Facebook
TwitterThe National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterThis App includes 3,141 summary records by U.S. County for all Federal disaster declarations between 1964 and 2013. The initial map display shows the All Incidents later, but there are 12 Additional layers users can display showing the county declaration summary data by Incident Type (Fire, Flood, Tornado, etc...]. Click on an disaster declaration highlighted on the map and a custom pop-up attribute display will show you the disaster declaration information and census population estimates for reference. This App also includes a number of map tools to help visualize and analyze the data. NSGIC Data Citation:This project uses existing FEMA data resources that are the authoritative sources of information on this topic, including geospatial data files and open data APIs that were used to access available FEMA Federally-declared Natural Disaster data in the United States available from 1964 to 2014 (through 2013).To support our mapping needs, NSGIC downloaded a snapshot of FEMA data and published our own data Service Definitions and Feature Layers on NSGIC’s ArcGIS Online Mapping Platform to create the unfiltered Feature Layer Services we needed to support our mapping needs of the FEMA Federally Declared Disaster data.Note: These original data sources reflect a variety of inconsistencies and completeness is data collection, as well as changing definitions and priorities in FEMA’s disaster declaration information collection since record-keeping began in 1964. The original data was not modified.To publish the new Feature Layers on ArcGIS Online, NSGIC joined the FEMA Natural Disaster data with an Esri US County polygon shapefile with county population and demographic attributes from the U.S. Census Bureau’s American Community Survey. NSGIC added the 2010 and 2015 population estimates from the Census Bureau’s American Community Survey to relate the impacts of every declared natural disaster to current time frame.A significant portion of the available attribute data is not displayed in the NSGIC interactive maps, but is accessible through the site by experienced users.More recent data may be available from the original sourcesFEMA Data Citation:Data for this project was downloaded from FEMA in April 2016 and reflects the data available at that time using the available APIs.This product uses the Federal Emergency Management Agency’s API, but is not endorsed by FEMA.FEMA cannot verify the quality and/or timeliness of any data or any analysis derived therefrom after the data has been retrieved from FEMA.gov.
Facebook
TwitterThis digital data release contains spatial datasets of bedrock geology, volcanic ash bed locations, test hole locations, bedrock outcrops, and structure contours of the top of bedrock and the base of the Ogallala Group from a previously published map (Souders, 2000). The GeologicMap feature dataset contains separate feature classes for the Ogallala Group map unit (ContactsAndFaults and MapUnitPolys) and the underlying pre-Ogallala bedrock map units (ContactsAndFaults_Bedrock and MapUnitPolys_Bedrock). The VolcanicAshBedPoints feature class contains the locations of volcanic ash beds within the Ogallala Group. The contours depicting the elevation of the top of bedrock (top of Ogallala Group where present and top of pre-Ogallala bedrock where Ogallala is absent) are contained in the IsoValueLines_TopBedrock feature class. The contours depicting the elevation of the base of the Ogallala Group are contained in the IsoValueLines_BaseOgallala feature class. Contoured values are given in both feet and meters. Feature classes containing the location of test holes (TestHolePoints) and bedrock outcrops (OverlayPolys) that were used in generating the structure contour surfaces are included. Nonspatial tables define the data sources used, define terms used in the dataset, and describe the geologic units. A tabular data dictionary describes the entity and attribute information for all attributes of the geospatial data and the accompanying nonspatial tables. Surficial geologic units that are only represented as cross-sections on the original map publication, and the cross-sections themselves, are not included in this digital data release.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is Version 1 of the Soil Organic Carbon Fractions product of the Soil and Landscape Grid of Australia.
The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. This product contains six digital soil attribute maps for each of three depth intervals, 0-5cm, 5-15cm, 15-30cm These depths are consistent with the specifications of the GlobalSoilMap.net project (http://www.globalsoilmap.net/). The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels).
These maps are generated using Digital Soil Mapping methods
Attribute Definition: Soil Organic Carbon Fractions :- mineral-associated organic carbon (MAOC), particulate organic carbon (POC) and pyrogenic organic carbon (PyOC) Units: Various; Period (temporal coverage; approximately): 1950-2022; Spatial resolution: 3 arc seconds (approx 90m); Total number of gridded maps for this attribute: 18; Number of pixels with coverage per layer: 2007M (49200 * 40800); Total size before compression: about 8GB; Total size after compression: about 4GB; Data license : Creative Commons Attribution 4.0 (CC BY); Format: Cloud Optimised GeoTIFF.
Lineage: Soil organic carbon (SOC) is the largest terrestrial carbon pool. SOC is composed of a continuum set of compounds with different chemical composition, origin and susceptibilities to decomposition, that are commonly separated into pools characterised by different responses to anthropogenic and environmental disturbance. Here we map the contribution of three SOC fractions to the total SOC content of Australia’s soils.
The three SOC fractions: mineral-associated organic carbon (MAOC), particulate organic carbon (POC) and pyrogenic organic carbon (PyOC), represent SOC composition with distinct turnover rates, chemistry, and pathway formation. Data for MAOC, POC, and PyOC were obtained with near- and mid-infrared spectral models calibrated with measured SOC fractions. We transformed the data using an isometric log-ratio transformation (ilr) to account for the closed compositional nature of SOC fractions. The resulting , back-transformed ilr components were mapped across Australia.
SOC fraction stocks for the 0-30 cm were derived with maps of total organic carbon concentration, bulk density, coarse fragments and soil thickness. Mapping was done by quantile regression forest fitted with the ilr transformed data and a large set of environmental variables as predictors.
The resulting maps along with the quantified uncertainty show the unique spatial pattern of SOC fractions in Australia. MAOC dominated the total SOC with an average of 59% ±17.5%, whereas 28% ± 17.5% was PyOC and 13% ± 11.1% was POC. The allocation of TOC into the MAOC fractions increased with depth. SOC vulnerability (i.e., POC/[MAOC + PyOC]) was greater in areas with Mediterranean and temperate climate. TOC and the distribution among fractions were the most influential variables on SOC fraction uncertainty. Further, the diversity of climatic and pedological conditions suggests that different mechanisms will control SOC stabilisation and dynamics across the continent, as shown by the model covariates importance metric. We estimated the total SOC stocks (0-30 cm) to be 12.7 Pg MAOC, 2 Pg POC and 5.1 Pg PyOC, which is consistent with previous estimates. The maps of SOC fractions and their stocks can be used for modelling SOC dynamics and forecasting changes in SOC stocks as response to land use change, management, and climate change.
Code - https://github.com/AusSoilsDSM/SLGA Observation data - https://esoil.io/TERNLandscapes/Public/Pages/SoilDataFederator/SoilDataFederator.html Covariate rasters - https://esoil.io/TERNLandscapes/Public/Pages/SLGA/GetData-COGSDataStore.html
Facebook
Twitter*This dataset is authored by ESRI and is being shared as a direct link to the feature service by Pend Oreille County. NHD is a primary hydrologic reference used by our organization.The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesCoordinate System: Web Mercator Auxiliary Sphere Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American Samoa Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not.Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
Facebook
TwitterSoil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations.Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals. Data from the gSSURGO databasewas used to create this layer. To download ready-to-use project packages of useful soil data derived from the SSURGO dataset, please visit the USA SSURGO Downloader app. Dataset SummaryPhenomenon Mapped: Soils of the United States and associated territoriesGeographic Extent: The 50 United States, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaCoordinate System: Web Mercator Auxiliary SphereVisible Scale: 1:144,000 to 1:1,000Source: USDA Natural Resources Conservation ServiceUpdate Frequency: AnnualPublication Date: December 2024 What can you do with this layer?ArcGIS OnlineFeature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro.Below are just a few of the things you can do with a feature service in Online and Pro.Add this layer to a map in the map viewer. The layer is limited to scales of approximately 1:144,000 or larger but avector tile layercreated from the same data can be used at smaller scales to produce awebmapthat displays across the full scale range. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter forFarmland Class= "All areas are prime farmland" to create a map of only prime farmland.Add labels and set their propertiesCustomize the pop-up ArcGIS ProAdd this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of theLiving Atlas of the Worldthat provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics. Data DictionaryAttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them. Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units.Area SymbolSpatial VersionMap Unit Symbol Map Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field.Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability Rating Legend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field.Project Scale Survey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields.Survey Area VersionTabular Version Map Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field. Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - PresenceRating for Manure and Food Processing Waste - Weighted Average Component Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected. Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent Key Component Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r).Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence -
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This is a MD iMAP hosted service layer. Find more information at http://imap.maryland.gov. userdata and unzip the LayerFiles.zip folder.Data from the four SSURGO tables were assembled into the single table included in each map package. Data from the component table were aggregated using a dominant component model (listed below under Component Table - Dominant Component) or a weighted average model (listed below under Component Table - Weighted Average) using custom Python scripts. The the Mapunit table - the MUAGATTAT table and the processed Component table data were joined to the Mapunit Feature Class. Field aliases were added and indexes calculated. A field named Map Symbol was created and populated with random integers from 1-10 for symbolizing the soil units in the map package.For documentation of the SSURGO dataset see:http://soildatamart.nrcs.usda.gov/SSURGOMetadata.aspxFor documentation of the Watershed Boundary Dataset see: http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/water/watersheds/datasetThe map packages contain the following attributes in the Map Units layer:Mapunit Feature Class:Survey AreaSpatial VersionMapunit SymbolMapunit KeyNational Mapunit SymbolMapunit Table:Mapunit NameMapunit KindFarmland ClassHighly Erodible Lands Classification - Wind and WaterHighly Erodible Lands Classification - WaterHighly Erodible Lands Classification - WindInterpretive FocusIntensity of MappingLegend KeyMapunit SequenceIowa Corn Suitability RatingLegend Table:Project ScaleTabular VersionMUAGGATT Table:Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - PresenceRating for Manure and Food Processing Waste - Weighted AverageComponent Table - Weighted Average:Mean Annual Air Temperature - High Value Mean Annual Air Temperature - Low Value Mean Annual Air Temperature - Representative Value Albedo - High Value Albedo - Low Value Albedo - Representative Value Slope - High Value Slope - Low Value Slope - Representative Value Slope Length - High Value Slope Length - Low Value Slope Length - Representative Value Elevation - High Value Elevation - Low Value Elevation - Representative Value Mean Annual Precipitation - High Value Mean Annual Precipitation - Low Value Mean Annual Precipitation - Representative Value Days between Last and First Frost - High Value Days between Last and First Frost - Low Value Days between Last and First Frost - Representative Value Crop Production Index Range Forage Annual Potential Production - High Value Range Forage Annual Potential Production - Low Value Range Forage Annual Potential Production - Representative Value Initial Subsidence - High Value Initial Subsidence - Low Value Initial Subsidence - Representative Value Total Subsidence - High ValueTotal Subsidence - Low Value Total Subsidence - Representative Value Component Table - Dominant Component:Component KeyComponent Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoffSoil Loss Tolerance FactorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupForage Suitability GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic Class NameOrderSuborderGreat GroupSubgroupParticle SizeParticle Size ModifierCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoisture SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilThe U.S. Department of Agriculture - Natural Resources Conservation Service - should be acknowledged as the data source in products derived from these data. This data set is not designed for use as a primary regulatory tool in permitting or citing decisions - but may be used as a reference source. This is public information and may be interpreted by organizations - agencies - units of government - or others based on needs; however - they are responsible for the appropriate application. Federal - State - or local regulatory bodies are not to reassign to the Natural Resources Conservation Service any authority for the decisions that they make. The Natural Resources Conservation Service will not perform any evaluations of these maps for purposes related solely to State or local regulatory programs. Photographic or digital enlargement of these maps to scales greater than at which they were originally mapped can cause misinterpretation of the data. If enlarged - maps do not show the small areas of contrasting soils that could have been shown at a larger scale. The depicted soil boundaries - interpretations - and analysis derived from them do not eliminate the need for onsite sampling - testing - and detailed study of specific sites for intensive uses. Thus - these data and their interpretations are intended for planning purposes only. Digital data files are periodically updated. Files are dated - and users are responsible for obtaining the latest version of the data.The attribute accuracy is tested by manual comparison of the source with hard copy plots and/or symbolized display of the map data on an interactive computer graphic system. Selected attributes that cannot be visually verified on plots or on screen are interactively queried and verified on screen. In addition - the attributes are tested against a master set of valid attributes. All attribute data conform to the attribute codes in the signed classification and correlation document and amendment(s). Last Updated: Feature Service Layer Link: https://mdgeodata.md.gov/imap/rest/services/Geoscientific/MD_SSURGOSoils/MapServer ADDITIONAL LICENSE TERMS: The Spatial Data and the information therein (collectively "the Data") is provided "as is" without warranty of any kind either expressed implied or statutory. The user assumes the entire risk as to quality and performance of the Data. No guarantee of accuracy is granted nor is any responsibility for reliance thereon assumed. In no event shall the State of Maryland be liable for direct indirect incidental consequential or special damages of any kind. The State of Maryland does not accept liability for any damages or misrepresentation caused by inaccuracies in the Data or as a result to changes to the Data nor is there responsibility assumed to maintain the Data in any manner or form. The Data can be freely distributed as long as the metadata entry is not modified or deleted. Any data derived from the Data must acknowledge the State of Maryland in the metadata.
Facebook
TwitterThis data set consists of a geo-referenced digital map and attribute data derived from the publication 'Permafrost map of Alaska'. The map is presented at a scale of 1 to 2, 500, 000 and shows the correlation of physiographic province to presence of permafrost across the state of Alaska. The digital data were prepared under the U.S. Geological Survey Global Change Program, Land Data Systems - Arctic Land Processes Studies for display and analysis of terrain. The line work was captured by hand digitizing the source map, Ferrians, O.J., 1965, Permafrost map of Alaska - U.S. Geological Survey Miscellaneous Geologic Investigations Map I-445. Scale 1 to 2, 500, 000. The digital map was assembled and edited in ARC/INFO. The source map projection is polyconic. It is based on the Clarke 1866 ellipsoid with a central meridian of 150 W longitude. The data were geo-referenced from digitizer coordinates to the polyconic projection and then projected into an Albers Equal Area projection. The coastline was taken from the U.S Geological Survey, 1 to 2, 000, 000 scale Digital Line Graph data (U.S. Geological Survey, 1987). Attributes for the permafrost map were assigned. Metadata documentation was completed in 1996. The map units are closed polygons that are generalized in shape and size. They are defined in terms of their physiographic characteristics and association with permafrost. Each unit differs with respect to all other units and is uniquely identified as follows. 11 Mountainous Area underlain by continuous permafrost 12 Mountainous Area underlain by discontinuous permafrost 13 Mountainous Area underlain by isolated masses of permafrost 21 Lowland and Upland Area underlain by thick permafrost 22 Lowland and Upland Area underlain by moderately thick to thin permafrost 23 Lowland and Upland Area underlain by discontinuous permafrost 24 Lowland and Upland Area underlain by numerous isolated masses of permafrost 25 Lowland and Upland Area underlain by isolated masses of permafrost 26 Lowland and Upland Area generally free of permafrost
Use constraints -The U.S. Geological Survey should be acknowledged as the data source in products derived from these data. The data are general in nature and should not be used at a scale larger than 1 to 2, 500, 000, that of the original map. Users must assume responsibility to determine the usability of this data for their purposes. The use of these data is not restricted and may be interpreted by organizations, agencies, units of government or others; however, they are responsible for its appropriate application. Digital data files are periodically updated. Files are dated and users are responsible for obtaining the latest revisions of the data. Although these data have been processed successfully on a computer system at the U.S. Geological Survey, no warranty expressed or implied is made by the agency regarding the utility of the data on any other system, nor shall the act of distribution constitute any such warranty. A copy of this map is presented on the CAPS Version 1.0 CD-ROM, June 1998.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These datasets describe soil attributes suitable for inclusion in the TERN Soil and Landscape Grid of Australia (http://www.clw.csiro.au/aclep/soilandlandscapegrid). Eleven attributes are available in raster format at a resolution of 3 arc-seconds (approximately 90m). These products are generated using spatial modelling and digital soil mapping techniques. At present, these products cover the extent of the Burdekin River catchment only.
Facebook
TwitterThis data set consists of a geo-referenced digital map and attribute data derived from the publication 'Permafrost map of Alaska'. The map is presented at a scale of 1 to 2,500,000 and shows the correlation of physiographic province to presence of permafrost across the state of Alaska. The digital data were prepared under the U.S. Geological Survey Global Change Program, Land Data Systems - Arctic Land Processes Studies for display and analysis of terrain. The line work was captured by hand digitizing the source map, Ferrians, O.J., 1965, Permafrost map of Alaska - U.S. Geological Survey Miscellaneous Geologic Investigations Map I-445. Scale 1 to 2,500,000. The digital map was assembled and edited in ARC/INFO. The source map projection is polyconic. It is based on the Clarke 1866 ellipsoid with a central meridian of 150 W longitude. The data were geo-referenced from digitizer coordinates to the polyconic projection and then projected into an Albers Equal Area projection. The coastline was taken from the U.S Geological Survey, 1 to 2,000,000 scale Digital Line Graph data (U.S. Geological Survey, 1987). Attributes for the permafrost map were assigned. Metadata documentation was completed in 1996. The map units are closed polygons that are generalized in shape and size. They are defined in terms of their physiographic characteristics and association with permafrost. Each unit differs with respect to all other units and is uniquely identified as follows.11 Mountainous Area underlain by continuous permafrost12 Mountainous Area underlain by discontinuous permafrost13 Mountainous Area underlain by isolated masses of permafrost21 Lowland and Upland Area underlain by thick permafrost22 Lowland and Upland Area underlain by moderately thick to thin permafrost23 Lowland and Upland Area underlain by discontinuous permafrost24 Lowland and Upland Area underlain by numerous isolated masses of permafrost25 Lowland and Upland Area underlain by isolated masses of permafrost26 Lowland and Upland Area generally free of permafrostUse constraints - The U.S. Geological Survey should be acknowledged as the data source in products derived from these data. The data are general in nature and should not be used at a scale larger than 1 to 2,500,000, that of the original map. Users must assume responsibility to determine the usability of this data for their purposes. The use of these data is not restricted and may be interpreted by organizations, agencies, units of government or others; however, they are responsible for its appropriate application. Digital data files are periodically updated. Files are dated and users are responsible for obtaining the latest revisions of the data. Although these data have been processed successfully on a computer system at the U.S. Geological Survey, no warranty expressed or implied is made by the agency regarding the utility of the data on any other system, nor shall the act of distribution constitute any such warranty. A copy of this map is presented on the CAPS Version 1.0 CD-ROM, June 1998.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Connecticut Hydrography Set:
Connecticut Hydrography Line includes the line features of a layer named Hydrography. Hydrography is a 1:24,000-scale, polygon and line feature-based layer that includes all hydrography features depicted on the U.S. Geological Survey (USGS) 7.5 minute topographic quadrangle maps for the State of Connecticut. This layer only includes features located in Connecticut. These hydrography features include waterbodies, inundation areas, marshes, dams, aqueducts, canals, ditches, shorelines, tidal flats, shoals, rocks, channels, and islands. Hydrography is comprised of polygon and line features. Polygon features represent areas of water for rivers, streams, brooks, reservoirs, lakes, ponds, bays, coves, and harbors. Polygon features also depict inundation areas, marshes, dams, aqueducts, canals, tidal flats, shoals, rocks, channels, and islands shown on the USGS 7.5 minute topographic quadrangle maps. Line features represent single-line rivers and streams, aqueducts, canals, and ditches. Line features also enclose all polygon features in the form of natural shorelines, manmade shorelines, dams, closure lines separating adjacent waterbodies, and the apparent limits for tidal flats, rocks, and areas of marsh. The layer is based on information from USGS topographic quadrangle maps published between 1969 and 1984 so it does not depict conditions at any one particular point in time. Also, the layer does not reflect recent changes with the course of streams or location of shorelines impacted by natural events or changes in development since the time the USGS 7.5 minute topographic quadrangle maps were published. Attribute information is comprised of codes to identify hydrography features by type, cartographically represent (symbolize) hydrography features on a map, select waterbodies appropriate to display at different map scales, identify individual waterbodies on a map by name, and describe feature area and length. The names assigned to individual waterbodies are based on information published on the USGS 7.5 minute topographic quadrangle maps or other state and local maps. The layer does not include bathymetric, stream gradient, water flow, water quality, or biological habitat information. This layer was originally published in 1994. The 2005 edition includes the same water features published in 1994, however some attribute information has been slightly modified and made easier to use. Also, the 2005 edition corrects previously undetected attribute coding errors.
Connecticut Hydrography Polygon includes the polygon features of a layer named Hydrography. Hydrography is a 1:24,000-scale, polygon and line feature-based layer that includes all hydrography features depicted on the U.S. Geological Survey (USGS) 7.5 minute topographic quadrangle maps for the State of Connecticut. This layer only includes features located in Connecticut. These hydrography features include waterbodies, inundation areas, marshes, dams, aqueducts, canals, ditches, shorelines, tidal flats, shoals, rocks, channels, and islands. Hydrography is comprised of polygon and line features. Polygon features represent areas of water for rivers, streams, brooks, reservoirs, lakes, ponds, bays, coves, and harbors. Polygon features also depict inundation areas, marshes, dams, aqueducts, canals, tidal flats, shoals, rocks, channels, and islands shown on the USGS 7.5 minute topographic quadrangle maps. Line features represent single-line rivers and streams, aqueducts, canals, and ditches. Line features also enclose all polygon features in the form of natural shorelines, manmade shorelines, dams, closure lines separating adjacent waterbodies, and the apparent limits for tidal flats, rocks, and areas of marsh. The layer is based on information from USGS topographic quadrangle maps published between 1969 and 1984 so it does not depict conditions at any one particular point in time. Also, the layer does not reflect recent changes with the course of streams or location of shorelines impacted by natural events or changes in development since the time the USGS 7.5 minute topographic quadrangle maps were published. Attribute information is comprised of codes to identify hydrography features by type, cartographically represent (symbolize) hydrography features on a map, select waterbodies appropriate to display at different map scales, identify individual waterbodies on a map by name, and describe feature area and length. The names assigned to individual waterbodies are based on information published on the USGS 7.5 minute topographic quadrangle maps or other state and local maps. The layer does not include bathymetric, stream gradient, water flow, water quality, or biological habitat information. This layer was originally published in 1994. The 2005 edition includes the same water features published in 1994, however some attribute information has been slightly modified and made easier to use. Also, the 2005 edition corrects previously undetected attribute coding errors.
Facebook
TwitterTags
soil survey, soils, Soil Survey Geographic, SSURGO
Summary
SSURGO depicts information about the kinds and distribution of
soils on the landscape. The soil map and data used in the SSURGO
product were prepared by soil scientists as part of the National
Cooperative Soil Survey.
Description
This data set is a digital soil survey and generally is the most
detailed level of soil geographic data developed by the National
Cooperative Soil Survey. The information was prepared by digitizing
maps, by compiling information onto a planimetric correct base
and digitizing, or by revising digitized maps using remotely
sensed and other information.
This data set consists of georeferenced digital map data and
computerized attribute data. The map data are in a 3.75 minute
quadrangle format and include a detailed, field verified inventory
of soils and nonsoil areas that normally occur in a repeatable
pattern on the landscape and that can be cartographically shown at
the scale mapped. A special soil features layer (point and line
features) is optional. This layer displays the location of features
too small to delineate at the mapping scale, but they are large
enough and contrasting enough to significantly influence use and
management. The soil map units are linked to attributes in the
National Soil Information System relational database, which gives
the proportionate extent of the component soils and their properties.
Credits
There are no credits for this item.
Use limitations
The U.S. Department of Agriculture, Natural Resources Conservation
Service, should be acknowledged as the data source in products
derived from these data.
This data set is not designed for use as a primary regulatory tool
in permitting or citing decisions, but may be used as a reference
source. This is public information and may be interpreted by
organizations, agencies, units of government, or others based on
needs; however, they are responsible for the appropriate
application. Federal, State, or local regulatory bodies are not to
reassign to the Natural Resources Conservation Service any
authority for the decisions that they make. The Natural Resources
Conservation Service will not perform any evaluations of these maps
for purposes related solely to State or local regulatory programs.
Photographic or digital enlargement of these maps to scales greater
than at which they were originally mapped can cause misinterpretation
of the data. If enlarged, maps do not show the small areas of
contrasting soils that could have been shown at a larger scale. The
depicted soil boundaries, interpretations, and analysis derived from
them do not eliminate the need for onsite sampling, testing, and
detailed study of specific sites for intensive uses. Thus, these data
and their interpretations are intended for planning purposes only.
Digital data files are periodically updated. Files are dated, and
users are responsible for obtaining the latest version of the data.
Extent
West -76.713689 East -76.526117
North 39.374398 South 39.194856
Scale Range
There is no scale range for this item.
Facebook
TwitterInteractive GIS Mapping Tool – Urgent Drinking Water Needs (UDWN) Web Map in California
Use Constraints:
This mapping tool is for reference and guidance purposes only and is not a binding legal document to be used for legal determinations. The data provided may contain errors, inconsistencies, or may not in all cases appropriately represent the current status of Urgent Drinking Water Needs project locations. The data in this map are subject to change at any time and should not be used as the sole source for decision making. By using this data, the user acknowledges all limitations of the data and agrees to accept all errors stemming from its use. The Urgent Drinking Water Needs map does not provide the locations of individual households that were provided funding through grant agreements with non-profit organizations.
Description:
This map displays Urgent Drinking Water Needs due to drought, contamination, or other eligible emergencies. This includes projects approved for funding from July 1, 2014 to November 18, 2022, including both active and completed projects. The data comes from the State Water Resources Control Board (SWRCB) Cleanup and Abatement Account’s (CAA) project database and was exported on November 18, 2022. The map contains four layers: UDWN_Projects, UDWN_Summary_by_county, CA_Assembly_Districts_WEB, and CA_Senate_Districts_WEB.
The attributes for each project in the UDWN_Projects layer include the recipient of grant funding (grantee), community served, type of project, grant amount, funding program, date the project was approved, date the project was completed, Disadvantaged Community status, Small Disadvantaged Community status, the public water system number, status of the project (Active or Completed), and the state fiscal year in which the project was approved.
How to Use the Interactive Mapping Tool:When the map loads, it displays the state of California, UDWN Project locations, and California county boundaries. The “About” tab is located on the left-hand side of the map and displays instructions for using the map. The next tab display pre-set filters, the legend, and a layer list. Clicking on the “Legend” tab in the menu will show the legend of the map. Projects that appear as blue dots are still active, while projects that appear as red dots have already been completed.Note: Layers that show CA Assembly and Senate Districts were created by the Sierra Nevada Conservancy (SNC). These layers must be toggled on in the layers list to be seen. To view information about a specific project, click on a project location. A pop-up box will appear with the following information: (a) county name, (b) community served, (c) type of project, (d) approved funding amount, (e) approval date, and (f) status. To view information about the total funding and number of projects in a county, click within a county boundary and a pop up will appear.Use the pre-set filters to filter projects by status, fiscal year, funding program, county, assembly district, and/or senate district using the drop-down menu. The filters can be toggled on or off using the switches on the right side of the menu. To create a custom filter, click the filter icon at the bottom of the preset filter menu and enter the desired parameters. For one parameter, click “add expression” to create a custom filter. For more than one, click “add set” to create a custom filter.To export and download filtered data, open the Attribute Table located at the bottom of the map, click the “Options” drop down menu, select “Export all to CSV” from the drop-down menu, and download the desired information.
Map Layers:UDWN_Projects – This layer shows all active or completed UDWN projects from July 1, 2014 to November 18, 2022. Active projects are represented with blue dots while completed projects are represented with red dots. The attributes in this layer include what county the project is in, the community served, the type of project, approved funding amount, approval date, and status.UDWN_Summary_by_county – This layer shows the boundary lines for all the counties in California. The attributes in this layer include the total number of projects and total funding approved in that county since July 1, 2014. CA_Assembly_Districts_WEB – This layer shows the boundary lines for all the assembly districts in California. It is owned and maintained by the Sierra Nevada Conservancy (SNC) and boundaries may not be accurate. CA_Senate_Districts_WEB – This layer shows the boundary lines for all the senate districts in California. It is owned and maintained by the Sierra Nevada Conservancy (SNC) and boundaries may not be accurate.
Informational Pop-up Box:County – California county where the project is locatedCommunity Served – California community that is benefiting from UDWN funding Type of Project – Project type, which can include bottled water, consolidation, hauled water, pilot study, POU, pump, tank, treatment, and well Approved Funding Amount – Amount of money in U.S. dollars approved for the projectApproval Date – Date that the project was approved for fundingStatus – Current status of the project (active or closed)Date Created:
Data created on November 18, 2022 and valid up to this date.
Sources:
Urgent Drinking Water Needs data was exported from the CAA Database.
The Sierra Nevada Conservancy (SNC) created the California Senate and Assembly layers.
Points of Contact:
Christina Raynard is the creator and owner of this layer. Christina.raynard@waterboards.ca.gov (State Water Resources Control Board, Division of Financial Assistance)
Terms of Use
No special restrictions or limitations on using the item’s content have been provided.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
These ESRI shapefiles show spatial data, points on a map. In addition, shapefiles provide attribute data for each point. Shapefile’s attribute data include spatial information such as latitude and longitude, the address, and obligation amount.
Facebook
TwitterTags
soil survey, soils, Soil Survey Geographic, SSURGO
Summary
SSURGO depicts information about the kinds and distribution of
soils on the landscape. The soil map and data used in the SSURGO
product were prepared by soil scientists as part of the National
Cooperative Soil Survey.
Description
This data set is a digital soil survey and generally is the most
detailed level of soil geographic data developed by the National
Cooperative Soil Survey. The information was prepared by digitizing
maps, by compiling information onto a planimetric correct base
and digitizing, or by revising digitized maps using remotely
sensed and other information.
This data set consists of georeferenced digital map data and
computerized attribute data. The map data are in a 3.75 minute
quadrangle format and include a detailed, field verified inventory
of soils and nonsoil areas that normally occur in a repeatable
pattern on the landscape and that can be cartographically shown at
the scale mapped. A special soil features layer (point and line
features) is optional. This layer displays the location of features
too small to delineate at the mapping scale, but they are large
enough and contrasting enough to significantly influence use and
management. The soil map units are linked to attributes in the
National Soil Information System relational database, which gives
the proportionate extent of the component soils and their properties.
Credits
There are no credits for this item.
Use limitations
The U.S. Department of Agriculture, Natural Resources Conservation
Service, should be acknowledged as the data source in products
derived from these data.
This data set is not designed for use as a primary regulatory tool
in permitting or citing decisions, but may be used as a reference
source. This is public information and may be interpreted by
organizations, agencies, units of government, or others based on
needs; however, they are responsible for the appropriate
application. Federal, State, or local regulatory bodies are not to
reassign to the Natural Resources Conservation Service any
authority for the decisions that they make. The Natural Resources
Conservation Service will not perform any evaluations of these maps
for purposes related solely to State or local regulatory programs.
Photographic or digital enlargement of these maps to scales greater
than at which they were originally mapped can cause misinterpretation
of the data. If enlarged, maps do not show the small areas of
contrasting soils that could have been shown at a larger scale. The
depicted soil boundaries, interpretations, and analysis derived from
them do not eliminate the need for onsite sampling, testing, and
detailed study of specific sites for intensive uses. Thus, these data
and their interpretations are intended for planning purposes only.
Digital data files are periodically updated. Files are dated, and
users are responsible for obtaining the latest version of the data.
Extent
West -76.713689 East -76.526117
North 39.374398 South 39.194856
Scale Range
There is no scale range for this item.
Facebook
TwitterThe data set marpits1 is an ArcInfo coverage of point features representing pit locations and attribution data captured from an atlas of map sheets and pit data sheets titled "A Materials Inventory of Maricopa County [Arizona]" by the Arizona Highway Department (AHD), now named the Arizona Department of Transportation (ADOT), hereafter referred to as the 'Source'. Pit locations were represented by point symbols in the Source map sheets. Points were digitized from the Source map sheets. Selected attribute data were collected from the Source pit data and map sheets. In the Source introduction it states: > "The pit location maps show the location of all > pits bearing Materials Services serial numbers. > Other sources are not shown. The plotted locations > are as close as possible to the true location > as the scale of the map will allow." The point attribute data, captured from the Source pit data sheets are > "designed to show test results (sieve analysis, > plasticity index, and abrasion) for the usable > material within each ADOT pit."
Facebook
TwitterThe National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterIn the organic matter (humus) of soils, carbon is stored. The present map is used to display the quantities or stocks of humus in soils. The unit is tonnes per hectare (t/ha). The organic carbon stocks (Corg stocks) result from the product of humus contents in mass % soil, the dry raw density of the soil and the viewing depth in cm (here 30cm). In the case of mineral soils under the forest, the representation takes place with the inclusion of the humus layer. Basis are the geometries and ideal profiles (guide and accompanying floors) of the soil overview map 1:250.000 of Schleswig-Holsteinl. The usage information comes from the data set Corine-Landcover (CLC 5 2018 of the Federal Office for Cartography and Geodesy (BKG)) and was aggregated into 5 classes for this map. The attribute table of the map also contains information about absolute organic carbon stocks of the individual areas. Areas up to a minimum size of 1 ha are shown. In settlement areas and on heavily anthropogenic areas, the data show higher uncertainties, which is why the map representation in these areas was grayed out. The attribute table of the area data contains the corresponding information.
Facebook
TwitterUSDA/NRCS SSURGO: This layer shows the Soil Survey Geographic (SSURGO) by the United States Department of Agriculture’s Natural Resources Conservation Service. SSURGO digitizing duplicates the original soil survey maps. This level of mapping is designed for use by landowners, townships, and county natural resource planning and management. The user should be knowledgeable of soils data and their characteristics. The soil units are symbolized by Esri to show the dominant condition for the 12 soil orders according to Soil Taxonomy. Dominant condition was determined by evaluating each of the components in a map unit; the percentage of the component that each soil order represented was accumulated for all the soil orders present in the map unit. The soil order with the highest accumulated percentage is then characterized as the dominant condition for that unit. If a tie was found between soil orders, a “tie-break” rule was applied. The tie-break was based on the component’s “slope_r” attribute value, which represents the Slope Gradient – Representative Value. The slope_r values were accumulated in the same fashion as the soil order attributes, i.e., by soil order, and the order with the lowest slope_r value was selected as dominant because that represented the lower slope value, and therefore we assumed the soils were more likely to be staying in that area or being deposited in that area. USDA/NRCS STATSGO This layer shows the U.S. General Soil Map of general soil association units by the United States Department of Agriculture’s Natural Resources Conservation Service. It was developed by the National Cooperative Soil Survey and supersedes the State Soil Geographic (STATSGO) dataset published in 1994. It consists of a broad-based inventory of soils and non-soil areas that occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. The soil units are symbolized by Esri to show the dominant condition for the 12 soil orders according to Soil Taxonomy. Dominant condition was determined by evaluating each of the components in a map unit; the percentage of the component that each soil order represented was accumulated for all the soil orders present in the map unit. The soil order with the highest accumulated percentage is then characterized as the dominant condition for that unit. If a tie was found between soil orders, a “tie-break” rule was applied. The tie-break was based on the component’s “slope_r” attribute value, which represents the Slope Gradient – Representative Value. The slope_r values were accumulated in the same fashion as the soil order attributes, i.e., by soil order, and the order with the lowest slope_r value was selected as dominant because that represented the lower slope value, and therefore we assumed the soils were more likely to be staying in that area or being deposited in that area. USDA/NRCS GLOBAL SOIL REGIONS This layer shows the Global Soil Regions map by the United States Department of Agriculture’s Natural Resources Conservation Service. The data and symbology are based on a reclassification of the FAO-UNESCO Soil Map of the World combined with a soil climate map. The soils data is symbolized to show the distribution of the 12 soil orders according to Soil Taxonomy. For more information on this map, including the terms of use, visit us online.Website Link: https://www.nrcs.usda.gov/wps/portal/nrcs/site/national/home/
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The data release for the geologic and structure maps of the Wallace 1 x 2 degrees quadrangle, Montana and Idaho, is a Geologic Map Schema (GeMS)-compliant version that updates the GIS files for the geologic map published in U.S. Geological Survey (USGS) Miscellaneous Investigations Series Map I-1509-A (Harrison and others, 2000). The updated digital data present the attribute tables and geospatial features (points, lines and polygons) in the format that meets GeMS requirements. This data release presents the geologic map as shown on the plates and captured in geospatial data for the published map. Minor errors, such as mistakes in line decoration or differences between the digital data and the map image, are corrected in this version. The database represents the geology for the 16,754 square kilometer, geologically complex Wallace quadrangle in northern Idaho and western Montana, at a publication scale of 1:250,000. The map covers primarily Lake, Mineral, Sanders and Shoshone Cou ...
Facebook
TwitterThe National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.