables of interest, and (2) relationships between average wealth, race, and gender and economic inequality voting behavior. Table S1. Summary of legislative bills such that a yes vote on the bill indicates either support for or reduction of economic inequality in the US. (DOCX)
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimate of People of All Ages in Poverty in Milwaukee County, WI (PEAAWI55079A647NCEN) from 1989 to 2023 about Milwaukee County, WI; Milwaukee; WI; child; poverty; persons; and USA.
https://www.icpsr.umich.edu/web/ICPSR/studies/34860/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/34860/terms
The Moving to Opportunity (MTO) program was a randomized housing experiment administered by the United States Department of Housing and Urban Development (HUD) that gave low-income families living in high-poverty areas the chance to move to lower-poverty areas. This Restricted Access Dataset (RAD) includes data from the 3,273 adults interviewed as part of the MTO long-term evaluation and is comprised of variables analyzed for the article "Neighborhood Effects on the Long-Term Well-Being of Low-Income Adults" that was published in the journal Science on September 21, 2012. The article focused on subjective well-being, physical and mental health, social networks, neighborhoods, housing, and economic self-sufficiency. Families were tracked from the baseline survey (1994-1998) through the long-term evaluation survey fielding period (2008-2010) with the purpose of determining the effects of "neighborhood" on participating families from five United States cities. Households were randomly assigned to one of three groups: The low-poverty voucher (LPV) group (also called the experimental group) received Section 8 rental assistance certificates or vouchers that they could use only in census tracts with 1990 poverty rates below 10 percent. The families received mobility counseling and help in leasing a new unit. One year after relocating, families could use their voucher to move again if they wished, without any special constraints on location.The traditional voucher (TRV) group (also called the Section 8 group) received regular Section 8 certificates or vouchers that they could use anywhere; these families received no special mobility counseling.The control group received no certificates or vouchers through MTO, but continued to be eligible for project-based housing assistance and other social programs and services to which they would otherwise be entitled.The dataset contains all outcomes and mediators analyzed for the Science article, as well as a variety of demographic and other baseline measures that were controlled for in the analysis. Demographic information includes age, gender, race/ethnicity, employment status, and education level.
In 2023, about 11.9 percent of Illinois' population lived below the poverty line. This accounts for persons or families whose collective income in the preceding 12 months was below the national poverty level of the United States.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
De Kalb County, GA - Percent of Population Below the Poverty Level (5-year estimate) in DeKalb County, GA was 13.50% in January of 2023, according to the United States Federal Reserve. Historically, De Kalb County, GA - Percent of Population Below the Poverty Level (5-year estimate) in DeKalb County, GA reached a record high of 19.60 in January of 2014 and a record low of 13.40 in January of 2022. Trading Economics provides the current actual value, an historical data chart and related indicators for De Kalb County, GA - Percent of Population Below the Poverty Level (5-year estimate) in DeKalb County, GA - last updated from the United States Federal Reserve on July of 2025.
analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D
Socioeconomic indicators like the poverty rate, population change, unemployment rate, and education levels vary across the nation. ERS has compiled the latest data on these measures into a mapping and data display/download application that allows users to identify and compare States and counties on these indicators.
https://www.law.cornell.edu/uscode/text/17/106https://www.law.cornell.edu/uscode/text/17/106
This dissertation seeks to better understand poverty in the United States. The first two chapters examine the impacts of receiving unemployment insurance (UI) on low-wage, recently displaced workers. The third chapter documents earnings growth and migration across neighborhoods, focusing on high-poverty neighborhoods. Housing is a common theme throughout the dissertation. The first chapter suggests that reducing housing insecurity may be a mechanism by which UI reduces crime, the second chapter explores how UI may prevent homelessness, and the third chapter examines individuals' neighborhood choices that vary with earnings and over the life cycle.
The first chapter examines the impact of UI on subsequent criminal justice system involvement using linked UI and jail administrative data. I estimate this effect using a regression discontinuity design that exploits the minimum earnings requirements for UI. I provide evidence indicating that being barely eligible for UI decreases arrest probability. Most of this overall reduction is driven by reducing assault arrests. A back-of-the-envelope calculation suggests that this crime reduction generates large public benefits approximately equal to the fiscal cost of loosening monetary eligibility requirements.
The second chapter, joint work with Robert Collinson, examines the impact of UI on extreme material distress, particularly stays in New York City homeless shelters. We estimate the impact of UI eligibility on homelessness using a regression discontinuity design (RDD) that exploits a cutoff based on workers' highest quarterly earnings in the past year. We find that UI eligibility reduces homelessness. Not accounting for how UI prevents extreme distress undervalues the benefits of UI.
The third chapter, joint work with coauthors, uses administrative data to document a high degree of migration across neighborhoods and neighborhood types defined in terms of poverty rate and median income. Neighborhood quality increases over an individual's life cycle, and people also move to better neighborhoods in response to earnings improvements. Poor neighborhoods tend to remain poor because of a dynamic process in which initial residents experience high earnings growth but disproportionately out-migrate when earnings improve, contrasting with a pure ``poverty trap” understanding of persistent concentrated poverty.
As of 2024, around **** million people in South Africa are living in extreme poverty, with the poverty threshold at **** U.S. dollars daily. This means that ******* more people were pushed into poverty compared to 2023. Moreover, the headcount was forecast to increase in the coming years. By 2030, over **** million South Africans will live on a maximum of **** U.S. dollars per day. Who is considered poor domestically? Poverty is measured using several matrices. For example, local authorities tend to rely on the national poverty line, assessed based on consumer price indices (CPI) of a basket of goods of food and non-food components. In 2023, the domestic poverty line in South Africa stood at ***** South African rand per month (around ***** U.S. dollars per month). According to a survey, social inequality and poverty worried a significant share of the South African respondents. As of September 2024, some ** percent of the respondents reported that they were worried about the state of poverty and unequal income distribution in the country. Eastern Cape residents received more grants South Africa’s labor market has struggled to absorb the country’s population. In 2023, almost a third of the economically active population was unemployed. Local authorities employ relief assistance and social grants in an attempt to reduce poverty and assist poor individuals. In 2023, almost ** percent of South African households received state support, with the majority share benefiting in the Eastern Cape.
In 2023, the around 11.1 percent of the population was living below the national poverty line in the United States. Poverty in the United StatesAs shown in the statistic above, the poverty rate among all people living in the United States has shifted within the last 15 years. The United Nations Educational, Scientific and Cultural Organization (UNESCO) defines poverty as follows: “Absolute poverty measures poverty in relation to the amount of money necessary to meet basic needs such as food, clothing, and shelter. The concept of absolute poverty is not concerned with broader quality of life issues or with the overall level of inequality in society.” The poverty rate in the United States varies widely across different ethnic groups. American Indians and Alaska Natives are the ethnic group with the most people living in poverty in 2022, with about 25 percent of the population earning an income below the poverty line. In comparison to that, only 8.6 percent of the White (non-Hispanic) population and the Asian population were living below the poverty line in 2022. Children are one of the most poverty endangered population groups in the U.S. between 1990 and 2022. Child poverty peaked in 1993 with 22.7 percent of children living in poverty in that year in the United States. Between 2000 and 2010, the child poverty rate in the United States was increasing every year; however,this rate was down to 15 percent in 2022. The number of people living in poverty in the U.S. varies from state to state. Compared to California, where about 4.44 million people were living in poverty in 2022, the state of Minnesota had about 429,000 people living in poverty.