81 datasets found
  1. T

    Australia Stock Market Index Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Australia Stock Market Index Data [Dataset]. https://tradingeconomics.com/australia/stock-market
    Explore at:
    json, xml, csv, excelAvailable download formats
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    May 29, 1992 - Jul 11, 2025
    Area covered
    Australia
    Description

    Australia's main stock market index, the ASX200, fell to 8580 points on July 11, 2025, losing 0.11% from the previous session. Over the past month, the index has climbed 0.18% and is up 7.80% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Australia. Australia Stock Market Index - values, historical data, forecasts and news - updated on July of 2025.

  2. ASX 200: Poised for a Record-Breaking Ascent? (Forecast)

    • kappasignal.com
    Updated Apr 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). ASX 200: Poised for a Record-Breaking Ascent? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/asx-200-poised-for-record-breaking.html
    Explore at:
    Dataset updated
    Apr 18, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    ASX 200: Poised for a Record-Breaking Ascent?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  3. h

    daily-historical-stock-price-data-for-asx-limited-19982025

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Khaled Ben Ali, daily-historical-stock-price-data-for-asx-limited-19982025 [Dataset]. https://huggingface.co/datasets/khaledxbenali/daily-historical-stock-price-data-for-asx-limited-19982025
    Explore at:
    Authors
    Khaled Ben Ali
    Description

    📈 Daily Historical Stock Price Data for ASX Limited (1998–2025)

    A clean, ready-to-use dataset containing daily stock prices for ASX Limited from 1998-10-30 to 2025-05-28. This dataset is ideal for use in financial analysis, algorithmic trading, machine learning, and academic research.

      🗂️ Dataset Overview
    

    Company: ASX Limited Ticker Symbol: ASX.AX Date Range: 1998-10-30 to 2025-05-28 Frequency: Daily Total Records: 6768 rows (one per trading day)

      🔢 Columns… See the full description on the dataset page: https://huggingface.co/datasets/khaledxbenali/daily-historical-stock-price-data-for-asx-limited-19982025.
    
  4. T

    Advanced Semiconductor Engineering | ASX - Stock Price | Live Quote |...

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Dec 4, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2015). Advanced Semiconductor Engineering | ASX - Stock Price | Live Quote | Historical Chart [Dataset]. https://tradingeconomics.com/asx:us
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Dec 4, 2015
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Jul 14, 2025
    Area covered
    United States
    Description

    Advanced Semiconductor Engineering stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.

  5. Monthly S&P/ASX 200 performance Australia 2010-2025

    • statista.com
    Updated Feb 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Monthly S&P/ASX 200 performance Australia 2010-2025 [Dataset]. https://www.statista.com/statistics/1255592/monthly-performance-sandp-asx-200/
    Explore at:
    Dataset updated
    Feb 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 2010 - Jan 2025
    Area covered
    Australia
    Description

    The S&P/ASX 200 index, the most prominent index of stocks listed on the Australian Securities Exchange (ASX), lost over one fifth of its value between the end of February and the end of March 2020, owing to the economic impact of the global coronavirus (COVID-19) pandemic. It has since recovered, and surpassed its pre-corona level in April 2021. Despite fluctuations, it reached its highest value in January 2025 at 8532.3 during this period.The S&P/ASX 200 index is considered the benchmark index for the Australian share market and contains the 200 largest companies listed on the ASX.

  6. Will the ASX 200 Index Continue its Ascent? (Forecast)

    • kappasignal.com
    Updated Jul 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Will the ASX 200 Index Continue its Ascent? (Forecast) [Dataset]. https://www.kappasignal.com/2024/07/will-asx-200-index-continue-its-ascent.html
    Explore at:
    Dataset updated
    Jul 20, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Will the ASX 200 Index Continue its Ascent?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  7. T

    Australian Securities Exchange | ASX - Outstanding Shares

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Australian Securities Exchange | ASX - Outstanding Shares [Dataset]. https://tradingeconomics.com/asx:au:outstanding-shares
    Explore at:
    json, excel, csv, xmlAvailable download formats
    Dataset updated
    Jan 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Jul 14, 2025
    Area covered
    Australia
    Description

    Australian Securities Exchange reported 193.88M in Outstanding Shares in January of 2025. Data for Australian Securities Exchange | ASX - Outstanding Shares including historical, tables and charts were last updated by Trading Economics this last July in 2025.

  8. ASX 200 to See Modest Gains Amid Global Uncertainty, Experts Say. (Forecast)...

    • kappasignal.com
    Updated Mar 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2025). ASX 200 to See Modest Gains Amid Global Uncertainty, Experts Say. (Forecast) [Dataset]. https://www.kappasignal.com/2025/03/asx-200-to-see-modest-gains-amid-global.html
    Explore at:
    Dataset updated
    Mar 5, 2025
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    ASX 200 to See Modest Gains Amid Global Uncertainty, Experts Say.

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  9. k

    S&P/ASX 200 Index Forecast Data

    • kappasignal.com
    csv, json
    Updated Apr 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AC Investment Research (2024). S&P/ASX 200 Index Forecast Data [Dataset]. https://www.kappasignal.com/2024/04/asx-200-poised-for-record-breaking.html
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Apr 18, 2024
    Dataset authored and provided by
    AC Investment Research
    License

    https://www.ademcetinkaya.com/p/legal-disclaimer.htmlhttps://www.ademcetinkaya.com/p/legal-disclaimer.html

    Description

    Predictions hold that the S&P/ASX 200 index may fluctuate within a wide range. Bulls foresee a surge driven by positive economic data, strong corporate earnings, and central bank easing. However, bears anticipate downward pressure due to geopolitical uncertainties, inflation concerns, and potential earnings revisions. Risks include economic slowdown, interest rate hikes, and a resurgence of COVID-19 cases, which could push the index lower.

  10. T

    Australian Securities Exchange | ASX - Market Capitalization

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Feb 10, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2018). Australian Securities Exchange | ASX - Market Capitalization [Dataset]. https://tradingeconomics.com/asx:au:market-capitalization
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Feb 10, 2018
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Jul 13, 2025
    Area covered
    Australia
    Description

    Australian Securities Exchange reported AUD13.75B in Market Capitalization this July of 2025, considering the latest stock price and the number of outstanding shares.Data for Australian Securities Exchange | ASX - Market Capitalization including historical, tables and charts were last updated by Trading Economics this last July in 2025.

  11. ASX ASX LIMITED (Forecast)

    • kappasignal.com
    Updated Jan 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). ASX ASX LIMITED (Forecast) [Dataset]. https://www.kappasignal.com/2023/01/asx-asx-limited.html
    Explore at:
    Dataset updated
    Jan 2, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    ASX ASX LIMITED

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  12. T

    Australia Stock Market Index (All Ordinaries Composite) - Index Price | Live...

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 27, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). Australia Stock Market Index (All Ordinaries Composite) - Index Price | Live Quote | Historical Chart [Dataset]. https://tradingeconomics.com/as30:ind
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    May 27, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Jul 13, 2025
    Description

    Prices for Australia Stock Market Index (All Ordinaries Composite) including live quotes, historical charts and news. Australia Stock Market Index (All Ordinaries Composite) was last updated by Trading Economics this July 13 of 2025.

  13. T

    Australian Securities Exchange | ASX - PE Price to Earnings

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2024). Australian Securities Exchange | ASX - PE Price to Earnings [Dataset]. https://tradingeconomics.com/asx:au:pe
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset updated
    Jun 15, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Jul 14, 2025
    Area covered
    Australia
    Description

    Australian Securities Exchange reported 26.58 in PE Price to Earnings for its fiscal semester ending in June of 2024. Data for Australian Securities Exchange | ASX - PE Price to Earnings including historical, tables and charts were last updated by Trading Economics this last July in 2025.

  14. k

    ASX 200 Index: Will the Momentum Continue? (Forecast)

    • kappasignal.com
    Updated Jul 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). ASX 200 Index: Will the Momentum Continue? (Forecast) [Dataset]. https://www.kappasignal.com/2024/07/asx-200-index-will-momentum-continue.html
    Explore at:
    Dataset updated
    Jul 23, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    ASX 200 Index: Will the Momentum Continue?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  15. S&P/ASX 200 Index Target Price Prediction (Forecast)

    • kappasignal.com
    Updated Oct 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). S&P/ASX 200 Index Target Price Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/s-200-index-target-price-prediction.html
    Explore at:
    Dataset updated
    Oct 6, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    S&P/ASX 200 Index Target Price Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  16. S&P/ASX 200 index forecast: cautious optimism (Forecast)

    • kappasignal.com
    Updated Jan 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2025). S&P/ASX 200 index forecast: cautious optimism (Forecast) [Dataset]. https://www.kappasignal.com/2025/01/s-200-index-forecast-cautious-optimism.html
    Explore at:
    Dataset updated
    Jan 4, 2025
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    S&P/ASX 200 index forecast: cautious optimism

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  17. T

    Australia Stock Market Index Data

    • tradingeconomics.com
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Australia Stock Market Index Data [Dataset]. https://tradingeconomics.com/australia/stock-market?&sa=d&ust=1522040590579000&usg=afqjcnfxnsne2fbfzrh6wtgnrndwbybsna
    Explore at:
    csv, excel, json, xmlAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    May 29, 1992 - Jul 14, 2025
    Area covered
    Australia
    Description

    Australia's main stock market index, the ASX200, fell to 8541 points on July 14, 2025, losing 0.46% from the previous session. Over the past month, the index has declined 0.09%, though it remains 6.52% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Australia. Australia Stock Market Index - values, historical data, forecasts and news - updated on July of 2025.

  18. Does algo trading work? (S&P/ASX 200 Index Stock Forecast) (Forecast)

    • kappasignal.com
    Updated Sep 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Does algo trading work? (S&P/ASX 200 Index Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/09/does-algo-trading-work-s-200-index.html
    Explore at:
    Dataset updated
    Sep 8, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Does algo trading work? (S&P/ASX 200 Index Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  19. k

    What are the most successful trading algorithms? (S&P/ASX 200 Index Stock...

    • kappasignal.com
    Updated Aug 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). What are the most successful trading algorithms? (S&P/ASX 200 Index Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/08/what-are-most-successful-trading_31.html
    Explore at:
    Dataset updated
    Aug 31, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    What are the most successful trading algorithms? (S&P/ASX 200 Index Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  20. T

    Australian Securities Exchange | ASX - Net Income

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Dec 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2024). Australian Securities Exchange | ASX - Net Income [Dataset]. https://tradingeconomics.com/asx:au:net-income
    Explore at:
    json, csv, xml, excelAvailable download formats
    Dataset updated
    Dec 15, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Jul 14, 2025
    Area covered
    Australia
    Description

    Australian Securities Exchange reported AUD121.75M in Net Income for its fiscal semester ending in December of 2024. Data for Australian Securities Exchange | ASX - Net Income including historical, tables and charts were last updated by Trading Economics this last July in 2025.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2025). Australia Stock Market Index Data [Dataset]. https://tradingeconomics.com/australia/stock-market

Australia Stock Market Index Data

Australia Stock Market Index - Historical Dataset (1992-05-29/2025-07-11)

Explore at:
json, xml, csv, excelAvailable download formats
Dataset updated
Jul 11, 2025
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
May 29, 1992 - Jul 11, 2025
Area covered
Australia
Description

Australia's main stock market index, the ASX200, fell to 8580 points on July 11, 2025, losing 0.11% from the previous session. Over the past month, the index has climbed 0.18% and is up 7.80% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Australia. Australia Stock Market Index - values, historical data, forecasts and news - updated on July of 2025.

Search
Clear search
Close search
Google apps
Main menu