U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This release includes lidar point cloud and Wolman pebble count data for a debris-flow deposit in Glenwood Canyon, CO. The data, FullDepositRegion.las (las 1.2), were collected with a terrestrial laser scanner and includes the full deposit and portions of the slope and drainage that generated the debris flow. This .las file includes point cloud data up to 250 m upslope of the deposit, though the data are sparse at distances greater than 60 m from the deposit due to slope geometry and shadowing. The data TrainingRegion.txt includes an 83 m^2 subregion of the .las point cloud that has been manually divided into granular materials >6.3 cm (clast) and <6.3 cm (matrix) in size along the intermediate particle axis. Each particle >6.3 cm in size received an index that was applied to all points belonging to that particle as described in the column header details. The PebbleCount.csv data contains 150 particle size measurements collected at the debris-flow front, obtained with a g ...
description: Mississippi Coastal QL2 Lidar with 3DEP Extension Lidar 0.7m NPS Lidar Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G15PD00091 Woolpert Order No. 75157 CONTRACTOR: Woolpert, Inc. This metadata record describes the 1m bare earth Digital Elevation Models (DEMs)for the following counties in Mississippi: Copiah, Lawrence, Lincoln, Pike, and Simpson. This task is for a high resolution data set of lidar covering approximately 5981 square miles. The lidar data was acquired and processed in compliance to U.S. Geological Survey National Geospatial Program Lidar Base Specification version 1.2. The lidar data was acquired and processed under the requirements identified in this task order. Lidar data is a remotely sensed high resolution elevation data collected by an airborne platform. The lidar sensor uses a combination of laser range finding, GPS positioning, and inertial measurement technologies. The lidar systems collect data point clouds that are used to produce highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures, and vegetation. The task required the LiDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. The final products include classified LAS, one (1) meter pixel raster DEMs of the bare-earth surface in ERDAS IMG Format, and 8-bit intensity images. Gridded products conform to a 1500 m x 1500 m tiling scheme. Each LAS file contains lidar point information, which has been calibrated, controlled, and classified. Additional deliverables include hydrologic breakline data, control data, flight line vectors and tile index provided as ESRI shapefile, lidar processing and survey reports in PDF format, FGDC metadata files for each data deliverable in .xml format, and LAS swath data. Ground conditions: Water at normal levels; no unusual inundation; no snow; leaf off. In addition to the bare earth DEMs, the topobathy lidar point data are also available. These data are available for custom download here: https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=6306 Breaklines created from the lidar area also available for download in both gdb and gpkg format at: https://coast.noaa.gov/htdata/lidar2_z/geoid12b/data/6306/breaklines. The DEM and breakline products have not been reviewed by the NOAA Office for Coastal Management (OCM) and any conclusions drawn from the analysis of this information are not the responsibility of NOAA, OCM or its partners.; abstract: Mississippi Coastal QL2 Lidar with 3DEP Extension Lidar 0.7m NPS Lidar Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G15PD00091 Woolpert Order No. 75157 CONTRACTOR: Woolpert, Inc. This metadata record describes the 1m bare earth Digital Elevation Models (DEMs)for the following counties in Mississippi: Copiah, Lawrence, Lincoln, Pike, and Simpson. This task is for a high resolution data set of lidar covering approximately 5981 square miles. The lidar data was acquired and processed in compliance to U.S. Geological Survey National Geospatial Program Lidar Base Specification version 1.2. The lidar data was acquired and processed under the requirements identified in this task order. Lidar data is a remotely sensed high resolution elevation data collected by an airborne platform. The lidar sensor uses a combination of laser range finding, GPS positioning, and inertial measurement technologies. The lidar systems collect data point clouds that are used to produce highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures, and vegetation. The task required the LiDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. The final products include classified LAS, one (1) meter pixel raster DEMs of the bare-earth surface in ERDAS IMG Format, and 8-bit intensity images. Gridded products conform to a 1500 m x 1500 m tiling scheme. Each LAS file contains lidar point information, which has been calibrated, controlled, and classified. Additional deliverables include hydrologic breakline data, control data, flight line vectors and tile index provided as ESRI shapefile, lidar processing and survey reports in PDF format, FGDC metadata files for each data deliverable in .xml format, and LAS swath data. Ground conditions: Water at normal levels; no unusual inundation; no snow; leaf off. In addition to the bare earth DEMs, the topobathy lidar point data are also available. These data are available for custom download here: https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=6306 Breaklines created from the lidar area also available for download in both gdb and gpkg format at: https://coast.noaa.gov/htdata/lidar2_z/geoid12b/data/6306/breaklines. The DEM and breakline products have not been reviewed by the NOAA Office for Coastal Management (OCM) and any conclusions drawn from the analysis of this information are not the responsibility of NOAA, OCM or its partners.
These lidar data were collected between January 21st and January 27th, 2010, in response to the January 12th magnitude 7.0 Haiti earthquake. The data collection was performed by the Center for Imaging Science at Rochester Institute of Technology (RIT) and Kucera International under sub-contract to ImageCat, Inc., and funded by the Global Facility for Disaster Recovery and Recovery (GFDRR) hosted at the World Bank. All data are available in the public domain.
Update Aug 17, 2021: To view this full point cloud dataset in 3D click HERE.
The U.S. Geological Survey (USGS) contracted with Hawaii-based Aerial Surveying, Inc. to collect lidar-derived elevation data over the low-lying areas within the northwestern Hawaiian Islands (NWHI) during the summer of 2010. A separate contract issued to Aerial Surveying, Inc. by the National Oceanic and Atmospheric Administration (NOAA) funded the lidar data processing and elevation data product development phases of the project. Lidar data provide high resolution digital elevation models that are used for many applications, including but not limited to sea level rise modeling, habitat assessments, and tsunami inundation modeling. In April 2011, NOAA Papahanaumokuakea Marine National Monument and NOAA Office for Coastal Management deployed a survey crew to the NWHI to collect high accuracy point data to validate the 2010 lidar data. The survey crew used survey-grade Global Positioning System (GPS) receivers to collect high accuracy elevation points. This metadata covers the information for Laysan Island. This dataset contains lidar point clouds in LAS 1.2 format, classified in the following ASPRS standards as Class 1: Unclassified, Class 2: Ground, and Class 9: Water. The following are the equipment used to create the lidar data sets. Aircraft: Beechcraft Queen Air Lidar Systems: Riegl 140 and 240 Accuracy statements are based on areas of open terrain, with points classified as ground. The accuracy of each point is expected to meet the vertical accuracy standard, derived products may be less accurate in areas of extreme terrain and dense vegetation due to a lesser number of points defining the ground in these areas. Classified data sets such as this one may have varying posting due to some pulses not reaching the ground. This work was conducted under permit number PMNM-2010-033 as approved by NOAA, the U.S. Fish and Wildlife Service (USFWS), and the State of Hawaii, and acknowledged by Dr. Charles L. Littnan of NOAA's Pacific Islands Fisheries Science Center. Original contact information: Contact Name: Lidar Manager Contact Org: Aerial Surveying Inc. Title: Lidar Manager Phone: (808) 327-9439
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data set produced by the Co-UDlabs project includes raw data collected for the preliminary testing of a Lidar sensor used to evaluate its ability to measure sediments accumulation in a stormwater settling tank. The data set corresponds to the Lidar data acquisition during two drone flights above the Chassieu stormwater infiltration tank in Lyon, France in May 2023. The PDF file describes the sensor, the testing site and protocol, and the data set. The zip file contains two files in the .LAS format as described in the PDF file. This data set is linked to the Co-UDlabs Deliverable D6.2 “Report on emerging monitoring technologies for urban drainage systems”.
Digital Terrain Model (bare earth) of parts of Maui and Molokai. Partial coverage Vexcel, Inc. LIDAR of Maui and Molokai were purchased by County of Maui to assist with three-dimensional modeling of structures in areas of higher development. 1'/px, LIDAR-derived, bare earth DEM/elevation raster of parts of Maui and Molokai – specifically, Central Molokai, Kahului, Kihei, Lahaina and Pukalani. XY units: feet, Z units: meters. Use Limitations: 1.Disclaimer - This dataset is being placed in the public domain. Any use is allowed except for re-sale. Neither Vexcel, Inc., the County of Maui, nor the State of Hawaii make any guarantees, expressed or implied, regarding its accuracy or fitness of use. Users should verify XYZ values through a licensed surveyor for any engineering application. This data should only be used as a guide, vs. a statement of fact regarding real-world conditions. 2.Vertical Datum - The originator of this LIDAR dataset, Vexcel Inc. of Boulder, Colorado referenced Z values to the North American Vertical Datum of 1988 (NAVD88). NAVD88 is not recognized as a valid vertical reference for the state of Hawaii. Currently Hawaii has no official (de jure or de facto) vertical datum, and NOAA's National Geodetic Survey (NGS) recommends that elevations be referenced to the nearest NOAA tidal gauge. A legacy LIDAR dataset produced in 2013 by the United States Army Corps of Engineers (USACE) used NAD83(PA11) as its vertical reference. In theory this approach should result in better accuracy for the Z dimension as PA11 is a Pacific plate-centric datum. In comparing flat areas containing neither structures or vegetation, it was found that the Vexcel values sit approximately 4 feet above the USACE dataset. The vertical datum issue was brought to the attention of Vexcel, Inc. Vexcel used the 2013 USACE LIDAR as vertical control to correct their LIDAR data. The (corrected) .las data is shared as it was delivered. As stated above, the use of this data transfers all risks and assumption of responsibility to the user. For more information see https://files.hawaii.gov/dbedt/op/gis/data/Maui_2019_DTM.html or contact County of Maui at GISMonitor@co.maui.hi.us or Hawaii Statewide GIS Program at gis@hawaii.gov.
ARRA Supplemental Deliverable, Task 8: Digital Data Series Thermal Infrared Information Layer for Oregon (contains all or portions of 42120H6-Ana River; 43120C5-Christmas Lake; 43120C6-Crack In The Ground; 42120H5-Diablo Peak; 43118B1-Dowell Butte; 43118B2-Duck Creek Butte; 43120A7-Egli Rim; 43120B5-Fandango Canyon; 43118A3-Folly Farm; 43121C1-Fort Rock; 43120C4-Fossil Lake; 43121A1-Hager Mountain; 43118A3-Lambing Canyon; 43121C2-McCarty Butte; 43121B2-Oatman Flat; 43120A5-Saint Patrick Mountain; 43120C3-Sand Rock; 43120A6-Sheeplick Draw; 43121B2-Silver Lake; 42120H7-Summer Lake; 43120B8-Tuff Butte; 43118A1-Turnbull Peak) , Release-1 (TIRILO-1) contains thermal infrared intensity images, image-frames rectified, native image frames, and thermal infrared mosaics. Lidar ascii point data are available in LAS format; DEMs provided as bare-earth, highest-hit; and accompaning metadata. Other files include Shp files of 7.5 minute USGS quadrangles of Oregon, 1/100th USGS quadrangles of Oregon. All data are format specific to ESRI format - data must be viewed using specialty software capable of viewing .shp, geotif, and ESRI grid formats. Customers are responsible for sending DOGAMI a blank 400 GB portable external hard drive storage, USB 2.0 Interface. Fee $150.
TASK NAME: NOAA OCM Tift and Cook Counties GA Lidar Data Acquisition and Processing Production Task NOAA Contract No. EA133C-11-CQ-0010 Woolpert Order No. 75271 CONTRACTOR: Woolpert, Inc. This data set is comprised of lidar point cloud data, raster DEM, hydrologic 3-d breaklines, flightline vectors, survey control, project tile index, and project data extent. This task order requires lidar data to be acquired over the Tift and Cook Counties, GA area of interest (AOI), and will be acquired as part of this task order. The total area of the Tift and Cook Counties, GA AOI is approximately 515 square miles. The lidar data acquisition parameters for this mission are detailed in the lidar processing report for this task order. The lidar data will be acquired and processed under the requirements identified in this task order. Lidar data is a remotely sensed high resolution elevation data collected by an airborne platform. The lidar sensor uses a combination of laser range finding, GPS positioning, and inertial measurement technologies. The lidar systems collect data point clouds that are used to produce highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures, and vegetation. The task required the LiDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. The final products include classified LAS, four (4) foot pixel raster DEMs of the bare-earth surface ESRI Grid Format. Each LAS file contains lidar point information, which has been calibrated, controlled, and classified. Additional deliverables include hydrologic breakline data, flightline vectors, control data, tile index, lidar processing and survey reports in PDF format, FGDC metadata files for each data deliverable in .xml format. Ground conditions: Water at normal levels; no unusual inundation; no snow. Original contact information: Contact Org: Woolpert Phone: (937) 461-5660
The U.S. Geological Survey (USGS) contracted with Hawaii-based Aerial Surveying, Inc. to collect lidar-derived elevation data over the low-lying areas within the northwestern Hawaiian Islands (NWHI) during the summer of 2010. A separate contract issued to Aerial Surveying, Inc. by the National Oceanic and Atmospheric Administration (NOAA) funded the lidar data processing and elevation data product development phases of the project. Lidar data provide high resolution digital elevation models that are used for many applications, including but not limited to sea level rise modeling, habitat assessments, and tsunami inundation modeling. In April 2011, NOAA Papahanaumokuakea Marine National Monument and NOAA Office for Coastal Management deployed a survey crew to the NWHI to collect high accuracy point data to validate the 2010 lidar data. The survey crew used survey-grade Global Positioning System (GPS) receivers to collect high accuracy elevation points. This metadata covers the information for French Frigate Shoals. This dataset contains lidar point clouds in LAS 1.2 format, classified according to the ASPRS LAS 1.2 class table. The following are the equipment used to create the lidar data sets. Aircraft: Beechcraft Queen Air Lidar Systems: Riegl 140 and 240 Accuracy statements are based on areas of open terrain, with points classified as ground. The accuracy of each point is expected to meet the vertical accuracy standard, derived products may be less accurate in areas of extreme terrain and dense vegetation due to a lesser number of points defining the ground in these areas. Classified data sets such as this one may have varying posting due to some pulses not reaching the ground. This work was conducted under permit number PMNM-2010-033 as approved by NOAA, the U.S. Fish and Wildlife Service (USFWS), and the State of Hawaii, and acknowledged by Dr. Charles L. Littnan of NOAA's Pacific Islands Fisheries Science Center. Original contact information: Contact Name: Lidar Manager Contact Org: Aerial Surveying Inc. Title: Lidar Manager Phone: (808) 327-9439
This project was completed under USGS Contract No. 07CRCN0002, Task Order No. 070020009.
This delivery contains point cloud data in LAS 1.1 format, classified in the following manner. Class 1: Unclassified, Class 2: Ground, Class 7: Low Point (Noise), Class 9: Water, Class 10: High Point (Noise), Class 12: Overlap, and Class 17: Port
The following are the collection parameters and equipment u...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Las Animas, CO population pyramid, which represents the Las Animas population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Las Animas Population by Age. You can refer the same here
This dataset provides information about the number of properties, residents, and average property values for 9th Street cross streets in Las Animas, CO.
Indiana's Statewide Lidar data is produced at 1.5-meter average post spacing for all 92 Indiana Counties covering more than 36,420 square miles. New Lidar data was captured except where previously captured Lidar data exists, or the participating County bought-up to a higher resolution of 1.0-meter average post spacing Lidar data. Existing Lidar data exists for: Porter, Steuben, Noble, De Kalb, Allen, Madison, Delaware, Hendricks, Marion, Hancock, Morgan, Johnson, Shelby, Monroe, and portions of Vermillion, Parke, Vigo, Clay, Sullivan, Knox, Gibson, and Posey. These existing Lidar datasets were seamlessly integrated into this new statewide dataset. From this seamless Lidar product a statewide 5-foot post spacing hydro-flattened DEM product was created and is also available. See the FGDC Metadata provided for more details.
This statewide project is divided into three geographic areas captured over a 3-year period (2011-2013):
Area 1 (2011) Indiana central counties: St. Joseph, Elkhart, Starke, Marshall, Kosciusko, Pulaski, Fulton, Cass, Miami, Wabash, Carroll, Howard, Clinton, Tipton, Boone, Hendricks, Marion, Morgan, Johnson, Monroe, Brown, Bartholomew, Lawrence, Jackson, Orange, Washington, Crawford, and Harrison.
Area 2 (2012) Indiana eastern counties: LaGrange, Steuben, Noble, DeKalb, Whitley, Allen, Huntington, Wells, Adams, Grant, Blackford, Jay, Hamilton, Madison, Delaware, Randolph, Hancock, Henry, Wayne, Shelby, Rush, Fayette, Union, Decatur, Franklin, Jennings, Ripley, Dearborn, Ohio, Scott, Jefferson, Switzerland, Clark, and Floyd.
Area 3 (2013) Indiana western counties: Lake, Porter, LaPorte, Newton, Jasper, Benton, White, Warren, Tippecanoe, Fountain, Montgomery, Vermillion, Parke, Putnam, Vigo, Clay, Owen, Sullivan, Greene, Knox, Daviess, Martin, Gibson, Pike, Dubois, Posey, Vanderburgh, Warrick, Spencer, and Perry.
Funders of OpenTopography Hosting of the Indiana Statewide Lidar and DEM data: USDA NRCS, Indiana, ISPLS Foundation, Indiana Geographic Information Office, Indiana Office of Technology, Indiana Geological Survey, Surdex Corporation, Vectren Energy Delivery, Indiana, Woolpert, Inc., and Individual IGIC Member Donations from Jim Stout, Jeff McCann, Cele Morris, Becky McKinley, Phil Worrall, and Andy Nicholson.
To explore a web map of topographic differencing for the entire state of Indiana click here
The U.S. Geological Survey (USGS) contracted with Hawaii-based Aerial Surveying, Inc. to collect lidar-derived elevation data over the low-lying areas within the northwestern Hawaiian Islands (NWHI) during the summer of 2010. A separate contract issued to Aerial Surveying, Inc. by the National Oceanic and Atmospheric Administration (NOAA) funded the lidar data processing and elevation data product development phases of the project. Lidar data provide high resolution digital elevation models that are used for many applications, including but not limited to sea level rise modeling, habitat assessments, and tsunami inundation modeling. In April 2011, NOAA Papahanaumokuakea Marine National Monument and NOAA Office for Coastal Management deployed a survey crew to the NWHI to collect high accuracy point data to validate the 2010 lidar data. The survey crew used survey-grade Global Positioning System (GPS) receivers to collect high accuracy elevation points. This metadata covers the information for Pearl and Hermes. This dataset contains lidar point clouds in LAS 1.2 format, classified in the following ASPRS standards as Class 1: Unclassified, Class 2: Ground, and Class 9: Water. The following are the equipment used to create the lidar data sets. Aircraft: Beechcraft Queen Air Lidar Systems: Riegl 140 and 240 Accuracy statements are based on areas of open terrain, with points classified as ground. The accuracy of each point is expected to meet the vertical accuracy standard, derived products may be less accurate in areas of extreme terrain and dense vegetation due to a lesser number of points defining the ground in these areas. Classified data sets such as this one may have varying posting due to some pulses not reaching the ground. This work was conducted under permit number PMNM-2010-033 as approved by NOAA, the U.S. Fish and Wildlife Service (USFWS), and the State of Hawaii, and acknowledged by Dr. Charles L. Littnan of NOAA's Pacific Islands Fisheries Science Center. Original contact information: Contact Name: Lidar Manager Contact Org: Aerial Surveying Inc. Title: Lidar Manager Phone: (808) 327-9439
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Edge refers to the linear topological primitives that make up MTDB. The All Lines Shapefile contains linear features such as roads, railroads, and hydrography. Additional attribute data associated with the linear features found in the All Lines Shapefile are available in relationship (.dbf) files that users must download separately. The All Lines Shapefile contains the geometry and attributes of each topological primitive edge. Each edge has a unique TIGER/Line identifier (TLID) value.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimate of Median Household Income for Las Animas County, CO (MHICO08071A052NCEN) from 1989 to 2023 about Las Animas County, CO; CO; households; median; income; and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Employed Persons in Las Animas County, CO (LAUCN080710000000005A) from 1990 to 2024 about Las Animas County, CO; CO; household survey; employment; persons; and USA.
This dataset provides information about the number of properties, residents, and average property values for Lois Avenue cross streets in Las Animas, CO.
This dataset provides information about the number of properties, residents, and average property values for 4th Street cross streets in Las Animas, CO.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This release includes lidar point cloud and Wolman pebble count data for a debris-flow deposit in Glenwood Canyon, CO. The data, FullDepositRegion.las (las 1.2), were collected with a terrestrial laser scanner and includes the full deposit and portions of the slope and drainage that generated the debris flow. This .las file includes point cloud data up to 250 m upslope of the deposit, though the data are sparse at distances greater than 60 m from the deposit due to slope geometry and shadowing. The data TrainingRegion.txt includes an 83 m^2 subregion of the .las point cloud that has been manually divided into granular materials >6.3 cm (clast) and <6.3 cm (matrix) in size along the intermediate particle axis. Each particle >6.3 cm in size received an index that was applied to all points belonging to that particle as described in the column header details. The PebbleCount.csv data contains 150 particle size measurements collected at the debris-flow front, obtained with a g ...