3 datasets found
  1. a

    Connecticut 3D Lidar Viewer

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • gemelo-digital-en-arcgis-gemelodigital.hub.arcgis.com
    • +1more
    Updated Jan 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UConn Center for Land use Education and Research (2020). Connecticut 3D Lidar Viewer [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/788d121c4a1f4980b529f914c8df19f4
    Explore at:
    Dataset updated
    Jan 8, 2020
    Dataset authored and provided by
    UConn Center for Land use Education and Research
    Description

    Statewide 2016 Lidar points colorized with 2018 NAIP imagery as a scene created by Esri using ArcGIS Pro for the entire State of Connecticut. This service provides the colorized Lidar point in interactive 3D for visualization, interaction of the ability to make measurements without downloading.Lidar is referenced at https://cteco.uconn.edu/data/lidar/ and can be downloaded at https://cteco.uconn.edu/data/download/flight2016/. Metadata: https://cteco.uconn.edu/data/flight2016/info.htm#metadata. The Connecticut 2016 Lidar was captured between March 11, 2016 and April 16, 2016. Is covers 5,240 sq miles and is divided into 23, 381 tiles. It was acquired by the Captiol Region Council of Governments with funding from multiple state agencies. It was flown and processed by Sanborn. The delivery included classified point clouds and 1 meter QL2 DEMs. The 2016 Lidar is published on the Connecticut Environmental Conditions Online (CT ECO) website. CT ECO is the collaborative work of the Connecticut Department of Energy and Environmental Protection (DEEP) and the University of Connecticut Center for Land Use Education and Research (CLEAR) to share environmental and natural resource information with the general public. CT ECO's mission is to encourage, support, and promote informed land use and development decisions in Connecticut by providing local, state and federal agencies, and the public with convenient access to the most up-to-date and complete natural resource information available statewide.Process used:Extract Building Footprints from Lidar1. Prepare Lidar - Download 2016 Lidar from CT ECO- Create LAS Dataset2. Extract Building Footprints from LidarUse the LAS Dataset in the Classify Las Building Tool in ArcGIS Pro 2.4.Colorize LidarColorizing the Lidar points means that each point in the point cloud is given a color based on the imagery color value at that exact location.1. Prepare Imagery- Acquire 2018 NAIP tif tiles from UConn (originally from USDA NRCS).- Create mosaic dataset of the NAIP imagery.2. Prepare and Analyze Lidar Points- Change the coordinate system of each of the lidar tiles to the Projected Coordinate System CT NAD 83 (2011) Feet (EPSG 6434). This is because the downloaded tiles come in to ArcGIS as a Custom Projection which cannot be published as a Point Cloud Scene Layer Package.- Convert Lidar to zlas format and rearrange. - Create LAS Datasets of the lidar tiles.- Colorize Lidar using the Colorize LAS tool in ArcGIS Pro. - Create a new LAS dataset with a division of Eastern half and Western half due to size limitation of 500GB per scene layer package. - Create scene layer packages (.slpk) using Create Cloud Point Scene Layer Package. - Load package to ArcGIS Online using Share Package. - Publish on ArcGIS.com and delete the scene layer package to save storage cost.Additional layers added:Visit https://cteco.uconn.edu/projects/lidar3D/layers.htm for a complete list and links. 3D Buildings and Trees extracted by Esri from the lidarShaded Relief from CTECOImpervious Surface 2012 from CT ECONAIP Imagery 2018 from CTECOContours (2016) from CTECOLidar 2016 Download Link derived from https://www.cteco.uconn.edu/data/download/flight2016/index.htm

  2. o

    OregonAddress

    • geohub.oregon.gov
    • data.oregon.gov
    • +1more
    Updated Sep 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Oregon (2023). OregonAddress [Dataset]. https://geohub.oregon.gov/content/d52415395ceb4b0faea09b59cec5277f
    Explore at:
    Dataset updated
    Sep 12, 2023
    Dataset authored and provided by
    State of Oregon
    Description

    The new Oregon Address Geocoder is used to find the location coordinates for street addresses in the State of Oregon. This service is:Free PublicUpdated regularlyOutputs location coordinates in Oregon Lambert, feet (SRID 2992)Uses over 2 million address points and 288,000 streets for referenceIt is an ArcGIS multirole locator with two roles:Point Address - Generally more accurate results from rooftop location points. Includes a Subaddress if a unit number is located. Street Address - Less accurate results from an estimated distance along a street centerline address range if a Point Address was not found.Instructions for using the Geocoder via ArcGIS Pro, ArcGIS Online, and REST Services are below:ArcGIS ProWeb ServicesArcGIS Online

  3. a

    Climate Lesson 1.1: Michigan Weather Stations (Averages 1991-2020) and...

    • learn-egle.hub.arcgis.com
    Updated Nov 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michigan Dept. of Environment, Great Lakes, and Energy (2023). Climate Lesson 1.1: Michigan Weather Stations (Averages 1991-2020) and Incorporated Areas [Dataset]. https://learn-egle.hub.arcgis.com/items/0b1572d9096a433989a9ad4e83767357
    Explore at:
    Dataset updated
    Nov 28, 2023
    Dataset authored and provided by
    Michigan Dept. of Environment, Great Lakes, and Energy
    Area covered
    Description

    This data is utilized in the Lesson 1.1 What is Climate activity on the MI EnviroLearning Hub Climate Change page.Station data accessed was accessed from NOAA. Data was imported into ArcGIS Pro where Coordinate Table to Point was used to spatially enable the originating CSV. This feature service, which incorporates Census Designated Places from the U.S. Census Bureau’s 2020 Census Demographic and Housing Characteristics, was used to spatially join weather stations to the nearest incorporated area throughout Michigan.Email Egle-Maps@Michigan.gov for questions.Former name: MichiganStationswAvgs19912020_WithinIncoproatedArea_UpdatedName Display Name Field Name Description

    STATION_ID MichiganStationswAvgs19912020_W Station ID where weather data is collected

    STATION MichiganStationswAvgs19912020_1 Station name where weather data is collected

    ELEVATION MichiganStationswAvgs19912020_6 Elevation above mean sea level-meters

    MLY-PRCP-NORMAL MichiganStationswAvgs19912020_8 Long-term averages of monthly precipitation total-inches

    MLY-TAVG-NORMAL MichiganStationswAvgs19912020_9 Long-term averages of monthly average temperature -F

    OID MichiganStationswAvgs1991202_10 Object ID for weather dataset

    Join_Count MichiganStationswAvgs1991202_11 Spatial join count of weather station data to specific weather station

    TARGET_FID MichiganStationswAvgs1991202_12 Spatial Join ID

    Current place ANSI code MichiganStationswAvgs1991202_13 Census codes for identification of geographic entities (used for join)

    Geographic Identifier MichiganStationswAvgs1991202_14 Geographic identifier (used for join)

    Current class code MichiganStationswAvgs1991202_15 Class (CLASSFP) code defines the current class of a geographic entity

    Current functional status MichiganStationswAvgs1991202_16 Status of weather station

    Area of Land (Square Meters) MichiganStationswAvgs1991202_17 Area of land in square meters

    Area of Water (Square Meters) MichiganStationswAvgs1991202_18 Area of water in square meters

    Current latitude of the internal point MichiganStationswAvgs1991202_19 Latitude

    Current longitude of the internal point MichiganStationswAvgs1991202_20 Longitude

    Name MichiganStationswAvgs1991202_21 Location name of weather station

    Current consolidated city GNIS code MichiganStationswAvgs1991202_22 Geographic Names Information System for an incorporated area

    OBJECTID MichiganStationswAvgs1991202_23 Object ID for point dataset

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
UConn Center for Land use Education and Research (2020). Connecticut 3D Lidar Viewer [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/788d121c4a1f4980b529f914c8df19f4

Connecticut 3D Lidar Viewer

Explore at:
Dataset updated
Jan 8, 2020
Dataset authored and provided by
UConn Center for Land use Education and Research
Description

Statewide 2016 Lidar points colorized with 2018 NAIP imagery as a scene created by Esri using ArcGIS Pro for the entire State of Connecticut. This service provides the colorized Lidar point in interactive 3D for visualization, interaction of the ability to make measurements without downloading.Lidar is referenced at https://cteco.uconn.edu/data/lidar/ and can be downloaded at https://cteco.uconn.edu/data/download/flight2016/. Metadata: https://cteco.uconn.edu/data/flight2016/info.htm#metadata. The Connecticut 2016 Lidar was captured between March 11, 2016 and April 16, 2016. Is covers 5,240 sq miles and is divided into 23, 381 tiles. It was acquired by the Captiol Region Council of Governments with funding from multiple state agencies. It was flown and processed by Sanborn. The delivery included classified point clouds and 1 meter QL2 DEMs. The 2016 Lidar is published on the Connecticut Environmental Conditions Online (CT ECO) website. CT ECO is the collaborative work of the Connecticut Department of Energy and Environmental Protection (DEEP) and the University of Connecticut Center for Land Use Education and Research (CLEAR) to share environmental and natural resource information with the general public. CT ECO's mission is to encourage, support, and promote informed land use and development decisions in Connecticut by providing local, state and federal agencies, and the public with convenient access to the most up-to-date and complete natural resource information available statewide.Process used:Extract Building Footprints from Lidar1. Prepare Lidar - Download 2016 Lidar from CT ECO- Create LAS Dataset2. Extract Building Footprints from LidarUse the LAS Dataset in the Classify Las Building Tool in ArcGIS Pro 2.4.Colorize LidarColorizing the Lidar points means that each point in the point cloud is given a color based on the imagery color value at that exact location.1. Prepare Imagery- Acquire 2018 NAIP tif tiles from UConn (originally from USDA NRCS).- Create mosaic dataset of the NAIP imagery.2. Prepare and Analyze Lidar Points- Change the coordinate system of each of the lidar tiles to the Projected Coordinate System CT NAD 83 (2011) Feet (EPSG 6434). This is because the downloaded tiles come in to ArcGIS as a Custom Projection which cannot be published as a Point Cloud Scene Layer Package.- Convert Lidar to zlas format and rearrange. - Create LAS Datasets of the lidar tiles.- Colorize Lidar using the Colorize LAS tool in ArcGIS Pro. - Create a new LAS dataset with a division of Eastern half and Western half due to size limitation of 500GB per scene layer package. - Create scene layer packages (.slpk) using Create Cloud Point Scene Layer Package. - Load package to ArcGIS Online using Share Package. - Publish on ArcGIS.com and delete the scene layer package to save storage cost.Additional layers added:Visit https://cteco.uconn.edu/projects/lidar3D/layers.htm for a complete list and links. 3D Buildings and Trees extracted by Esri from the lidarShaded Relief from CTECOImpervious Surface 2012 from CT ECONAIP Imagery 2018 from CTECOContours (2016) from CTECOLidar 2016 Download Link derived from https://www.cteco.uconn.edu/data/download/flight2016/index.htm

Search
Clear search
Close search
Google apps
Main menu