100+ datasets found
  1. Data - Quality assessment table

    • figshare.com
    xlsx
    Updated Nov 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Deborah Gonet (2024). Data - Quality assessment table [Dataset]. http://doi.org/10.6084/m9.figshare.27876987.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Nov 21, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Deborah Gonet
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data - Quality assessment table

  2. KPMG Virtual Internship - Data Quality Assessment

    • kaggle.com
    Updated Jan 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Isa Zeynalov (2023). KPMG Virtual Internship - Data Quality Assessment [Dataset]. https://www.kaggle.com/datasets/isazeynalov/kpmg-virtual-internship-data-quality-assessment
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 15, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Isa Zeynalov
    Description

    Dataset

    This dataset was created by Isa Zeynalov

    Contents

  3. d

    Technical Limits (SPEN_018) Data Quality Checks - Dataset - Datopian CKAN...

    • demo.dev.datopian.com
    Updated May 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Technical Limits (SPEN_018) Data Quality Checks - Dataset - Datopian CKAN instance [Dataset]. https://demo.dev.datopian.com/dataset/sp-energy-networks--spen_data_quality_technical_limits
    Explore at:
    Dataset updated
    May 27, 2025
    Description

    This data table provides the detailed data quality assessment scores for the Technical Limits dataset. The quality assessment was carried out on the 31st of March. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality. To demonstrate our progress we conduct, at a minimum, bi-annual assessments of our data quality - for datasets that are refreshed more frequently than this, please note that the quality assessment may be based on an earlier version of the dataset. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy Networks. We welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.

  4. EOSC Task Force on FAIR Metrics and Data Quality: FAIR Evaluation community...

    • zenodo.org
    • data.niaid.nih.gov
    csv, pdf
    Updated Jul 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elli Papadopoulou; Elli Papadopoulou; Mari Kleemola; Mari Kleemola; Mark Wilkinson; Mark Wilkinson; David Romain; David Romain (2024). EOSC Task Force on FAIR Metrics and Data Quality: FAIR Evaluation community survey 2023 [Dataset]. http://doi.org/10.5281/zenodo.10679361
    Explore at:
    pdf, csvAvailable download formats
    Dataset updated
    Jul 7, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Elli Papadopoulou; Elli Papadopoulou; Mari Kleemola; Mari Kleemola; Mark Wilkinson; Mark Wilkinson; David Romain; David Romain
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Nov 15, 2022 - Jan 18, 2023
    Description

    The EOSC-A FAIR Metrics and Data Quality Task Force (TF) supported the European Open Science Cloud Association (EOSC-A) by providing strategic directions on FAIRness (Findable, Accessible, Interoperable, and Reusable) and data quality. The Task Force conducted a survey using the EUsurvey tool between 15.11.2022 and 18.01.2023, targeting both developers and users of FAIR assessment tools. The survey aimed at supporting the harmonisation of FAIR assessments, in terms of what it evaluated and how, across existing (and future) tools and services, as well as explore if and how a community-driven governance on these FAIR assessments would look like. The survey received 78 responses, mainly from academia, representing various domains and organisational roles. This is the anonymised survey dataset in csv format; most open-ended answers have been dropped. The codebook contains variable names, labels, and frequencies.

  5. MULTI-SITE EVALUATION OF A DATA QUALITY TOOL FOR BIG DATA IN HEALTHCARE

    • figshare.com
    xlsx
    Updated Jan 20, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vojtech Huser (2016). MULTI-SITE EVALUATION OF A DATA QUALITY TOOL FOR BIG DATA IN HEALTHCARE [Dataset]. http://doi.org/10.6084/m9.figshare.1497942.v4
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jan 20, 2016
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Vojtech Huser
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Evaluation of data quality in large healthcare datasets.

    abstract: Data quality and fitness for analysis are crucial if outputs of big data analyses should be trusted by the public and the research community. Here we analyze the output from a data quality tool called Achilles Heel as it was applied to 24 datasets across seven different organizations. We highlight 12 data quality rules that identified issues in at least 10 of the 24 datasets and provide a full set of 71 rules identified in at least one dataset. Achilles Heel is developed by Observational Health Data Sciences and Informatics (OHDSI) community and is a freely available software that provides a useful starter set of data quality rules. Our analysis represents the first data quality comparison of multiple datasets across several countries in America, Europe and Asia.

  6. d

    Curtailment (SPEN_009) Data Quality Checks - Dataset - Datopian CKAN...

    • demo.dev.datopian.com
    Updated May 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Curtailment (SPEN_009) Data Quality Checks - Dataset - Datopian CKAN instance [Dataset]. https://demo.dev.datopian.com/dataset/sp-energy-networks--spen_data_quality_curtailment
    Explore at:
    Dataset updated
    May 27, 2025
    Description

    This data table provides the detailed data quality assessment scores for the Curtailment dataset. The quality assessment was carried out on the 31st of March. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality. To demonstrate our progress we conduct, at a minimum, bi-annual assessments of our data quality - for datasets that are refreshed more frequently than this, please note that the quality assessment may be based on an earlier version of the dataset. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy Networks. We welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.

  7. f

    TBDQ: A Pragmatic Task-Based Method to Data Quality Assessment and...

    • plos.figshare.com
    jpeg
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Reza Vaziri; Mehran Mohsenzadeh; Jafar Habibi (2023). TBDQ: A Pragmatic Task-Based Method to Data Quality Assessment and Improvement [Dataset]. http://doi.org/10.1371/journal.pone.0154508
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Reza Vaziri; Mehran Mohsenzadeh; Jafar Habibi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Organizations are increasingly accepting data quality (DQ) as a major key to their success. In order to assess and improve DQ, methods have been devised. Many of these methods attempt to raise DQ by directly manipulating low quality data. Such methods operate reactively and are suitable for organizations with highly developed integrated systems. However, there is a lack of a proactive DQ method for businesses with weak IT infrastructure where data quality is largely affected by tasks that are performed by human agents. This study aims to develop and evaluate a new method for structured data, which is simple and practical so that it can easily be applied to real world situations. The new method detects the potentially risky tasks within a process, and adds new improving tasks to counter them. To achieve continuous improvement, an award system is also developed to help with the better selection of the proposed improving tasks. The task-based DQ method (TBDQ) is most appropriate for small and medium organizations, and simplicity in implementation is one of its most prominent features. TBDQ is case studied in an international trade company. The case study shows that TBDQ is effective in selecting optimal activities for DQ improvement in terms of cost and improvement.

  8. Z

    Linked Data Quality Assessment for Datasets on the LOD Cloud

    • data.niaid.nih.gov
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lange, Christoph (2020). Linked Data Quality Assessment for Datasets on the LOD Cloud [Dataset]. https://data.niaid.nih.gov/resources?id=ZENODO_633197
    Explore at:
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Debattista, Jeremy
    Lange, Christoph
    Auer, Sören
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    For more up to date quality metadata, please visit https://w3id.org/lodquator

    This dataset is a collection of TRiG files with quality metadata for different datasets on the LOD cloud. Each dataset was assessed for

    The length of URIs

    Usage of RDF primitives

    Re-use of existing terms

    Usage of undefined terms

    Usage of blank nodes

    Indication for different serialisation formats

    Usage of multiple languages

    This data dump is part of the empirical study conducted for the paper "Are LOD Cloud Datasets Well Represented? A Data Representation Quality Survey."

    For more information visit http://jerdeb.github.io/lodqa

  9. d

    Fish and selected physical and chemical water-quality data for the U.S....

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Fish and selected physical and chemical water-quality data for the U.S. Geological Survey Midwest Stream Quality Assessment [Dataset]. https://catalog.data.gov/dataset/fish-and-selected-physical-and-chemical-water-quality-data-for-the-u-s-geological-survey-m
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    In 2013, the first of several Regional Stream Quality Assessments (RSQA) was done in the Midwest United States. The Midwest Stream Quality Assessment (MSQA) was a collaborative study by the U.S. Geological Survey National Water Quality Assessment and the U.S. Environmental Protection Agency National Rivers and Streams Assessment. One of the objectives of the RSQA, and thus the MSQA, is to characterize relations between stream ecology and water-quality stressors to determine the relative effects of these stressors on aquatic biota in streams. Data required to meet this objective included fish species and abundance data and physical and chemical water-quality characteristics of the ecological reaches of the sites that were sampled. This dataset comprises 135 fish species, 39,920 fish, 10 selected water-quality stressor metrics, and six selected fish community stressor response variables for 98 sites sampled for the MSQA.

  10. a

    Data Quality Assessment Areas (USACE IENC)

    • water-amerigeoss.opendata.arcgis.com
    • azgeo-data-hub-agic.hub.arcgis.com
    • +5more
    Updated Feb 21, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPlatform ArcGIS Online (2018). Data Quality Assessment Areas (USACE IENC) [Dataset]. https://water-amerigeoss.opendata.arcgis.com/datasets/geoplatform::data-quality-assessment-areas-usace-ienc/explore?showTable=true
    Explore at:
    Dataset updated
    Feb 21, 2018
    Dataset authored and provided by
    GeoPlatform ArcGIS Online
    Area covered
    Description

    The USACE IENCs coverage area consists of 7,260 miles across 21 rivers primarily located in the Central United States. IENCs apply to inland waterways that are maintained for navigation by USACE for shallow-draft vessels (e.g., maintained at a depth of 9-14 feet, dependent upon the waterway project authorization). Generally, IENCs are produced for those commercially navigable waterways which the National Oceanic and Atmospheric Administration (NOAA) does not produce Electronic Navigational Charts (ENCs). However, Special Purpose IENCs may be produced in agreement with NOAA. IENC POC: IENC_POC@usace.army.mil

  11. d

    Historic Faults (SPEN_019) Data Quality Checks - Dataset - Datopian CKAN...

    • demo.dev.datopian.com
    Updated May 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Historic Faults (SPEN_019) Data Quality Checks - Dataset - Datopian CKAN instance [Dataset]. https://demo.dev.datopian.com/dataset/sp-energy-networks--spen_data_quality_historic_faults
    Explore at:
    Dataset updated
    May 27, 2025
    Description

    This data table provides the detailed data quality assessment scores for the Historic Faults dataset. The quality assessment was carried out on the 31st March. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality. To demonstrate our progress we conduct, at a minimum, bi-annual assessments of our data quality - for datasets that are refreshed more frequently than this, please note that the quality assessment may be based on an earlier version of the dataset. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy Networks. We welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.

  12. d

    Data Quality Assessment Areas (USACE IENC)

    • datasets.ai
    • catalog.data.gov
    Updated Sep 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Homeland Security (2024). Data Quality Assessment Areas (USACE IENC) [Dataset]. https://datasets.ai/datasets/data-quality-assessment-areas-usace-ienc
    Explore at:
    Dataset updated
    Sep 9, 2024
    Dataset authored and provided by
    Department of Homeland Security
    Description

    Homeland Infrastructure Foundation-Level Data (HIFLD) geospatial data sets containing information on Data Quality Assessment Areas (USACE IENC).

  13. Canada’s 2018-2020 National Action Plan on Open Government – Federal...

    • open.canada.ca
    pdf
    Updated Nov 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada (2024). Canada’s 2018-2020 National Action Plan on Open Government – Federal Geospatial Platform Data Quality Assessment: Results for 2018-2019 [Dataset]. https://open.canada.ca/data/en/dataset/316f1af5-f931-4006-a17e-efee8211cdcc
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Nov 20, 2024
    Dataset provided by
    Ministry of Natural Resources of Canadahttps://www.nrcan.gc.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Jan 1, 2018 - Jun 24, 2020
    Area covered
    Canada
    Description

    Under the Open Government Action Plan, and related National Action Plan, the FGP is required to report on its commitments related to: supporting a user-friendly open government platform; improving the quality of open data available on open.canada.ca; and reviewing additional geospatial datasets to assess their quality. This report summarizes the FGP’s action on meeting these commitments.

  14. U

    Malaria Routine Data Quality Assessment (MRDQA) tool results, Cote d'Ivoire

    • dataverse-staging.rdmc.unc.edu
    tsv
    Updated May 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UNC Dataverse (2023). Malaria Routine Data Quality Assessment (MRDQA) tool results, Cote d'Ivoire [Dataset]. http://doi.org/10.15139/S3/JQ8WH4
    Explore at:
    tsv(22617), tsv(39879), tsv(38864), tsv(41451)Available download formats
    Dataset updated
    May 22, 2023
    Dataset provided by
    UNC Dataverse
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Côte d'Ivoire
    Description

    Data collected using the Malaria Routine Data Quality Assessment (MRDQA) Tool in Cote d'Ivoire, over 3 time periods from March 2021 to November 2022.

  15. Data from: Adapting the Harmonized Data Quality Framework for Ontology...

    • zenodo.org
    • data.niaid.nih.gov
    bin, mp4, pdf, txt
    Updated Jul 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tiffany J Callahan; Tiffany J Callahan; William A Baumgartner Jr.; William A Baumgartner Jr.; Nicolas A Matentzoglu; Nicolas A Matentzoglu; Nicole A Vasilevsky; Nicole A Vasilevsky; Lawrence E Hunter; Lawrence E Hunter; Michael G Kahn; Michael G Kahn (2024). Adapting the Harmonized Data Quality Framework for Ontology Quality Assessment [Dataset]. http://doi.org/10.5281/zenodo.6941289
    Explore at:
    mp4, bin, pdf, txtAvailable download formats
    Dataset updated
    Jul 16, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Tiffany J Callahan; Tiffany J Callahan; William A Baumgartner Jr.; William A Baumgartner Jr.; Nicolas A Matentzoglu; Nicolas A Matentzoglu; Nicole A Vasilevsky; Nicole A Vasilevsky; Lawrence E Hunter; Lawrence E Hunter; Michael G Kahn; Michael G Kahn
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Ontologies play an important role in the representation, standardization, and integration of biomedical data, but are known to have data quality (DQ) issues. We aimed to understand if the Harmonized Data Quality Framework (HDQF), developed to standardize electronic health record DQ assessment strategies, could be used to improve ontology quality assessment. A novel set of 14 ontology checks was developed. These DQ checks were aligned to the HDQF and examined by HDQF developers. The ontology checks were evaluated using 11 Open Biomedical Ontology Foundry ontologies. 85.7% of the ontology checks were successfully aligned to at least 1 HDQF category. Accommodating the unmapped DQ checks (n=2), required modifying an original HDQF category and adding a new Data Dependency category. While all of the ontology checks were mapped to an HDQF category, not all HDQF categories were represented by an ontology check presenting opportunities to strategically develop new ontology checks. The HDQF is a valuable resource and this work demonstrates its ability to categorize ontology quality assessment strategies.

  16. DaQAR

    • zenodo.org
    • data.niaid.nih.gov
    bin
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    André Langer; André Langer (2020). DaQAR [Dataset]. http://doi.org/10.5281/zenodo.1038628
    Explore at:
    binAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    André Langer; André Langer
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A vocabulary for the specification and exchange of Data Quality Assessment Requirements

    built on top of already well-established vocabularies such as the Data Quality Vocabulary (DQV)

    Further description at http://purl.org/net/vsr/daqar

    Contact:

    André Langer
    Professorship for Distruted and Self-Organizing Systems
    Chemnitz University of Technology
    Germany
    [andre.langer@informatik.tu-chemnitz.de]

  17. Additional file 4 of A data driven learning approach for the assessment of...

    • springernature.figshare.com
    txt
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Erik Tute; Nagarajan Ganapathy; Antje Wulff (2023). Additional file 4 of A data driven learning approach for the assessment of data quality [Dataset]. http://doi.org/10.6084/m9.figshare.16916712.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Erik Tute; Nagarajan Ganapathy; Antje Wulff
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Additional file 4. Example MM to check missing BP.

  18. Additional file 3 of A data driven learning approach for the assessment of...

    • springernature.figshare.com
    txt
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Erik Tute; Nagarajan Ganapathy; Antje Wulff (2023). Additional file 3 of A data driven learning approach for the assessment of data quality [Dataset]. http://doi.org/10.6084/m9.figshare.16916709.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Erik Tute; Nagarajan Ganapathy; Antje Wulff
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Additional file 3. Machine learning workflow.

  19. g

    Data Quality Assessment Areas (USACE IENC) | gimi9.com

    • gimi9.com
    Updated Oct 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Data Quality Assessment Areas (USACE IENC) | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_data-quality-assessment-areas-usace-ienc/
    Explore at:
    Dataset updated
    Oct 24, 2022
    Description

    🇺🇸 미국

  20. d

    Select Groundwater-Quality and Quality-Control Data from the National...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Select Groundwater-Quality and Quality-Control Data from the National Water-Quality Assessment Project 2019 to Present (ver. 3.0, October 2023) [Dataset]. https://catalog.data.gov/dataset/select-groundwater-quality-and-quality-control-data-from-the-national-water-quality-assess
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    Groundwater samples were collected and analyzed from 782 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program and the water-quality data and quality-control data are included in this data release. The samples were collected from three types of well networks: principal aquifer study networks, which are used to assess the quality of groundwater used for public water supply; land-use study networks, which are used to assess land-use effects on shallow groundwater quality, and major aquifer study networks, which are used to assess the quality of groundwater used for domestic supply. Groundwater samples were analyzed for a large number of water-quality indicators and constituents, including nutrients, major ions, trace elements, volatile organic compounds (VOCs), pesticides, radionuclides, and microbial indicators. Data from samples collected between 2012 and 2019 are associated with networks described in a collection of data series reports and associated data releases (Arnold and others, 2016a,b, 2017a,b, 2018a,b, 2020a,b; Kingsbury and others, 2020 and 2021). This data release includes data from networks sampled in 2019 through 2022. For some networks, certain constituent group data were not completely reviewed and released by the analyzing laboratory for all network sites in time for publication of this data release. For networks with incomplete data, no data were published for the incomplete constituent group(s). Datasets excluded from this data release because of incomplete results will be included in the earliest data release published after the dataset is complete. NOTE: While previous versions are available from the author, all the records in previous versions can be found in version 3.0. First posted - December 12, 2021 (available from author) Revised - January 27, 2023 (version 2.0: available from author) Revised - November 2, 2023 (version 3.0) The compressed file (NWQP_GW_QW_DataRelease_v3.zip) contains 24 files: 23 files of groundwater-quality, quality-control data, and general information in ASCII text tab-delimited format, and one corresponding metadata file in xml format that includes descriptions of all the tables and attributes. A shapefile containing study areas for each of the sampled groundwater networks also is provided as part of this data release and is described in the metadata (Network_Boundaries_v3.zip). The files are as follows: Description_of_Data_Field_v3.txt: Information for all constituents and ancillary information found in Tables 3 through 21. Network_Reference_List_v3.txt: References used for the description of the networks sampled by the USGS NAWQA Project. Table_1_site_list_v3.txt: Information about wells that have environmental data. Table_2_parameters_v3.txt: Constituent primary uses and sources; laboratory analytical schedules and sampling period; USGS parameter codes (pcodes); comparison thresholds; and reporting levels. Table_3_qw_indicators_v3.txt: Water-quality indicators in groundwater samples collected by the USGS NAWQA Project. Table_4_nutrients_v3.txt: Nutrients and dissolved organic carbon in groundwater samples collected by the USGS NAWQA Project. Table_5_major_ions_v3.txt: Major and minor ions in groundwater samples collected by the USGS NAWQA Project. Table_6_trace_elements_v3.txt: Trace elements in groundwater samples collected by the USGS NAWQA Project. Table_7_vocs_v3.txt: Volatile organic compounds (VOCs) in groundwater samples collected by the USGS NAWQA Project. Table_8_pesticides_v3.txt: Pesticides in groundwater samples collected by the USGS NAWQA Project. Table_9_radchem_v3.txt: Radionuclides in groundwater samples collected by the USGS NAWQA Project. Table_10_micro_v3.txt: Microbiological indicators in groundwater samples collected by the USGS NAWQA Project. Table_11_qw_ind_QC_v3.txt: Water-quality indicators in groundwater replicate samples collected by the USGS NAWQA Project. Table_12_nuts_QC_v3.txt: Nutrients and dissolved organic carbon in groundwater blank and replicate samples collected by the USGS NAWQA Project. Table_13_majors_QC_v3.txt: Major and minor ions in groundwater blank and replicate samples collected by the USGS NAWQA Project. Table_14_trace_element_QC_v3.txt: Trace elements in groundwater blank and replicate samples collected by the USGS NAWQA Project. Table_15_vocs_QC_v3.txt: Volatile organic compounds (VOCs) in groundwater blank, replicate, and spike samples collected by the USGS NAWQA Project. Table_16_pesticides_QC_v3.txt: Pesticide compounds in groundwater blank, replicate, and spike samples collected by the USGS NAWQA Project. Table_17_radchem_QC_v3.txt: Radionuclides in groundwater replicate samples collected by the USGS NAWQA Project. Table_18_micro_QC_v3.txt: Microbiological indicators in groundwater blank, replicate, and spike samples collected by the USGS NAWQA Project. Table_19_TE_SpikeStats_v3.txt: Statistics for trace elements in groundwater spike samples collected by the USGS NAWQA Project. Table_20_VOCLabSpikeStats_v3.txt: Statistics for volatile organic compounds (VOCs) in groundwater spike samples collected by the USGS NAWQA Project. Table_21_PestFieldSpikeStats_v3.txt: Statistics for pesticide compounds in groundwater spike samples collected by the USGS NAWQA Project. References Arnold, T.L., Bexfield, L.M., Musgrove, MaryLynn, Lindsey, B.D., Stackelberg, P.E., Barlow, J.R., DeSimone, L.A., Kulongoski, J.T., Kingsbury, J.A., Ayotte, J.D., Fleming, B.J., and Belitz, Kenneth, 2017a, Groundwater-quality data from the National Water-Quality Assessment Project, January through December 2014 and select quality-control data from May 2012 through December 2014: U.S. Geological Survey Data Series 1063, 83 p., https://doi.org/10.3133/ds1063. Arnold, T.L., Bexfield, L.M., Musgrove, MaryLynn, Lindsey, B.D., Stackelberg, P.E., Barlow, J.R., DeSimone, L.A., Kulongoski, J.T., Kingsbury, J.A., Ayotte, J.D., Fleming, B.J., and Belitz, Kenneth, 2017b, Datasets from Groundwater quality data from the National Water Quality Assessment Project, January through December 2014 and select quality-control data from May 2012 through December 2014: U.S. Geological Survey data release, https://doi.org/10.5066/F7W0942N. Arnold, T.L., Bexfield, L.M., Musgrove, M., Erickson, M.L., Kingsbury, J.A., Degnan, J.R., Tesoriero, A.J., Kulongoski, J.T., and Belitz, K., 2020a, Groundwater-quality and select quality-control data from the National Water-Quality Assessment Project, January through December 2016, and previously unpublished data from 2013 to 2015: U.S. Geological Survey Data Series 1124, 135 p., https://doi.org/10.3133/ds1124. Arnold, T.L., Bexfield, L.M., Musgrove, M., Lindsey, B.D., Stackelberg, P.E., Lindsey, B.D., Barlow, J.R., Kulongoski, J.T., and Belitz, K., 2018b, Datasets from Groundwater-Quality and Select Quality-Control Data from the National Water-Quality Assessment Project, January through December 2015 and Previously Unpublished Data from 2013-2014, U.S. Geological Survey data release, https://doi.org/10.5066/F7XK8DHK. Arnold, T.L., Bexfield, L.M., Musgrove, M., Stackelberg, P.E., Lindsey, B.D., Kingsbury, J.A., Kulongoski, J.T., and Belitz, K., 2018a, Groundwater-quality and select quality-control data from the National Water-Quality Assessment Project, January through December 2015, and previously unpublished data from 2013 to 2014: U.S. Geological Survey Data Series 1087, 68 p., https://doi.org/10.3133/ds1087. Arnold, T.L., DeSimone, L.A., Bexfield, L.M., Lindsey, B.D., Barlow, J.R., Kulongoski, J.T., Musgrove, MaryLynn, Kingsbury, J.A., and Belitz, Kenneth, 2016a, Groundwater quality data from the National Water-Quality Assessment Project, May 2012 through December 2013 (ver. 1.1, November 2016): U.S. Geological Survey Data Series 997, 56 p., https://doi.org/10.3133/ds997. Arnold, T.L., DeSimone, L.A., Bexfield, L.M., Lindsey, B.D., Barlow, J.R., Kulongoski, J.T., Musgrove, MaryLynn, Kingsbury, J.A., and Belitz, Kenneth, 2016b, Groundwater quality data from the National Water Quality Assessment Project, May 2012 through December 2014 and select quality-control data from May 2012 through December 2013: U.S. Geological Survey data release, https://doi.org/10.5066/F7HQ3X18. Arnold, T.L., Sharpe, J.B., Bexfield, L.M., Musgrove, M., Erickson, M.L., Kingsbury, J.A., Degnan, J.R., Tesoriero, A.J., Kulongoski, J.T., and Belitz, K., 2020b, Datasets from groundwater-quality and select quality-control data from the National Water-Quality Assessment Project, January through December 2016, and previously unpublished data from 2013 to 2015: U.S. Geological Survey data release, https://doi.org/10.5066/P9W4RR74. Kingsbury, J.A., Sharpe, J.B., Bexfield, L.M., Arnold, T.L., Musgrove, M., Erickson, M.L., Degnan, J.R., Kulongoski, J.T., Lindsey, B.D., and Belitz, K., 2020, Datasets from Groundwater-Quality and Select Quality-Control Data from the National Water-Quality Assessment Project, January 2017 through December 2019 (ver. 1.1, January 2021): U.S. Geological Survey data release, https://doi.org/10.5066/P9XATXV1. Kingsbury, J.A., Bexfield, L.M., Arnold, T.L., Musgrove, M., Erickson, M.L., Degnan, J.R., Tesoriero, A.J., Lindsey B.D., and Belitz, K., 2021, Groundwater-Quality and Select Quality-Control Data from the National Water-Quality Assessment Project, January 2017 through December 2019: U.S. Geological Survey Data Series 1136, 97 p., https://doi.org/10.3133/ds1136.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Deborah Gonet (2024). Data - Quality assessment table [Dataset]. http://doi.org/10.6084/m9.figshare.27876987.v1
Organization logo

Data - Quality assessment table

Explore at:
90 scholarly articles cite this dataset (View in Google Scholar)
xlsxAvailable download formats
Dataset updated
Nov 21, 2024
Dataset provided by
Figsharehttp://figshare.com/
Authors
Deborah Gonet
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Data - Quality assessment table

Search
Clear search
Close search
Google apps
Main menu