70 datasets found
  1. Population density APAC 2023, by country

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Population density APAC 2023, by country [Dataset]. https://www.statista.com/statistics/640612/asia-pacific-population-density-by-country/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Asia, APAC
    Description

    In 2023, there were around ***** inhabitants per square kilometer living in Singapore. In comparison, there were approximately two inhabitants per square kilometer living in Mongolia that year.

  2. s

    Population Density Southern Asia

    • spotzi.com
    csv
    Updated May 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spotzi. Location Intelligence Dashboards for Businesses. (2025). Population Density Southern Asia [Dataset]. https://www.spotzi.com/en/data-catalog/datasets/population-density-southern-asia/
    Explore at:
    csvAvailable download formats
    Dataset updated
    May 23, 2025
    Dataset authored and provided by
    Spotzi. Location Intelligence Dashboards for Businesses.
    License

    https://www.spotzi.com/en/about/terms-of-service/https://www.spotzi.com/en/about/terms-of-service/

    Time period covered
    2022
    Area covered
    South Asia
    Description

    Our Population Density Grid Dataset for Southern Asia offers detailed, grid-based insights into the distribution of population across cities, towns, and rural areas. Free to explore and visualize, this dataset provides an invaluable resource for businesses and researchers looking to understand demographic patterns and optimize their location-based strategies.

    By creating an account, you gain access to advanced tools for leveraging this data in geomarketing applications. Perfect for OOH advertising, retail planning, and more, our platform allows you to integrate population insights with your business intelligence, enabling you to make data-driven decisions for your marketing and expansion strategies.

  3. Global population density by region 2025

    • statista.com
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global population density by region 2025 [Dataset]. https://www.statista.com/statistics/912416/global-population-density-by-region/
    Explore at:
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    Worldwide
    Description

    As of 2025, Asia was the most densely populated region of the world, with nearly 156 inhabitants per square kilometer, whereas Oceania's population density was just over five inhabitants per square kilometer.

  4. T

    South Asia - Population Density (people Per Sq. Km)

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 28, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). South Asia - Population Density (people Per Sq. Km) [Dataset]. https://tradingeconomics.com/south-asia/population-density-people-per-sq-km-wb-data.html
    Explore at:
    json, xml, excel, csvAvailable download formats
    Dataset updated
    May 28, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    Asia, South Asia
    Description

    Population density (people per sq. km of land area) in South Asia was reported at 492 sq. Km in 2022, according to the World Bank collection of development indicators, compiled from officially recognized sources. South Asia - Population density (people per sq. km) - actual values, historical data, forecasts and projections were sourced from the World Bank on November of 2025.

  5. M

    South Asia Population Density | Historical Data | Chart | 1961-2022

    • macrotrends.net
    csv
    Updated Oct 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). South Asia Population Density | Historical Data | Chart | 1961-2022 [Dataset]. https://www.macrotrends.net/datasets/global-metrics/countries/sas/south-asia/population-density
    Explore at:
    csvAvailable download formats
    Dataset updated
    Oct 31, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1961 - Dec 31, 2022
    Area covered
    Asia, South Asia
    Description

    Historical dataset showing South Asia population density by year from 1961 to 2022.

  6. M

    East Asia & Pacific Population Density | Historical Data | Chart | 1961-2022...

    • macrotrends.net
    csv
    Updated Oct 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). East Asia & Pacific Population Density | Historical Data | Chart | 1961-2022 [Dataset]. https://www.macrotrends.net/datasets/global-metrics/countries/eas/east-asia-pacific/population-density
    Explore at:
    csvAvailable download formats
    Dataset updated
    Oct 31, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1961 - Dec 31, 2022
    Area covered
    East Asia & Pacific
    Description

    Historical dataset showing East Asia & Pacific population density by year from 1961 to 2022.

  7. Total population APAC 2023, by country

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population APAC 2023, by country [Dataset]. https://www.statista.com/statistics/632565/asia-pacific-total-population-by-country/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    APAC, Asia
    Description

    India's total population reached nearly **** billion people as of 2023, making the country by far the most populous throughout the Asia-Pacific region. Contrastingly, Micronesia had a total population of around *** thousand people in the same year. The demographics of APAC Asia-Pacific, made up of many different countries and regions, is the most populated region across the globe. Being home to a significant number of megacities, and with the population ever-increasing, the region is unsurprisingly expected to have the largest urban population by 2050. However, as of 2021, the majority of Asia-Pacific countries had rural populations greater than ** percent.  Population densities Despite China being the most populated country across the region, it fell in the middle of Asia-Pacific regions in terms of population density. On the other hand, Macao, Singapore, and Hong Kong all had the highest population densities across the Asia-Pacific region. These three Asia-Pacific regions also ranked among the top four densest populations worldwide.   

  8. Population density in China 2012-2022

    • statista.com
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Population density in China 2012-2022 [Dataset]. https://www.statista.com/statistics/270130/population-density-in-china/
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    China
    Description

    In 2022, the estimated population density of China was around 150.42 people per square kilometer. That year, China's population size declined for the first time in decades. Although China is the most populous country in the world, its overall population density is not much higher than the average population density in Asia. Uneven population distribution China is one of the largest countries in terms of land area, and its population density figures vary dramatically from region to region. Overall, the coastal regions in the East and Southeast have the highest population densities, as they belong to the more economically developed regions of the country. These coastal regions also have a higher urbanization rate. On the contrary, the regions in the West are covered with mountain landscapes which are not suitable for the development of big cities. Populous cities in China Several Chinese cities rank among the most populous cities in the world. According to estimates, Beijing and Shanghai will rank among the top ten megacities in the world by 2030. Both cities are also the largest Chinese cities in terms of land area. The previous colonial regions, Macao and Hong Kong, are two of the most densely populated cities in the world.

  9. l

    Census 2020 SRR and Demographic Characteristics

    • geohub.lacity.org
    • data.lacounty.gov
    • +2more
    Updated Dec 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2023). Census 2020 SRR and Demographic Characteristics [Dataset]. https://geohub.lacity.org/maps/1f3d318816e74ff79a937d38e17b8359
    Explore at:
    Dataset updated
    Dec 23, 2023
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    For the past several censuses, the Census Bureau has invited people to self-respond before following up in-person using census takers. The 2010 Census invited people to self-respond predominately by returning paper questionnaires in the mail. The 2020 Census allows people to self-respond in three ways: online, by phone, or by mail.The 2020 Census self-response rates are self-response rates for current census geographies. These rates are the daily and cumulative self-response rates for all housing units that received invitations to self-respond to the 2020 Census. The 2020 Census self-response rates are available for states, counties, census tracts, congressional districts, towns and townships, consolidated cities, incorporated places, tribal areas, and tribal census tracts.The Self-Response Rate of Los Angeles County is 65.1% for 2020 Census, which is slightly lower than 69.6% of California State rate.More information about these data is available in the Self-Response Rates Map Data and Technical Documentation document associated with the 2020 Self-Response Rates Map or review FAQs.Animated Self-Response Rate 2010 vs 2020 is available at ESRI site SRR Animated Maps and can explore Census 2020 SRR data at ESRI Demographic site Census 2020 SSR Data.Following Demographic Characteristics are included in this data and web maps to visualize their relationships with Census Self-Response Rate (SRR).1. Population Density: 2020 Population per square mile,2. Poverty Rate: Percentage of population under 100% FPL,3. Median Household income: Based on countywide median HH income of $71,538.4. Highschool Education Attainment: Percentage of 18 years and older population without high school graduation.5. English Speaking Ability: Percentage of 18 years and older population with less or none English speaking ability. 6. Household without Internet Access: Percentage of HH without internet access.7. Non-Hispanic White Population: Percentage of Non-Hispanic White population.8. Non-Hispanic African-American Population: Percentage of Non-Hispanic African-American population.9. Non-Hispanic Asian Population: Percentage of Non-Hispanic Asian population.10. Hispanic Population: Percentage of Hispanic population.

  10. a

    Population density - Black - Map Service

    • hub.arcgis.com
    Updated Aug 15, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damian's Organization (2012). Population density - Black - Map Service [Dataset]. https://hub.arcgis.com/maps/damian::population-density-black-map-service
    Explore at:
    Dataset updated
    Aug 15, 2012
    Dataset authored and provided by
    Damian's Organization
    Area covered
    Description

    This map shows density surfaces derived from the 2010 US Census block points.This data shows % of people who identified themselves as 'single race' and 'Black'The block points were interpolated using the density function to a 2km x 2km grid of the continental US (with water and coastal data masks). There are many stories in these Maps:- What is that clean North/South Line through the center? Why do so many people live East of that line?- Notice the paths of the towns in the west – why are they so linear? And it seems there is a pattern to the spaces between the towns, why?- Looking at the ethnic maps, what explains the patterns? Look at the % Native American map – what are the areas of higher values? (note I did not make a % Asian map as at this scale there was not enough % to show any significant clusters.)

  11. d

    Africa Population Distribution Database

    • search.dataone.org
    Updated Nov 17, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Deichmann, Uwe; Nelson, Andy (2014). Africa Population Distribution Database [Dataset]. https://search.dataone.org/view/Africa_Population_Distribution_Database.xml
    Explore at:
    Dataset updated
    Nov 17, 2014
    Dataset provided by
    Regional and Global Biogeochemical Dynamics Data (RGD)
    Authors
    Deichmann, Uwe; Nelson, Andy
    Time period covered
    Jan 1, 1960 - Dec 31, 1997
    Area covered
    Description

    The Africa Population Distribution Database provides decadal population density data for African administrative units for the period 1960-1990. The databsae was prepared for the United Nations Environment Programme / Global Resource Information Database (UNEP/GRID) project as part of an ongoing effort to improve global, spatially referenced demographic data holdings. The database is useful for a variety of applications including strategic-level agricultural research and applications in the analysis of the human dimensions of global change.

    This documentation describes the third version of a database of administrative units and associated population density data for Africa. The first version was compiled for UNEP's Global Desertification Atlas (UNEP, 1997; Deichmann and Eklundh, 1991), while the second version represented an update and expansion of this first product (Deichmann, 1994; WRI, 1995). The current work is also related to National Center for Geographic Information and Analysis (NCGIA) activities to produce a global database of subnational population estimates (Tobler et al., 1995), and an improved database for the Asian continent (Deichmann, 1996). The new version for Africa provides considerably more detail: more than 4700 administrative units, compared to about 800 in the first and 2200 in the second version. In addition, for each of these units a population estimate was compiled for 1960, 70, 80 and 90 which provides an indication of past population dynamics in Africa. Forthcoming are population count data files as download options.

    African population density data were compiled from a large number of heterogeneous sources, including official government censuses and estimates/projections derived from yearbooks, gazetteers, area handbooks, and other country studies. The political boundaries template (PONET) of the Digital Chart of the World (DCW) was used delineate national boundaries and coastlines for African countries.

    For more information on African population density and administrative boundary data sets, see metadata files at [http://na.unep.net/datasets/datalist.php3] which provide information on file identification, format, spatial data organization, distribution, and metadata reference.

    References:

    Deichmann, U. 1994. A medium resolution population database for Africa, Database documentation and digital database, National Center for Geographic Information and Analysis, University of California, Santa Barbara.

    Deichmann, U. and L. Eklundh. 1991. Global digital datasets for land degradation studies: A GIS approach, GRID Case Study Series No. 4, Global Resource Information Database, United Nations Environment Programme, Nairobi.

    UNEP. 1997. World Atlas of Desertification, 2nd Ed., United Nations Environment Programme, Edward Arnold Publishers, London.

    WRI. 1995. Africa data sampler, Digital database and documentation, World Resources Institute, Washington, D.C.

  12. Highest population density by country 2024

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Highest population density by country 2024 [Dataset]. https://www.statista.com/statistics/264683/top-fifty-countries-with-the-highest-population-density/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    World
    Description

    Monaco led the ranking for countries with the highest population density in 2024, with nearly 26,000 residents per square kilometer. The Special Administrative Region of Macao came in second, followed by Singapore. The world’s second smallest country Monaco is the world’s second-smallest country, with an area of about two square kilometers and a population of only around 40,000. It is a constitutional monarchy located by the Mediterranean Sea, and while Monaco is not part of the European Union, it does participate in some EU policies. The country is perhaps most famous for the Monte Carlo casino and for hosting the Monaco Grand Prix, the world's most prestigious Formula One race. The global population Globally, the population density per square kilometer is about 60 inhabitants, and Asia is the most densely populated region in the world. The global population is increasing rapidly, so population density is only expected to increase. In 1950, for example, the global population stood at about 2.54 billion people, and it reached over eight billion during 2023.

  13. 🎓 US Graduation Demographics Explorer by Race

    • kaggle.com
    zip
    Updated Jan 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shiv_D24Coder (2024). 🎓 US Graduation Demographics Explorer by Race [Dataset]. https://www.kaggle.com/datasets/shivd24coder/us-graduation-demographics-explorer-by-race/discussion
    Explore at:
    zip(3711 bytes)Available download formats
    Dataset updated
    Jan 17, 2024
    Authors
    Shiv_D24Coder
    License

    https://www.usa.gov/government-works/https://www.usa.gov/government-works/

    Area covered
    United States
    Description

    Key Features

    Column NameDescription
    fipsFIPS code of the state
    stateState name
    densityMiPopulation density in square miles
    pop2024Projected population in 2024
    growthGrowth since the previous period
    BachelorsPercentPercentage of population with a bachelor's degree
    AsianPercentPercentage of Asian population
    BlackPercentPercentage of Black population
    WhitePercentPercentage of White population
    AsianBachelorsNumber of Asian individuals with a bachelor's degree
    AsianTotalTotal Asian population
    BlackBachelorsNumber of Black individuals with a bachelor's degree
    BlackTotalTotal Black population
    WhiteBachelorsNumber of White individuals with a bachelor's degree
    WhiteTotalTotal White population

    How to use this dataset

    1. Population Analysis: Explore population trends and growth rates in different states, identifying demographic shifts over time.

    2. Educational Attainment: Investigate the educational landscape by analyzing the percentage of individuals with bachelor's degrees, with a focus on various racial groups.

    3. Diversity Insights: Examine racial demographics, educational achievements, and their intersections to gain insights into the diversity of educational attainment across states.

    If you find this dataset useful, give it an upvote – it's a small gesture that goes a long way! Thanks for your support. 😄

  14. Disaggregating Census Data for Population Mapping Using Random Forests with...

    • plos.figshare.com
    zip
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Forrest R. Stevens; Andrea E. Gaughan; Catherine Linard; Andrew J. Tatem (2023). Disaggregating Census Data for Population Mapping Using Random Forests with Remotely-Sensed and Ancillary Data [Dataset]. http://doi.org/10.1371/journal.pone.0107042
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Forrest R. Stevens; Andrea E. Gaughan; Catherine Linard; Andrew J. Tatem
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    High resolution, contemporary data on human population distributions are vital for measuring impacts of population growth, monitoring human-environment interactions and for planning and policy development. Many methods are used to disaggregate census data and predict population densities for finer scale, gridded population data sets. We present a new semi-automated dasymetric modeling approach that incorporates detailed census and ancillary data in a flexible, “Random Forest” estimation technique. We outline the combination of widely available, remotely-sensed and geospatial data that contribute to the modeled dasymetric weights and then use the Random Forest model to generate a gridded prediction of population density at ~100 m spatial resolution. This prediction layer is then used as the weighting surface to perform dasymetric redistribution of the census counts at a country level. As a case study we compare the new algorithm and its products for three countries (Vietnam, Cambodia, and Kenya) with other common gridded population data production methodologies. We discuss the advantages of the new method and increases over the accuracy and flexibility of those previous approaches. Finally, we outline how this algorithm will be extended to provide freely-available gridded population data sets for Africa, Asia and Latin America.

  15. Forecast: world population, by continent 2100

    • statista.com
    • botflix.ru
    Updated Nov 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Forecast: world population, by continent 2100 [Dataset]. https://www.statista.com/statistics/272789/world-population-by-continent/
    Explore at:
    Dataset updated
    Nov 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    Whereas the population is expected to decrease somewhat until 2100 in Asia, Europe, and South America, it is predicted to grow significantly in Africa. While there were 1.55 billion inhabitants on the continent at the beginning of 2025, the number of inhabitants is expected to reach 3.81 billion by 2100. In total, the global population is expected to reach nearly 10.18 billion by 2100. Worldwide population In the United States, the total population is expected to steadily increase over the next couple of years. In 2024, Asia held over half of the global population and is expected to have the highest number of people living in urban areas in 2050. Asia is home to the two most populous countries, India and China, both with a population of over one billion people. However, the small country of Monaco had the highest population density worldwide in 2024. Effects of overpopulation Alongside the growing worldwide population, there are negative effects of overpopulation. The increasing population puts a higher pressure on existing resources and contributes to pollution. As the population grows, the demand for food grows, which requires more water, which in turn takes away from the freshwater available. Concurrently, food needs to be transported through different mechanisms, which contributes to air pollution. Not every resource is renewable, meaning the world is using up limited resources that will eventually run out. Furthermore, more species will become extinct which harms the ecosystem and food chain. Overpopulation was considered to be one of the most important environmental issues worldwide in 2020.

  16. s

    Population density of Vietnam 2011-2024

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Population density of Vietnam 2011-2024 [Dataset]. https://www.statista.com/statistics/778530/vietnam-population-density/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statista
    Area covered
    Vietnam
    Description

    In 2024, the population density of Vietnam was around 306 people per square kilometer of land area. In that year, Vietnam's total population reached over 100 million. The country is among those with the highest population density in the Asia Pacific region, ranking 11 in 2020. Population density in Vietnam In comparison, Vietnam’s population density is roughly twice as much as China and Indonesia. The average population density in the world is at 59 inhabitants per square kilometer. The largest population within the country can be found in the Red River Delta and the Mekong River Delta. The most populated city is Ho Chi Minh City with roughly nine million inhabitants. Population growth in Vietnam Vietnam’s total population was forecast to surpass 109 million by 2050. Traditionally, Vietnamese families had an average of six children, while today, the birth rate is at two children per woman. This is due to an improving economy and higher living standards. In 2020, the population growth in Vietnam reached 0.90 percent, down from about three percent in the 1960s.

  17. Data from: Lost on the frontline, and lost in the data: COVID-19 deaths...

    • figshare.com
    zip
    Updated Jul 22, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Loraine Escobedo (2022). Lost on the frontline, and lost in the data: COVID-19 deaths among Filipinx healthcare workers in the United States [Dataset]. http://doi.org/10.6084/m9.figshare.20353368.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 22, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Loraine Escobedo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    To estimate county of residence of Filipinx healthcare workers who died of COVID-19, we retrieved data from the Kanlungan website during the month of December 2020.22 In deciding who to include on the website, the AF3IRM team that established the Kanlungan website set two standards in data collection. First, the team found at least one source explicitly stating that the fallen healthcare worker was of Philippine ancestry; this was mostly media articles or obituaries sharing the life stories of the deceased. In a few cases, the confirmation came directly from the deceased healthcare worker's family member who submitted a tribute. Second, the team required a minimum of two sources to identify and announce fallen healthcare workers. We retrieved 86 US tributes from Kanlungan, but only 81 of them had information on county of residence. In total, 45 US counties with at least one reported tribute to a Filipinx healthcare worker who died of COVID-19 were identified for analysis and will hereafter be referred to as “Kanlungan counties.” Mortality data by county, race, and ethnicity came from the National Center for Health Statistics (NCHS).24 Updated weekly, this dataset is based on vital statistics data for use in conducting public health surveillance in near real time to provide provisional mortality estimates based on data received and processed by a specified cutoff date, before data are finalized and publicly released.25 We used the data released on December 30, 2020, which included provisional COVID-19 death counts from February 1, 2020 to December 26, 2020—during the height of the pandemic and prior to COVID-19 vaccines being available—for counties with at least 100 total COVID-19 deaths. During this time period, 501 counties (15.9% of the total 3,142 counties in all 50 states and Washington DC)26 met this criterion. Data on COVID-19 deaths were available for six major racial/ethnic groups: Non-Hispanic White, Non-Hispanic Black, Non-Hispanic Native Hawaiian or Other Pacific Islander, Non-Hispanic American Indian or Alaska Native, Non-Hispanic Asian (hereafter referred to as Asian American), and Hispanic. People with more than one race, and those with unknown race were included in the “Other” category. NCHS suppressed county-level data by race and ethnicity if death counts are less than 10. In total, 133 US counties reported COVID-19 mortality data for Asian Americans. These data were used to calculate the percentage of all COVID-19 decedents in the county who were Asian American. We used data from the 2018 American Community Survey (ACS) five-year estimates, downloaded from the Integrated Public Use Microdata Series (IPUMS) to create county-level population demographic variables.27 IPUMS is publicly available, and the database integrates samples using ACS data from 2000 to the present using a high degree of precision.27 We applied survey weights to calculate the following variables at the county-level: median age among Asian Americans, average income to poverty ratio among Asian Americans, the percentage of the county population that is Filipinx, and the percentage of healthcare workers in the county who are Filipinx. Healthcare workers encompassed all healthcare practitioners, technical occupations, and healthcare service occupations, including nurse practitioners, physicians, surgeons, dentists, physical therapists, home health aides, personal care aides, and other medical technicians and healthcare support workers. County-level data were available for 107 out of the 133 counties (80.5%) that had NCHS data on the distribution of COVID-19 deaths among Asian Americans, and 96 counties (72.2%) with Asian American healthcare workforce data. The ACS 2018 five-year estimates were also the source of county-level percentage of the Asian American population (alone or in combination) who are Filipinx.8 In addition, the ACS provided county-level population counts26 to calculate population density (people per 1,000 people per square mile), estimated by dividing the total population by the county area, then dividing by 1,000 people. The county area was calculated in ArcGIS 10.7.1 using the county boundary shapefile and projected to Albers equal area conic (for counties in the US contiguous states), Hawai’i Albers Equal Area Conic (for Hawai’i counties), and Alaska Albers Equal Area Conic (for Alaska counties).20

  18. f

    Demographic Variables for Wild Asian Elephants Using Longitudinal...

    • figshare.com
    pdf
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shermin de Silva; C. Elizabeth Webber; U. S. Weerathunga; T. V. Pushpakumara; Devaka K. Weerakoon; George Wittemyer (2023). Demographic Variables for Wild Asian Elephants Using Longitudinal Observations [Dataset]. http://doi.org/10.1371/journal.pone.0082788
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Shermin de Silva; C. Elizabeth Webber; U. S. Weerathunga; T. V. Pushpakumara; Devaka K. Weerakoon; George Wittemyer
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Detailed demographic data on wild Asian elephants have been difficult to collect due to habitat characteristics of much of the species’ remaining range. Such data, however, are critical for understanding and modeling population processes in this endangered species. We present data from six years of an ongoing study of Asian elephants (Elephas maximus) in Uda Walawe National Park, Sri Lanka. This relatively undisturbed population numbering over one thousand elephants is individually monitored, providing cohort-based information on mortality and reproduction. Reproduction was seasonal, such that most births occurred during the long inter-monsoon dry season and peaked in May. During the study, the average age at first reproduction was 13.4 years and the 50th percentile inter-birth interval was approximately 6 years. Birth sex ratios did not deviate significantly from parity. Fecundity was relatively stable throughout the observed reproductive life of an individual (ages 11–60), averaging between 0.13–0.17 female offspring per individual per year. Mortalities and injuries based on carcasses and disappearances showed that males were significantly more likely than females to be killed or injured through anthropogenic activity. Overall, however, most observed injuries did not appear to be fatal. This population exhibits higher fecundity and density relative to published estimates on other Asian elephant populations, possibly enhanced by present range constriction. Understanding the factors responsible for these demographic dynamics can shed insight on the future needs of this elephant population, with probable parallels to other populations in similar settings.

  19. e

    Geographical Distribution of Biomass Carbon in Tropical Southeast Asian...

    • knb.ecoinformatics.org
    • osti.gov
    Updated Apr 29, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    S. Brown; L. R. Iverson; A. Prasad (2021). Geographical Distribution of Biomass Carbon in Tropical Southeast Asian Forests: A Database (NPD-068) [Dataset]. http://doi.org/10.3334/CDIAC/LUE.NDP068
    Explore at:
    Dataset updated
    Apr 29, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    S. Brown; L. R. Iverson; A. Prasad
    Time period covered
    Jan 1, 1980 - Dec 31, 1980
    Area covered
    Description

    A database was generated of estimates of geographically referenced carbon densities of forest vegetation in tropical Southeast Asia for 1980. A geographic information system (GIS) was used to incorporate spatial databases of climatic, edaphic, and geomorphological indices and vegetation to estimate potential (i.e., in the absence of human intervention and natural disturbance) carbon densities of forests. The resulting map was then modified to estimate actual 1980 carbon density as a function of population density and climatic zone. The database covers the following 13 countries: Bangladesh, Brunei, Cambodia (Campuchea), India, Indonesia, Laos, Malaysia, Myanmar (Burma), Nepal, the Philippines, Sri Lanka, Thailand, and Vietnam. For access to the data files, click this link to the CDIAC data transition website: http://cdiac.ess-dive.lbl.gov/epubs/ndp/ndp068/ndp068.html

  20. Data from: Suitability map for Avian influenza, Asia

    • dataverse.cirad.fr
    tar, tiff
    Updated Nov 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Boudoua, Bahdja; Boudoua, Bahdja; Annelise Tran; Annelise Tran (2023). Suitability map for Avian influenza, Asia [Dataset]. http://doi.org/10.18167/DVN1/FYWDOJ
    Explore at:
    tar(523110912), tiff(104479593)Available download formats
    Dataset updated
    Nov 20, 2023
    Authors
    Boudoua, Bahdja; Boudoua, Bahdja; Annelise Tran; Annelise Tran
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Asia
    Dataset funded by
    European Union’s Horizon 2020 research and innovation program
    Description

    A Spatial Multi Criteria Evaluation was applied to map a suitability index (ranging from 0: low suitability to 255: high suitability) for habitat suitability for occurrence of highly pathogenic avian influenza virus H5N1 in domestic poultry in Asia. The method developed by (Stevens et al., 2013) was applied on recent databases of poultry and human populations. Variables included in the study: 1) Domestic waterfowl density, 2) Chicken density, 3) Human population density, 4) Roads, 5) Water, 6) Crops. A full description of the methodology is presented in (Stevens et al., 2013). The present data set includes rasters (spatial resolution: ca 1 km): - the AI suitability map - the normalized criteria

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Population density APAC 2023, by country [Dataset]. https://www.statista.com/statistics/640612/asia-pacific-population-density-by-country/
Organization logo

Population density APAC 2023, by country

Explore at:
Dataset updated
Nov 29, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2023
Area covered
Asia, APAC
Description

In 2023, there were around ***** inhabitants per square kilometer living in Singapore. In comparison, there were approximately two inhabitants per square kilometer living in Mongolia that year.

Search
Clear search
Close search
Google apps
Main menu