100+ datasets found
  1. ASX 200: Poised for a Record-Breaking Ascent? (Forecast)

    • kappasignal.com
    Updated Apr 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). ASX 200: Poised for a Record-Breaking Ascent? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/asx-200-poised-for-record-breaking.html
    Explore at:
    Dataset updated
    Apr 18, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    ASX 200: Poised for a Record-Breaking Ascent?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  2. T

    Advanced Semiconductor Engineering | ASX - Stock Price | Live Quote |...

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Dec 4, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2015). Advanced Semiconductor Engineering | ASX - Stock Price | Live Quote | Historical Chart [Dataset]. https://tradingeconomics.com/asx:us
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Dec 4, 2015
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Jul 14, 2025
    Area covered
    United States
    Description

    Advanced Semiconductor Engineering stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.

  3. k

    S&P/ASX 200 Index Forecast Data

    • kappasignal.com
    csv, json
    Updated Apr 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AC Investment Research (2024). S&P/ASX 200 Index Forecast Data [Dataset]. https://www.kappasignal.com/2024/04/asx-200-poised-for-record-breaking.html
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Apr 18, 2024
    Dataset authored and provided by
    AC Investment Research
    License

    https://www.ademcetinkaya.com/p/legal-disclaimer.htmlhttps://www.ademcetinkaya.com/p/legal-disclaimer.html

    Description

    Predictions hold that the S&P/ASX 200 index may fluctuate within a wide range. Bulls foresee a surge driven by positive economic data, strong corporate earnings, and central bank easing. However, bears anticipate downward pressure due to geopolitical uncertainties, inflation concerns, and potential earnings revisions. Risks include economic slowdown, interest rate hikes, and a resurgence of COVID-19 cases, which could push the index lower.

  4. Monthly S&P/ASX 200 performance Australia 2010-2025

    • statista.com
    Updated Feb 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Monthly S&P/ASX 200 performance Australia 2010-2025 [Dataset]. https://www.statista.com/statistics/1255592/monthly-performance-sandp-asx-200/
    Explore at:
    Dataset updated
    Feb 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 2010 - Jan 2025
    Area covered
    Australia
    Description

    The S&P/ASX 200 index, the most prominent index of stocks listed on the Australian Securities Exchange (ASX), lost over one fifth of its value between the end of February and the end of March 2020, owing to the economic impact of the global coronavirus (COVID-19) pandemic. It has since recovered, and surpassed its pre-corona level in April 2021. Despite fluctuations, it reached its highest value in January 2025 at 8532.3 during this period.The S&P/ASX 200 index is considered the benchmark index for the Australian share market and contains the 200 largest companies listed on the ASX.

  5. Average daily equity trading value in Australia 2017-2024, by market

    • statista.com
    Updated Jun 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Average daily equity trading value in Australia 2017-2024, by market [Dataset]. https://www.statista.com/statistics/1275249/equity-trading-value-market-australia/
    Explore at:
    Dataset updated
    Jun 26, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Australia
    Description

    The average value of daily trades on Australian equity markets jumped sharply in the first quarter of 2020, increasing from around 6.5 billion Australian dollars in the previous quarter to over 9.4 billion Australian dollars. While this spike was likely due to the economic impact of the coronavirus (COVID-19) pandemic, values did not return back to their trend value for the previous two years. While the quarterly average between Q1 2017 and Q4 2019 was around 6.4 billion U.S. dollars, the average between the first quarter of 2020 and the first quarter of 2024 was over eight billion Australian dollars. In general, between 80 and 85 percent of these the total values traded was on the Australian Securities Exchange (ASX), with the remainder being on the Chi-X Australia platform, which is operated by the Chicago Board Options Exchange (CBOE).

  6. ASX 200 to See Modest Gains Amid Global Uncertainty, Experts Say. (Forecast)...

    • kappasignal.com
    Updated Mar 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2025). ASX 200 to See Modest Gains Amid Global Uncertainty, Experts Say. (Forecast) [Dataset]. https://www.kappasignal.com/2025/03/asx-200-to-see-modest-gains-amid-global.html
    Explore at:
    Dataset updated
    Mar 5, 2025
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    ASX 200 to See Modest Gains Amid Global Uncertainty, Experts Say.

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  7. h

    daily-historical-stock-price-data-for-asx-limited-19982025

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Khaled Ben Ali, daily-historical-stock-price-data-for-asx-limited-19982025 [Dataset]. https://huggingface.co/datasets/khaledxbenali/daily-historical-stock-price-data-for-asx-limited-19982025
    Explore at:
    Authors
    Khaled Ben Ali
    Description

    📈 Daily Historical Stock Price Data for ASX Limited (1998–2025)

    A clean, ready-to-use dataset containing daily stock prices for ASX Limited from 1998-10-30 to 2025-05-28. This dataset is ideal for use in financial analysis, algorithmic trading, machine learning, and academic research.

      🗂️ Dataset Overview
    

    Company: ASX Limited Ticker Symbol: ASX.AX Date Range: 1998-10-30 to 2025-05-28 Frequency: Daily Total Records: 6768 rows (one per trading day)

      🔢 Columns… See the full description on the dataset page: https://huggingface.co/datasets/khaledxbenali/daily-historical-stock-price-data-for-asx-limited-19982025.
    
  8. T

    Australia Stock Market Index Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Australia Stock Market Index Data [Dataset]. https://tradingeconomics.com/australia/stock-market
    Explore at:
    json, xml, csv, excelAvailable download formats
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    May 29, 1992 - Jul 11, 2025
    Area covered
    Australia
    Description

    Australia's main stock market index, the ASX200, fell to 8580 points on July 11, 2025, losing 0.11% from the previous session. Over the past month, the index has climbed 0.18% and is up 7.80% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Australia. Australia Stock Market Index - values, historical data, forecasts and news - updated on July of 2025.

  9. Australian Securities Exchange (ASX)

    • lseg.com
    Updated Feb 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LSEG (2025). Australian Securities Exchange (ASX) [Dataset]. https://www.lseg.com/en/data-analytics/financial-data/pricing-and-market-data/equities-market-data/australian-securities-exchange
    Explore at:
    csv,html,json,pcap,pdf,python,sql,string format,text,user interface,xmlAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset provided by
    London Stock Exchange Grouphttp://www.londonstockexchangegroup.com/
    Authors
    LSEG
    License

    https://www.lseg.com/en/policies/website-disclaimerhttps://www.lseg.com/en/policies/website-disclaimer

    Description

    Australian Securities Exchange is Australia's primary securities exchange and is one of the largest listed exchange groups by market capitalization.

  10. T

    Australian Securities Exchange | ASX - PE Price to Earnings

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2024). Australian Securities Exchange | ASX - PE Price to Earnings [Dataset]. https://tradingeconomics.com/asx:au:pe
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset updated
    Jun 15, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Jul 14, 2025
    Area covered
    Australia
    Description

    Australian Securities Exchange reported 26.58 in PE Price to Earnings for its fiscal semester ending in June of 2024. Data for Australian Securities Exchange | ASX - PE Price to Earnings including historical, tables and charts were last updated by Trading Economics this last July in 2025.

  11. h

    Indices-Daily-Price

    • huggingface.co
    Updated May 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Papers With Backtest (2024). Indices-Daily-Price [Dataset]. https://huggingface.co/datasets/paperswithbacktest/Indices-Daily-Price
    Explore at:
    Dataset updated
    May 29, 2024
    Dataset authored and provided by
    Papers With Backtest
    License

    https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/

    Description

    Dataset Information

    This dataset includes daily price data for various stock indices.

      Instruments Included
    

    ADSMI: United Arab Emirates Stock Market (ADX General) - United Arab Emirates AEX: Netherlands Stock Market (AEX) - Netherlands (NL) AS30: Australian All - Australia (AU) AS51: Australia S&P/ASX 200 Stock Market Index - Australia (AU) AS52: ASX 50 - Australia (AU) ASE: Greece Stock Market (ASE) - Greece (GR) ATX: Austria Stock Market (ATX) - Austria (AT) BEL20:… See the full description on the dataset page: https://huggingface.co/datasets/paperswithbacktest/Indices-Daily-Price.

  12. Will the ASX 200 Index Continue its Ascent? (Forecast)

    • kappasignal.com
    Updated Jul 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Will the ASX 200 Index Continue its Ascent? (Forecast) [Dataset]. https://www.kappasignal.com/2024/07/will-asx-200-index-continue-its-ascent.html
    Explore at:
    Dataset updated
    Jul 20, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Will the ASX 200 Index Continue its Ascent?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  13. Predict the ASX-200

    • kaggle.com
    Updated Aug 25, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    YasAli (2021). Predict the ASX-200 [Dataset]. https://www.kaggle.com/datasets/yasali/predict-the-asx200/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 25, 2021
    Dataset provided by
    Kaggle
    Authors
    YasAli
    Description

    Disclaimer

    All information presented here is for display purpose only, and may not be complete nor accurate. This information does not constitute a financial advice, and should not be used to make any investment decisions or financial transactions. This author rejects any claims for liabilities resulting from the use, misuse, or abuse of this information. Use at your own risk.

    Motivation

    Due to time zone differences between Australia and most of the rest of the world, Australians have the advantage of knowing what happened at markets elsewhere in the world, before the Australian market (ASX) is open in the morning, Sydney time.

    This prior knowledge provides an excellent opportunity for arbitrage. In the hands of a savvy day-trader, or a shrewd long-term investor, this information gives you the advantage of predicting the ASX, and achieve potentially significant financial gains.

    Method

    For the ten years period from 1/7/2010 to 30/6/2020, the daily closing prices for 41 global market indicators are collected from various reliable public-domain sources. We checked the data for error or omissions and normalised all tabulated records in a format that facilitates further analysis and visulaisation.

    Those 41 market indicators are what we consider significant measures of various external factors that may affect the performance of the Australian Stock Market, as represented by the ASX200. Those indicators are:

    • Nine other major stock market indices from the USA, Europe, and Asia.

    • The exchange rate of the $AU against 10 world currencies that are most relevant to Australia's international trade.

    • Official interest rates by the RBA and the US Feds, as indicators of affinity of foreign funds to Australia.

    • Yield rates for governments-issued bonds by 10 countries from Western and Asian economies, as measures of relative availability of credit and cross-border investment. Bonds are grouped into "Short-term" (one year maturity) and "Long-term" (10 to 30 years maturity).

    • Since Australia's economy is mainly an exporter of raw materials, we include prices for commodities that are most traded by Australia, as indicators for potential profitability for various relevant sectors of the ASX.

    We feed relevant data to a machine learning model, which uses this data to extract heuristic parameters that are used to predict the ASX200 on daily basis, before market opens, and validates predictions at market close, with favourable results.

    For more information, please visit the Tableau viz at: https://public.tableau.com/app/profile/yasser.ali.phd/viz/PredictingAustralianStockMarket/Story

  14. Data from: Australian Stock Exchange

    • eulerpool.com
    Updated Jul 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eulerpool (2025). Australian Stock Exchange [Dataset]. https://eulerpool.com/data-analytics/finanzdaten/pricing-and-market-data/australian-stock-exchange
    Explore at:
    Dataset updated
    Jul 1, 2025
    Dataset provided by
    Eulerpool.com
    Authors
    Eulerpool
    Description

    The Australian Securities Exchange (ASX) was established in July 2006 after the Australian Stock Exchange merged with the Sydney Futures Exchange, making it one of the top 20 global exchange groups by market capitalization. ASX facilitates trading in leading stocks, ETFs, derivatives, fixed income, commodities, and energy, commanding over 80% of the market share in the Australian Cash Market, with the S&P/ASX 200 as its main index. We offer comprehensive real-time market information services for all instruments in the ASX Level 1 and Level 2 (full market depth) products, and also provide Level 1 data as a delayed service. You can access this data through various means tailored to your specific needs and workflows, whether for trading via electronic low latency datafeeds, using our desktop services equipped with advanced analytical tools, or through our end-of-day valuation and risk management products.

  15. k

    ASX Stock Forecast Data

    • kappasignal.com
    csv, json
    Updated Apr 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AC Investment Research (2024). ASX Stock Forecast Data [Dataset]. https://www.kappasignal.com/2024/04/ase-techs-strong-growth-how-high-can-it.html
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Apr 23, 2024
    Dataset authored and provided by
    AC Investment Research
    License

    https://www.ademcetinkaya.com/p/legal-disclaimer.htmlhttps://www.ademcetinkaya.com/p/legal-disclaimer.html

    Description

    ASE Technology Holding may face revenue growth challenges due to increased competition in the semiconductor industry. However, its strong market position and focus on advanced packaging solutions could mitigate risks.

  16. Australia Equity Market Index

    • ceicdata.com
    • dr.ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Australia Equity Market Index [Dataset]. https://www.ceicdata.com/en/indicator/australia/equity-market-index
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2024 - Feb 1, 2025
    Area covered
    Australia
    Variables measured
    Securities Exchange Index
    Description

    Key information about Australia S&P/ASX 200

    • Australia S&P/ASX 200 closed at 8,172.4 points in Feb 2025, compared with 8,532.3 points at the previous month end
    • Australia Equity Market Index: Month End: ASX: S&P/ASX 200 data is updated monthly, available from May 1992 to Feb 2025, with an average number of 4,604.3 points
    • The data reached an all-time high of 8,532.3 points in Jan 2025 and a record low of 1,428.8 points in Oct 1992

    The S&P/ASX 200 Index (XJO) is recognised as the investable benchmark for the Australian equity market, it addresses the needs of investment managers to benchmark against a portfolio characterised by sufficient size and liquidity. The S&P/ASX 200 is comprised of the S&P/ASX 100 plus an additional 100 stocks. It forms the basis for the S&P/ASX 200 Index Future and Options and the SPDR S&P/ASX 200 Exchange Traded Fund (ETF)

  17. ASE Tech's Strong Growth: How High Can It Go? (ASX) (Forecast)

    • kappasignal.com
    Updated Apr 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). ASE Tech's Strong Growth: How High Can It Go? (ASX) (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/ase-techs-strong-growth-how-high-can-it.html
    Explore at:
    Dataset updated
    Apr 23, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    ASE Tech's Strong Growth: How High Can It Go? (ASX)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  18. T

    Australian Securities Exchange | ASX - Market Capitalization

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Feb 10, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2018). Australian Securities Exchange | ASX - Market Capitalization [Dataset]. https://tradingeconomics.com/asx:au:market-capitalization
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Feb 10, 2018
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Jul 13, 2025
    Area covered
    Australia
    Description

    Australian Securities Exchange reported AUD13.75B in Market Capitalization this July of 2025, considering the latest stock price and the number of outstanding shares.Data for Australian Securities Exchange | ASX - Market Capitalization including historical, tables and charts were last updated by Trading Economics this last July in 2025.

  19. Australia ASX Turnover: Value: Mining

    • ceicdata.com
    • dr.ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Australia ASX Turnover: Value: Mining [Dataset]. https://www.ceicdata.com/en/australia/australian-stock-exchange-turnover/asx-turnover-value-mining
    Explore at:
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jun 1, 2019 - May 1, 2020
    Area covered
    Australia
    Variables measured
    Turnover
    Description

    Australia ASX Turnover: Value: Mining data was reported at 36,158.654 AUD mn in May 2020. This records an increase from the previous number of 30,941.074 AUD mn for Apr 2020. Australia ASX Turnover: Value: Mining data is updated monthly, averaging 21,811.168 AUD mn from May 1999 (Median) to May 2020, with 253 observations. The data reached an all-time high of 54,871.577 AUD mn in Nov 2007 and a record low of 2,006.118 AUD mn in Sep 2000. Australia ASX Turnover: Value: Mining data remains active status in CEIC and is reported by Australian Securities Exchange. The data is categorized under Global Database’s Australia – Table AU.Z004: Australian Stock Exchange: Turnover (Discontinued).

  20. k

    ASX 200 Index: Will the Momentum Continue? (Forecast)

    • kappasignal.com
    Updated Jul 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). ASX 200 Index: Will the Momentum Continue? (Forecast) [Dataset]. https://www.kappasignal.com/2024/07/asx-200-index-will-momentum-continue.html
    Explore at:
    Dataset updated
    Jul 23, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    ASX 200 Index: Will the Momentum Continue?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
KappaSignal (2024). ASX 200: Poised for a Record-Breaking Ascent? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/asx-200-poised-for-record-breaking.html
Organization logo

ASX 200: Poised for a Record-Breaking Ascent? (Forecast)

Explore at:
Dataset updated
Apr 18, 2024
Dataset authored and provided by
KappaSignal
License

https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

Description

This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

ASX 200: Poised for a Record-Breaking Ascent?

Financial data:

  • Historical daily stock prices (open, high, low, close, volume)

  • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

  • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

Machine learning features:

  • Feature engineering based on financial data and technical indicators

  • Sentiment analysis data from social media and news articles

  • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

Potential Applications:

  • Stock price prediction

  • Portfolio optimization

  • Algorithmic trading

  • Market sentiment analysis

  • Risk management

Use Cases:

  • Researchers investigating the effectiveness of machine learning in stock market prediction

  • Analysts developing quantitative trading Buy/Sell strategies

  • Individuals interested in building their own stock market prediction models

  • Students learning about machine learning and financial applications

Additional Notes:

  • The dataset may include different levels of granularity (e.g., daily, hourly)

  • Data cleaning and preprocessing are essential before model training

  • Regular updates are recommended to maintain the accuracy and relevance of the data

Search
Clear search
Close search
Google apps
Main menu