34 datasets found
  1. P

    ASCAD Dataset

    • paperswithcode.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ASCAD Dataset [Dataset]. https://paperswithcode.com/dataset/ascad
    Explore at:
    Description

    ASCAD (ANSSI SCA Database) is a set of databases that aims at providing a benchmarking reference for the SCA community: the purpose is to have something similar to the MNIST database that the Machine Learning community has been using for quite a while now to evaluate classification algorithms performance.

  2. ASCAD

    • data.gouv.fr
    • data.europa.eu
    • +1more
    zip
    Updated Jun 14, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agence Nationale de la Sécurité des Systèmes d'Information (2019). ASCAD [Dataset]. https://www.data.gouv.fr/fr/datasets/ascad/
    Explore at:
    zip(512), zip(4435199469)Available download formats
    Dataset updated
    Jun 14, 2019
    Dataset provided by
    Agence nationale de la sécurité des systèmes d'informationhttps://www.ssi.gouv.fr/
    Authors
    Agence Nationale de la Sécurité des Systèmes d'Information
    License

    Licence Ouverte / Open Licence 1.0https://www.etalab.gouv.fr/wp-content/uploads/2014/05/Open_Licence.pdf
    License information was derived automatically

    Description

    ASCAD (ANSSI SCA Databases) Databases and Neural Networks models, associated to the article "Study of Deep Learning Techniques for Side-Channel Analysis and Introduction to ASCAD Database" available on https://eprint.iacr.org/2018/053.pdf.

  3. P

    ASCADv2 Dataset

    • paperswithcode.com
    • gimi9.com
    • +1more
    Updated Mar 9, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). ASCADv2 Dataset [Dataset]. https://paperswithcode.com/dataset/ascadv2
    Explore at:
    Dataset updated
    Mar 9, 2023
    Description

    ASCAD database version 2. This database contained the power consumption of a STM32 Cortex M4 microcrontroller (STM32F303RCT7) during 800.000 random AES encryptions. The AES encryptions are protected with shuffling and affine masking, and the implementation is available on https://github.com/ANSSI-FR/SecAESSTM32. The raw dataset is split into 8 files of 100.000 encryptions, and the extracted dataset contained the 800.000 preprocessed traces with additional metadata.

  4. Extracted ASCADv2 with labels

    • zenodo.org
    Updated May 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thomas Marquet; Thomas Marquet (2023). Extracted ASCADv2 with labels [Dataset]. http://doi.org/10.5281/zenodo.7885814
    Explore at:
    Dataset updated
    May 3, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Thomas Marquet; Thomas Marquet
    Description

    Extracted dataset from the original ASCADv2 database (https://www.data.gouv.fr/fr/datasets/ascadv2/).

    The dataset is separated in three splits:

    - training with 200k traces

    - validation with 50k traces

    - attack with 50k traces

    For each trace, the extracted samples are :

    - samples from the masked inputs of the sboxes

    - samples from the input mask r_in

    - samples from the multiplicative mask r_m

    - labels for most intermediates

  5. f

    Comparison of training parameters of ASCAD dataset.

    • plos.figshare.com
    xls
    Updated Apr 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hai Huang; Jinming Wu; Xinling Tang; Shilei Zhao; Zhiwei Liu; Bin Yu (2025). Comparison of training parameters of ASCAD dataset. [Dataset]. http://doi.org/10.1371/journal.pone.0315340.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Apr 9, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Hai Huang; Jinming Wu; Xinling Tang; Shilei Zhao; Zhiwei Liu; Bin Yu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Comparison of training parameters of ASCAD dataset.

  6. ascad-fixed-key

    • kaggle.com
    Updated May 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tom Slooff (2023). ascad-fixed-key [Dataset]. https://www.kaggle.com/tslooff/ascad-fixed-key/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 11, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Tom Slooff
    Description

    Dataset

    This dataset was created by Tom Slooff

    Contents

  7. f

    Data from: S1 Dataset -

    • plos.figshare.com
    zip
    Updated Apr 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hai Huang; Jinming Wu; Xinling Tang; Shilei Zhao; Zhiwei Liu; Bin Yu (2025). S1 Dataset - [Dataset]. http://doi.org/10.1371/journal.pone.0315340.s001
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 9, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Hai Huang; Jinming Wu; Xinling Tang; Shilei Zhao; Zhiwei Liu; Bin Yu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Deep learning, as a high-performance data analysis method, has demonstrated superior efficiency and accuracy in side-channel attacks compared to traditional methods. However, many existing models enhance accuracy by stacking network layers, leading to increased algorithmic and computational complexity, overfitting, low training efficiency, and limited feature extraction capabilities. Moreover, deep learning methods rely on data correlation, and the presence of noise tends to reduce this correlation, increasing the difficulty of attacks. To address these challenges, this paper proposes the application of an InceptionNet-based network structure for side-channel attacks. This network utilizes fewer training parameters. achieves faster convergence and demonstrates improved attack efficiency through parallel processing of input data. Additionally, a LU-Net-based network structure is proposed for denoising side-channel datasets. This network captures the characteristics of input signals through an encoder, reconstructs denoised signals using a decoder, and utilizes LSTM layers and skip connections to preserve the temporal coherence and spatial details of the signals, thereby achi-eving the purpose of denoising. Experimental evaluations were conducted on the ASCAD dataset and the DPA Contest v4 dataset for comparative studies. The results indicate that the deep learning attack model proposed in this paper effectively enhances side-channel attack performance. On the ASCAD dataset, the recovery of keys requires only 30 traces, and on the DPA Contest v4 dataset, only 1 trace is needed for key recovery. Furthermore, the proposed deep learning denoising model significantly reduces the impact of noise on side-channel attack performance, thereby improving efficiency.

  8. SCAD-zbMATH-01 Open Access Data Set for Author Name Disambiguation (AND)...

    • zenodo.org
    • explore.openaire.eu
    • +1more
    application/gzip
    Updated Jan 24, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mark-Christoph Müller; Florian Reitz; Nicolas Roy; Mark-Christoph Müller; Florian Reitz; Nicolas Roy (2020). SCAD-zbMATH-01 Open Access Data Set for Author Name Disambiguation (AND) (Enhanced Version) [Dataset]. http://doi.org/10.5281/zenodo.161333
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Mark-Christoph Müller; Florian Reitz; Nicolas Roy; Mark-Christoph Müller; Florian Reitz; Nicolas Roy
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    This data set contains disambiguated publication data from zbMATH (www.zbmath.org) for use in author name disambiguation (AND). It covers 28321 publications with 33810 authorship records, authored by 2946 distinct authors. Authorship records have been manually annotated with author identifiers.

    This download includes additional data sets for advanced, selective disambiguation.

    For details, see "Mark-Christoph Müller, Florian Reitz, and Nicolas Roy (2017): Data Sets for Author Name Disambiguation: An Empirical Analysis and a New Resource", Scientometrics, doi:10.1007/s11192-017-2363-5.

  9. e

    ASCAD ATMega 8515 variable key

    • data.europa.eu
    h5
    Updated Aug 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agence Nationale de la Sécurité des Systèmes d'Information (2019). ASCAD ATMega 8515 variable key [Dataset]. https://data.europa.eu/data/datasets/5d0333126f444137a806c08c?locale=cs
    Explore at:
    h5Available download formats
    Dataset updated
    Aug 12, 2019
    Dataset authored and provided by
    Agence Nationale de la Sécurité des Systèmes d'Information
    Description

    ASCAD database (raw traces and extracted traces) for ATMega 8515 power consumption of boolean masked AES using a variable key.

  10. f

    Comparison of training parameters of AES_RD dataset.

    • figshare.com
    • plos.figshare.com
    xls
    Updated Apr 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hai Huang; Jinming Wu; Xinling Tang; Shilei Zhao; Zhiwei Liu; Bin Yu (2025). Comparison of training parameters of AES_RD dataset. [Dataset]. http://doi.org/10.1371/journal.pone.0315340.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Apr 9, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Hai Huang; Jinming Wu; Xinling Tang; Shilei Zhao; Zhiwei Liu; Bin Yu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Comparison of training parameters of AES_RD dataset.

  11. Reduced version of ASCADr from ANSSI

    • zenodo.org
    bin
    Updated Feb 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thomas Marquet; Thomas Marquet (2023). Reduced version of ASCADr from ANSSI [Dataset]. http://doi.org/10.5281/zenodo.7631612
    Explore at:
    binAvailable download formats
    Dataset updated
    Feb 11, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Thomas Marquet; Thomas Marquet
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Reducuced version of the ASCADr dataset from "Agence Nationale de sécurité des systèmes d'information" (ANSSI)

    https://www.data.gouv.fr/fr/datasets/ascad/

    Training set : 50k raw traces from the random key split.

    Test set : 10k raw traces from the random key split

    Attack set : 10k raw traces from the fixed key split

    No preprocessing of any sort has been done, this is just to change the .h5 size and organisation.

  12. e

    ASCAD ATMega 8515 variabele sleutel

    • data.europa.eu
    h5
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agence Nationale de la Sécurité des Systèmes d'Information, ASCAD ATMega 8515 variabele sleutel [Dataset]. https://data.europa.eu/data/datasets/5d0333126f444137a806c08c?locale=nl
    Explore at:
    h5(438606904), h5(533271184), h5Available download formats
    Dataset authored and provided by
    Agence Nationale de la Sécurité des Systèmes d'Information
    Description

    ASCAD database (ruwe sporen en geëxtraheerde sporen) voor ATMega 8515 stroomverbruik van boolean gemaskerde AES met behulp van een variabele sleutel.

  13. e

    SVENSKA

    • data.europa.eu
    zip
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agence Nationale de la Sécurité des Systèmes d'Information, SVENSKA [Dataset]. https://data.europa.eu/data/datasets/5aaa829dc751df2fbd43eacb?locale=sv
    Explore at:
    zip, zip(512)Available download formats
    Dataset authored and provided by
    Agence Nationale de la Sécurité des Systèmes d'Information
    License

    Licence Ouverte / Open Licence 1.0https://www.etalab.gouv.fr/wp-content/uploads/2014/05/Open_Licence.pdf
    License information was derived automatically

    Description

    ASCAD (ANSSI SCA Databases) Databaser och Neural Networks modeller, associerade till artikeln ”Study of Deep Learning Techniques for Side-Channel Analysis and Introduction to ASCAD Database” finns på https://eprint.iacr.org/2018/053.pdf.

  14. e

    ASCAD ATMega 8515 variabel nøgle

    • data.europa.eu
    h5
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agence Nationale de la Sécurité des Systèmes d'Information, ASCAD ATMega 8515 variabel nøgle [Dataset]. https://data.europa.eu/data/datasets/5d0333126f444137a806c08c?locale=da
    Explore at:
    h5(438606904), h5(533271184), h5Available download formats
    Dataset authored and provided by
    Agence Nationale de la Sécurité des Systèmes d'Information
    Description

    ASCAD-database (råspor og ekstraherede spor) for ATMega 8515 strømforbrug af boolesk maskerede AES ved hjælp af en variabel nøgle.

  15. i

    Org Information for SCAD

    • ipxo.com
    html
    Updated Jan 3, 2000
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IPXO (2000). Org Information for SCAD [Dataset]. https://www.ipxo.com/organisations/SCAD/
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jan 3, 2000
    Dataset authored and provided by
    IPXO
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Detailed information about the Organisation SCAD.

  16. f

    Comparison of training parameters of DPA contest v4 dataset.

    • figshare.com
    • plos.figshare.com
    xls
    Updated Apr 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hai Huang; Jinming Wu; Xinling Tang; Shilei Zhao; Zhiwei Liu; Bin Yu (2025). Comparison of training parameters of DPA contest v4 dataset. [Dataset]. http://doi.org/10.1371/journal.pone.0315340.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Apr 9, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Hai Huang; Jinming Wu; Xinling Tang; Shilei Zhao; Zhiwei Liu; Bin Yu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Comparison of training parameters of DPA contest v4 dataset.

  17. g

    ASCAD | gimi9.com

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ASCAD | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_5aaa829dc751df2fbd43eacb/
    Explore at:
    License

    Licence Ouverte / Open Licence 1.0https://www.etalab.gouv.fr/wp-content/uploads/2014/05/Open_Licence.pdf
    License information was derived automatically

    Description

    🇫🇷 프랑스

  18. Forecast: Whole Fresh Bigeye Scad Production in Capture Fisheries in France...

    • reportlinker.com
    Updated Apr 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ReportLinker (2024). Forecast: Whole Fresh Bigeye Scad Production in Capture Fisheries in France 2024 - 2028 [Dataset]. https://www.reportlinker.com/dataset/0c9c3ef9133abb175aa72857bf925f1137b2b7eb
    Explore at:
    Dataset updated
    Apr 5, 2024
    Dataset authored and provided by
    ReportLinker
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    France
    Description

    Forecast: Whole Fresh Bigeye Scad Production in Capture Fisheries in France 2024 - 2028 Discover more data with ReportLinker!

  19. Forecast: Total Mackerel Scad Production in Capture Fisheries in France 2024...

    • reportlinker.com
    Updated Apr 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ReportLinker (2024). Forecast: Total Mackerel Scad Production in Capture Fisheries in France 2024 - 2028 [Dataset]. https://www.reportlinker.com/dataset/77de650a764a350841d2db463e379e3b82a60b5c
    Explore at:
    Dataset updated
    Apr 5, 2024
    Dataset authored and provided by
    ReportLinker
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    France
    Description

    Forecast: Total Mackerel Scad Production in Capture Fisheries in France 2024 - 2028 Discover more data with ReportLinker!

  20. f

    Comparison of denoising performance between LU-Net and DAE models.

    • plos.figshare.com
    xls
    Updated Apr 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hai Huang; Jinming Wu; Xinling Tang; Shilei Zhao; Zhiwei Liu; Bin Yu (2025). Comparison of denoising performance between LU-Net and DAE models. [Dataset]. http://doi.org/10.1371/journal.pone.0315340.t005
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Apr 9, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Hai Huang; Jinming Wu; Xinling Tang; Shilei Zhao; Zhiwei Liu; Bin Yu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Comparison of denoising performance between LU-Net and DAE models.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ASCAD Dataset [Dataset]. https://paperswithcode.com/dataset/ascad

ASCAD Dataset

Explore at:
Description

ASCAD (ANSSI SCA Database) is a set of databases that aims at providing a benchmarking reference for the SCA community: the purpose is to have something similar to the MNIST database that the Machine Learning community has been using for quite a while now to evaluate classification algorithms performance.

Search
Clear search
Close search
Google apps
Main menu