U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This Titanium_vanadium_column_headings.csv file correlates the column headings in the Titanium_vanadium_deposits.csv file with the attribute field names in the Titanium_vanadium_deposits.shp file and provides a brief description of each column heading and attribute field name. Also included with this data release are the following files: Titanium_vanadium_deposits.csv file, which lists the deposits and associated information such as the host intrusion, location, grade, and tonnage data, along with other miscellaneous descriptive data about the deposits; Titanium_vanadium_deposits.shp file, which duplicates the information in the Titanium_vanadium_deposits.csv file in a spatial format for use in a GIS; Titanium_vanadium_deposits_concentrate_grade.csv file, which lists the concentrate grade data for the deposits, when available; and Titanium_vanadium_deposits_references.csv file, which lists the abbreviated and full references that are cited in the Titanium_vanadium_deposits.csv, an ...
Wetlands are areas where water is present at or near the surface of the soil during at least part of the year. Wetlands provide habitat for many species of plants and animals that are adapted to living in wet habitats. Wetlands form characteristic soils, absorb pollutants and excess nutrients from aquatic systems, help buffer the effects of high flows, and recharge groundwater. Data on the distribution and type of wetland play an important role in land use planning and several federal and state laws require that wetlands be considered during the planning process.The National Wetlands Inventory (NWI) was designed to assist land managers in wetland conservation efforts. The NWI is managed by the US Fish and Wildlife Service.Dataset SummaryPhenomenon Mapped: WetlandsCoordinate System: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands and the Northern Mariana IslandsVisible Scale: The data is visible at scales from 1:144,000 to 1:1,000Resolution/Tolerance: 0.0001 meters/0.001 metersNumber of Features: 34,954,623 diced, after applying a 50,000 vertex limit to an original set of 34,950,653 featuresFeature Limit: 10,000Source: U.S. Fish and Wildlife ServicePublication Date: September 29, 2020ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/This layer was created from the September 29, 2020 version of the NWI. This layer includes attributes from the original dataset as well as attributes added by Esri for use in the default pop-up and to allow the user to query and filter the data.NWI derived attributes:Wetland Code - a code that identifies specific attributes of the wetlandWetland Type - one of 8 wetland typesArea - area of the wetland in acresEsri created attributes:System - code indicating the system and subsystem of the wetlandClass - code indicating the class and subclass of the wetlandModifier 1, Modifier 2, Modifier 3, Modifier 4 - these four fields contain letter codes for modifiers applied to the wetland descriptionSystem Name - the name of the system (Marine, Estuarine, Riverine, Lacustrine, or Palustrine)Subsystem Name - the name of the subsystemClass Name - the name of the classSubclass Name - the name of the subclassModifier 1 Name, Modifier 2 Name, Modifier 3 Name , Modifier 4 Name - these four fields contain names for modifiers applied to the wetland descriptionPopup Header - this field contains a text string that is used to create the header in the default pop-up System Text - this field contains a text string that is used to create the system description text in the default pop-upClass Text - this field contains a text string that is used to create the class description text in the default pop-upModifier Text - this field contains a text string that is used to create the modifier description text in the default pop-upSpecies Text - this field contains a text string that is used to create the species description text in the default pop-upCodes, names, and text fields were derived from the publication Classification of Wetlands and Deepwater Habitats of the United States.What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:144,000 or larger but an imagery layer created from the same data can be used at smaller scales to produce a webmap that displays across the full scale range. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter for System Text = 'Palustrine' to create a map of palustrine wetlands only.Add labels and set their propertiesCustomize the pop-upArcGIS ProAdd this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
Model Methods:1. Extracts layer areas only within the study area. 2. Assigns a score from 0 (lowest) to 3 (highest) to each attribute as described in the attribute selection column. 4. Converts layer from raster to polygon. 5. Renames the attribute field with rankings from GRIDCODE to descriptive scoring field name.
Overview The Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. The current edition is version 11.4 (published 24 February 2025). The 11.4 release contains updated boundary lines and data refinements designed to extend the functionality of the dataset. These data and generalized derivatives are the only international boundary lines approved for U.S. Government use. The contents of this dataset reflect U.S. Government policy on international boundary alignment, political recognition, and dispute status. They do not necessarily reflect de facto limits of control. National Geospatial Data Asset This dataset is a National Geospatial Data Asset (NGDAID 194) managed by the Department of State. It is a part of the International Boundaries Theme created by the Federal Geographic Data Committee. Dataset Source Details Sources for these data include treaties, relevant maps, and data from boundary commissions, as well as national mapping agencies. Where available and applicable, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery process includes analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground. Cartographic Visualization The LSIB is a geospatial dataset that, when used for cartographic purposes, requires additional styling. The LSIB download package contains example style files for commonly used software applications. The attribute table also contains embedded information to guide the cartographic representation. Additional discussion of these considerations can be found in the Use of Core Attributes in Cartographic Visualization section below. Additional cartographic information pertaining to the depiction and description of international boundaries or areas of special sovereignty can be found in Guidance Bulletins published by the Office of the Geographer and Global Issues: https://data.geodata.state.gov/guidance/index.html Contact Direct inquiries to internationalboundaries@state.gov. Direct download: https://data.geodata.state.gov/LSIB.zip Attribute Structure The dataset uses the following attributes divided into two categories: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | Core CC1_GENC3 | Extension CC1_WPID | Extension COUNTRY1 | Core CC2 | Core CC2_GENC3 | Extension CC2_WPID | Extension COUNTRY2 | Core RANK | Core LABEL | Core STATUS | Core NOTES | Core LSIB_ID | Extension ANTECIDS | Extension PREVIDS | Extension PARENTID | Extension PARENTSEG | Extension These attributes have external data sources that update separately from the LSIB: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | GENC CC1_GENC3 | GENC CC1_WPID | World Polygons COUNTRY1 | DoS Lists CC2 | GENC CC2_GENC3 | GENC CC2_WPID | World Polygons COUNTRY2 | DoS Lists LSIB_ID | BASE ANTECIDS | BASE PREVIDS | BASE PARENTID | BASE PARENTSEG | BASE The core attributes listed above describe the boundary lines contained within the LSIB dataset. Removal of core attributes from the dataset will change the meaning of the lines. An attribute status of “Extension” represents a field containing data interoperability information. Other attributes not listed above include “FID”, “Shape_length” and “Shape.” These are components of the shapefile format and do not form an intrinsic part of the LSIB. Core Attributes The eight core attributes listed above contain unique information which, when combined with the line geometry, comprise the LSIB dataset. These Core Attributes are further divided into Country Code and Name Fields and Descriptive Fields. County Code and Country Name Fields “CC1” and “CC2” fields are machine readable fields that contain political entity codes. These are two-character codes derived from the Geopolitical Entities, Names, and Codes Standard (GENC), Edition 3 Update 18. “CC1_GENC3” and “CC2_GENC3” fields contain the corresponding three-character GENC codes and are extension attributes discussed below. The codes “Q2” or “QX2” denote a line in the LSIB representing a boundary associated with areas not contained within the GENC standard. The “COUNTRY1” and “COUNTRY2” fields contain the names of corresponding political entities. These fields contain names approved by the U.S. Board on Geographic Names (BGN) as incorporated in the ‘"Independent States in the World" and "Dependencies and Areas of Special Sovereignty" lists maintained by the Department of State. To ensure maximum compatibility, names are presented without diacritics and certain names are rendered using common cartographic abbreviations. Names for lines associated with the code "Q2" are descriptive and not necessarily BGN-approved. Names rendered in all CAPITAL LETTERS denote independent states. Names rendered in normal text represent dependencies, areas of special sovereignty, or are otherwise presented for the convenience of the user. Descriptive Fields The following text fields are a part of the core attributes of the LSIB dataset and do not update from external sources. They provide additional information about each of the lines and are as follows: ATTRIBUTE NAME | CONTAINS NULLS RANK | No STATUS | No LABEL | Yes NOTES | Yes Neither the "RANK" nor "STATUS" fields contain null values; the "LABEL" and "NOTES" fields do. The "RANK" field is a numeric expression of the "STATUS" field. Combined with the line geometry, these fields encode the views of the United States Government on the political status of the boundary line. ATTRIBUTE NAME | | VALUE | RANK | 1 | 2 | 3 STATUS | International Boundary | Other Line of International Separation | Special Line A value of “1” in the “RANK” field corresponds to an "International Boundary" value in the “STATUS” field. Values of ”2” and “3” correspond to “Other Line of International Separation” and “Special Line,” respectively. The “LABEL” field contains required text to describe the line segment on all finished cartographic products, including but not limited to print and interactive maps. The “NOTES” field contains an explanation of special circumstances modifying the lines. This information can pertain to the origins of the boundary lines, limitations regarding the purpose of the lines, or the original source of the line. Use of Core Attributes in Cartographic Visualization Several of the Core Attributes provide information required for the proper cartographic representation of the LSIB dataset. The cartographic usage of the LSIB requires a visual differentiation between the three categories of boundary lines. Specifically, this differentiation must be between: International Boundaries (Rank 1); Other Lines of International Separation (Rank 2); and Special Lines (Rank 3). Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary. Please consult the style files in the download package for examples of this depiction. The requirement to incorporate the contents of the "LABEL" field on cartographic products is scale dependent. If a label is legible at the scale of a given static product, a proper use of this dataset would encourage the application of that label. Using the contents of the "COUNTRY1" and "COUNTRY2" fields in the generation of a line segment label is not required. The "STATUS" field contains the preferred description for the three LSIB line types when they are incorporated into a map legend but is otherwise not to be used for labeling. Use of the “CC1,” “CC1_GENC3,” “CC2,” “CC2_GENC3,” “RANK,” or “NOTES” fields for cartographic labeling purposes is prohibited. Extension Attributes Certain elements of the attributes within the LSIB dataset extend data functionality to make the data more interoperable or to provide clearer linkages to other datasets. The fields “CC1_GENC3” and “CC2_GENC” contain the corresponding three-character GENC code to the “CC1” and “CC2” attributes. The code “QX2” is the three-character counterpart of the code “Q2,” which denotes a line in the LSIB representing a boundary associated with a geographic area not contained within the GENC standard. To allow for linkage between individual lines in the LSIB and World Polygons dataset, the “CC1_WPID” and “CC2_WPID” fields contain a Universally Unique Identifier (UUID), version 4, which provides a stable description of each geographic entity in a boundary pair relationship. Each UUID corresponds to a geographic entity listed in the World Polygons dataset. These fields allow for linkage between individual lines in the LSIB and the overall World Polygons dataset. Five additional fields in the LSIB expand on the UUID concept and either describe features that have changed across space and time or indicate relationships between previous versions of the feature. The “LSIB_ID” attribute is a UUID value that defines a specific instance of a feature. Any change to the feature in a lineset requires a new “LSIB_ID.” The “ANTECIDS,” or antecedent ID, is a UUID that references line geometries from which a given line is descended in time. It is used when there is a feature that is entirely new, not when there is a new version of a previous feature. This is generally used to reference countries that have dissolved. The “PREVIDS,” or Previous ID, is a UUID field that contains old versions of a line. This is an additive field, that houses all Previous IDs. A new version of a feature is defined by any change to the
The public version of this Asset database can be accessed via the following dataset:
Asset database for the Cooper subregion on 27 August 2015 Public (526707e0-9d32-47de-a198-9c8f35761a7e)
The dataset was derived by the Bioregional Assessment Programme from multiple source datasets. The source datasets are identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.
The asset database for Cooper subregion (v3) supersedes previous version (v2) of the Cooper Asset database (Asset database for the Cooper subregion on 14 August 2015, 5c3697e6-8077-4de7-b674-e0dfc33b570c). The M2_Reason in the Assetlist table and DecisionBrief in the AssetDecisions table have been updated with short descriptions (<255 characters) provided by project team 21/8, and the draft "water-dependent asset register and asset list" (BA-LEB-COO-130-WaterDependentAssetRegister-AssetList-V20150827) also updated accordingly. This change was made to avoid truncation in the brief reasons fields of the database and asset register. There have been no changes to assets or asset numbers.
This dataset contains a combination of spatial and non-spatial (attribute) components of the Cooper subregion Asset List - an mdb file (readable as an MS Access database or as an ESRI personal geodatabase) holds the non-spatial tabular attribute data, and an ESRI file geodatabase contains the spatial data layers, which are attributed only with unique identifiers ("AID" for assets, and "ElementID" for elements). The dataset also contains an update of the draft "Water-dependent asset register and asset list" spreadsheet (BA-NIC-COO-130-WaterDependentAssetRegister-AssetList-V20150827.xlsx).
The tabular attribute data can be joined in a GIS to the "Assetlist" table in the mdb database using the "AID" field to view asset attributes (BA attribution). To view the more detailed attribution at the element-level, the intermediate table "Element_to_asset" can be joined to the assets spatial datasets using AID, and then joining the individual attribute tables from the Access database using the common "ElementID" fields. Alternatively, the spatial feature layers representing elements can be linked directly to the individual attribute tables in the Access database using "ElementID", but this arrangement will not provide the asset-level groupings.
Further information is provided in the accompanying document, "COO_asset_database_doc20150827.doc" located within this dataset.
Version ID Date Notes
1.0 27/03/2015 Initial database
2.0 14/08/2015 "(1) Updated the database for M2 test results provided from COO assessment team and created the draft BA-LEB-COO-130-WaterDependentAssetRegister-AssetList-V20150814.xlsx
(2) updated the group, subgroup, class and depth for (up to) 2 NRM WAIT assets to cooperate the feedback to OWS from relevant SA NRM regional office (whose staff missed the asset workshop). The AIDs and names of those assets are listed in table LUT_changed_asset_class_20150814 in COO_asset_database_20150814.mdb
(3) As a result of (2), added one new asset separated from one existing asset. This asset and its parent are listed in table LUT_ADD_1_asste_20150814 in COO_asset_database_20150814.mdb. The M2 test result for this asset is inherited from its parent in this version
(5) Added Appendix C in COO_asset_database_doc_201500814.doc is about total elements/assets in current Group and subgroup
(6)Added Four SQL queries (Find_All_Used_Assets, Find_All_WD_Assets, Find_Amount_Asset_in_Class and Find_Amount_Elements_in_Class) in COO_asset_database_20150814.mdb.mdb for total assets and total numbers
(7)The databases, especially spatial database (COO_asset_database_20150814Only.gdb), were changed such as duplicated attribute fields in spatial data were removed and only ID field is kept. The user needs to join the Table Assetlist or Elementlist to the relevant spatial data"
3.0 27/08/2015 M2_Reason in the Assetlist table and DecisionBrief in the AssetDecisions table have been updated with short descriptions (<255 characters) provided by project team 21/8, and the draft "water-dependent asset register and asset list" (BA-LEB-COO-130-WaterDependentAssetRegister-AssetList-V20150827) also updated accordingly. No changes to asset numbers.
Bioregional Assessment Programme (2014) Asset database for the Cooper subregion on 27 August 2015. Bioregional Assessment Derived Dataset. Viewed 27 November 2017, http://data.bioregionalassessments.gov.au/dataset/0b122b2b-e5fe-4166-93d1-3b94fc440c82.
Derived From QLD Dept of Natural Resources and Mines, Groundwater Entitlements 20131204
Derived From Queensland QLD - Regional - NRM - Water Asset Information Tool - WAIT - databases
Derived From Matters of State environmental significance (version 4.1), Queensland
Derived From Geofabric Surface Network - V2.1
Derived From Communities of National Environmental Significance Database - RESTRICTED - Metadata only
Derived From South Australia SA - Regional - NRM Board - Water Asset Information Tool - WAIT - databases
Derived From National Groundwater Dependent Ecosystems (GDE) Atlas
Derived From National Groundwater Information System (NGIS) v1.1
Derived From Birds Australia - Important Bird Areas (IBA) 2009
Derived From Queensland QLD Regional CMA Water Asset Information WAIT tool databases RESTRICTED Includes ALL Reports
Derived From Queensland wetland data version 3 - wetland areas.
Derived From SA Department of Environment, Water and Natural Resources (DEWNR) Water Management Areas 141007
Derived From South Australian Wetlands - Groundwater Dependent Ecosystems (GDE) Classification
Derived From National Groundwater Dependent Ecosystems (GDE) Atlas (including WA)
Derived From Asset database for the Cooper subregion on 14 August 2015
Derived From QLD Dept of Natural Resources and Mines, Groundwater Entitlements linked to bores v3 03122014
Derived From Ramsar Wetlands of Australia
Derived From Permanent and Semi-Permanent Waterbodies of the Lake Eyre Basin (Queensland and South Australia) (DRAFT)
Derived From SA EconomicElements v1 20141201
Derived From QLD Dept of Natural Resources and Mines, Groundwater Entitlements linked to bores and NGIS v4 28072014
Derived From National Heritage List Spatial Database (NHL) (v2.1)
Derived From Great Artesian Basin and Laura Basin groundwater recharge areas
Derived From SA Department of Environment, Water and Natural Resources (DEWNR) Groundwater Licences 141007
Derived From Lake Eyre Basin (LEB) Aquatic Ecosystems Mapping and Classification
Derived From Australia - Species of National Environmental Significance Database
Derived From Asset database for the Cooper subregion on 27 March 2015
Derived From Australia, Register of the National Estate (RNE) - Spatial Database (RNESDB) Internal
Derived From Directory of Important Wetlands in Australia (DIWA) Spatial Database (Public)
Derived From Collaborative Australian Protected Areas Database (CAPAD) 2010 (Not current release)
This dataset is a compilation of parcel polygon layers from the seven Twin Cities metropolitan area counties of Anoka, Carver, Dakota, Hennepin, Ramsey, Scott and Washington. The seven counties were assembled into a common coordinate system. No attempt has been made to edgematch or rubbersheet between counties. A standard set of attribute fields is included for each county. Not all attributes are populated for all counties.
This is an annual version of the MetroGIS Regional Parcel Dataset that can be used with other annual versions to do change analysis and time series investigations. This dataset is intended to contain all updates to each county's parcel data through the end of 2002. It was originally published as the "January 1, 2003" version of the dataset. See the Currentness Reference below and the Entity and Attribute information in Section 5 for more information about the dates for specific aspects of the dataset.
Some counties have also made available a parcel points dataset that includes the same attribute fields. This is done to provide information in situations where multiple tax parcels are represented by a single polygon.
This is a MetroGIS Regionally Endorsed dataset.
Each of the seven Metro Area counties has entered into a multiparty agreement with the Metropolitan Council to assemble and distribute the parcel data for each county as a regional (seven county) parcel dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Physical and vegetation attributes (mean + SE) of uncleared forests and fields with different lengths of abandonment (N = 55).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Land use potential for Field Peas: based on soil and landscape attributes only. The relative potential to sustain particular crops is predicted from expert assessment of plant requirements and available soil and land attribute mapping. No account has been taken of water quality or availability, climatic factors or existing land use. This spatial dataset is part of a series depicting the potential of land for a range of agricultural uses.
Model Methods:1. Extracts layer areas only within the study area. 2. Assigns a score from 0 (lowest) to 3 (highest) to each attribute as described in the attribute selection column. 4. Converts layer from raster to polygon. 5. Renames the attribute field with rankings from GRIDCODE to descriptive scoring field name.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Description of the INSPIRE Download Service (predefined Atom): The map shows the field capacity of the soils based on 10 dm tread depth (FK10). Derivation based on guide profiles of the soil overview map in scale 1:100,000 (BÜK 100). Classification of FK10 according to the following classification: 130- 260 l/m3 = low, 260 - 390 l/m3 = medium, 390 - 520 l/m3 = high. Attribute fields: VALUE = coding of FK10 (2 = low, 3 = medium, 4 = high, 0 = settlement area and unrated areas). Data was imported into the GDZ and modelled there as values of a multi-feature class, which consists of the spatial feature class GDZ2010.A_gybzst and the business table with the values (GDZ2010.gybzst); then the values for the field capacity parameter for the Saarland viewing room were exported to the filegeodatabase GDZ_GDB. Access URL - The link(s) for downloading the records is/are dynamically generated from GetFeature requests to a WFS 1.1.0+
The map shows the usable field capacity in the effective root space (nFCs) of the soils of the German-French Garden. Attribute fields: ‘NFK’ = classified usable field capacity in the effective root space (nFCs) according to KA 4; 2 = low, 2-3 = low to medium, 3 = medium, 4 = high, 5 = very high, 0 = sealed surface. Data was imported into the GDZ and modeled there as values of a multifeature class consisting of the flaky feature class GDZ2010.A_gybzst and the business table with values (GDZ2010.gybzst); the values for the field capacity parameter for the German-French Garden viewing space were then exported to the filegeodatabase GDZ_GDB. Attribute description s.under Access URL
First, we would like to thank the wildland fire advisory group. Their wisdom and guidance helped us build the dataset as it currently exists. Currently, there are multiple, freely available fire datasets that identify wildfire and prescribed fire burned areas across the United States. However, these datasets are all limited in some way. Their time periods could cover only a couple of decades or they may have stopped collecting data many years ago. Their spatial footprints may be limited to a specific geographic area or agency. Their attribute data may be limited to nothing more than a polygon and a year. None of the existing datasets provides a comprehensive picture of fires that have burned throughout the last few centuries. Our dataset uses these existing layers and utilizes a series of both manual processes and ArcGIS Python (arcpy) scripts to merge these existing datasets into a single dataset that encompasses the known wildfires and prescribed fires within the United States and certain territories. Forty different fire layers were utilized in this dataset. First, these datasets were ranked by order of observed quality (Tiers). The datasets were given a common set of attribute fields and as many of these fields were populated as possible within each dataset. All fire layers were then merged together (the merged dataset) by their common attributes to created a merged dataset containing all fire polygons. Polygons were then processed in order of Tier (1-8) so that overlapping polygons in the same year and Tier were dissolved together. Overlapping polygons in subsequent Tiers were removed from the dataset. Attributes from the original datasets of all intersecting polygons in the same year across all Tiers were also merged so that all attributes from all Tiers were included, but only the polygons from the highest ranking Tier were dissolved to form the fire polygon. The resulting product (the combined dataset) has only one fire per year in a given area with one set of attributes. While it combines wildfire data from 40 wildfire layers and therefore has more complete information on wildfires than the datasets that went into it, this dataset has also has its own set of limitations. Please see the Data Quality attributes within the metadata record for additional information on this dataset's limitations. Overall, we believe this dataset is designed be to a comprehensive collection of fire boundaries within the United States and provides a more thorough and complete picture of fires across the United States when compared to the datasets that went into it.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Rapidly acquiring three-dimensional (3D) building data, including geometric attributes like rooftop, height and orientations, as well as indicative attributes like function, quality, and age, is essential for accurate urban analysis, simulations, and policy updates. Current building datasets suffer from incomplete coverage of building multi-attributes. This paper presents the first national-scale Multi-Attribute Building dataset (CMAB) with artificial intelligence, covering 3,667 spatial cities, 31 million buildings, and 23.6 billion m² of rooftops with an F1-Score of 89.93% in OCRNet-based extraction, totaling 363 billion m³ of building stock. We trained bootstrap aggregated XGBoost models with city administrative classifications, incorporating morphology, location, and function features. Using multi-source data, including billions of remote sensing images and 60 million street view images (SVIs), we generated rooftop, height, structure, function, style, age, and quality attributes for each building with machine learning and large multimodal models. Accuracy was validated through model benchmarks, existing similar products, and manual SVI validation, mostly above 80%. Our dataset and results are crucial for global SDGs and urban planning.Data records: A building dataset with a total rooftop area of 23.6 billion square meters in 3,667 natural cities in China, including the attribute of building rooftop, height, structure, function, age, style and quality, as well as the code files used to calculate these data. The deep learning models used are OCRNet, XGBoost, fine-tuned CLIP and Yolo-v8.Supplementary note: The architectural structure, style, and quality are affected by the temporal and spatial distribution of street views in China. Regarding the recognition of building colors, we found that the existing CLIP series model can not accurately judge the composition and proportion of building colors, and then it will be accurately calculated and supplemented by semantic segmentation and image processing. Please contact zhangyec23@mails.tsinghua.edu.cn or ylong@tsinghua.edu.cn if you have any technical problems.Reference Format: Zhang, Y., Zhao, H. & Long, Y. CMAB: A Multi-Attribute Building Dataset of China. Sci Data 12, 430 (2025). https://doi.org/10.1038/s41597-025-04730-5.
Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations.Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals.Dataset SummaryPhenomenon Mapped: Soils of the United States and associated territoriesCoordinate System: Web Mercator Auxiliary SphereExtent: The 50 United States, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaVisible Scale: 1:144,000 to 1:1,000Number of Features: 36,569,286Source: USDA Natural Resources Conservation ServicePublication Date: December 2021Data from the gSSURGO database was used to create this layer.AttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them.Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units.Area SymbolSpatial VersionMap Unit SymbolMap Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field.Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability RatingLegend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field.Project ScaleSurvey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields.Survey Area VersionTabular VersionMap Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field.Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - PresenceRating for Manure and Food Processing Waste - Weighted AverageComponent Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected.Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent KeyComponent Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r).Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence - High ValueTotal Subsidence - Low ValueTotal Subsidence - Representative ValueTotal Subsidence - High ValueCrop Productivity IndexEsri SymbologyThis field was created to provide symbology based on the Taxonomic Order field (taxorder). Because some mapunits have a null value for soil order, a custom script was used to populate this field using the Component Name (compname) and Mapunit Name (muname) fields. This field was created using the dominant soil order of each mapunit.Esri SymbologyHorizon TableEach map unit polygon has one or more components and each component has one or more layers known as horizons. To incorporate this field from the Horizon table into the attributes for this layer, a custom script was used to first calculate the mean value weighted by thickness of the horizon for each component and then a mean value of components weighted by the Component Percentage Representative Value field for each map unit. K-Factor Rock FreeEsri Soil OrderThese fields were calculated from the Component table using a model that included the Pivot Table Tool, the Summarize Tool and a custom script. The first 11 fields provide the sum of Component Percentage Representative Value for each soil order for each map unit. The Soil Order Dominant Condition field was calculated by selecting the highest value in the preceding 11 soil order fields. In the case of tied values the component with the lowest average slope value (slope_r) was selected. If both soil order and slope were tied the first value in the table was selected.Percent AlfisolsPercent AndisolsPercent AridisolsPercent EntisolsPercent GelisolsPercent HistosolsPercent InceptisolsPercent MollisolsPercent SpodosolsPercent UltisolsPercent VertisolsSoil Order - Dominant ConditionEsri Popup StringThis field contains a text string calculated by Esri that is used to create a basic pop-up using some of the more popular SSURGO attributes.Map Unit KeyThe Mapunit key field is found
Model Methods
This dataset includes all 7 metro counties that have made their parcel data freely available without a license or fees.
This dataset is a compilation of tax parcel polygon and point layers assembled into a common coordinate system from Twin Cities, Minnesota metropolitan area counties. No attempt has been made to edgematch or rubbersheet between counties. A standard set of attribute fields is included for each county. The attributes are the same for the polygon and points layers. Not all attributes are populated for all counties.
NOTICE: The standard set of attributes changed to the MN Parcel Data Transfer Standard on 1/1/2019.
https://www.mngeo.state.mn.us/committee/standards/parcel_attrib/parcel_attrib.html
See section 5 of the metadata for an attribute summary.
Detailed information about the attributes can be found in the Metro Regional Parcel Attributes document.
The polygon layer contains one record for each real estate/tax parcel polygon within each county's parcel dataset. Some counties have polygons for each individual condominium, and others do not. (See Completeness in Section 2 of the metadata for more information.) The points layer includes the same attribute fields as the polygon dataset. The points are intended to provide information in situations where multiple tax parcels are represented by a single polygon. One primary example of this is the condominium, though some counties stacked polygons for condos. Condominiums, by definition, are legally owned as individual, taxed real estate units. Records for condominiums may not show up in the polygon dataset. The points for the point dataset often will be randomly placed or stacked within the parcel polygon with which they are associated.
The polygon layer is broken into individual county shape files. The points layer is provided as both individual county files and as one file for the entire metro area.
In many places a one-to-one relationship does not exist between these parcel polygons or points and the actual buildings or occupancy units that lie within them. There may be many buildings on one parcel and there may be many occupancy units (e.g. apartments, stores or offices) within each building. Additionally, no information exists within this dataset about residents of parcels. Parcel owner and taxpayer information exists for many, but not all counties.
This is a MetroGIS Regionally Endorsed dataset.
Additional information may be available from each county at the links listed below. Also, any questions or comments about suspected errors or omissions in this dataset can be addressed to the contact person at each individual county.
Anoka = http://www.anokacounty.us/315/GIS
Caver = http://www.co.carver.mn.us/GIS
Dakota = http://www.co.dakota.mn.us/homeproperty/propertymaps/pages/default.aspx
Hennepin = https://gis-hennepin.hub.arcgis.com/pages/open-data
Ramsey = https://www.ramseycounty.us/your-government/open-government/research-data
Scott = http://opendata.gis.co.scott.mn.us/
Washington: http://www.co.washington.mn.us/index.aspx?NID=1606
2023 STATEWIDE CROP MAPPING - PROVISIONALLand use data is critically important to the work of the Department of Water Resources (DWR) and other California agencies. Understanding the impacts of land use, crop location, acreage, and management practices on environmental attributes and resource management is an integral step in the ability of Groundwater Sustainability Agencies (GSAs) to produce Groundwater Sustainability Plans (GSPs) and implement projects to attain sustainability. Land IQ was contracted by DWR to develop a comprehensive and accurate spatial land use database for the 2023 water year (WY 2023). The primary objective of this effort was to produce a spatial land use database with accuracies exceeding 95% using remote sensing, statistical, and temporal analysis methods. This project is an extension of the 2014, 2016, 2018, 2019, 2020, 2021, and 2022 land use mapping, which classified over 14 million acres of land into irrigated agriculture and urban area. Unlike the 2014 and 2016 datasets, the WY 2018, 2019, 2020, 2021, 2022 and 2023 datasets include multi-cropping and incorporates DWR ground-truth data from Siskiyou, Modoc, Lassen and Shasta counties. Land IQ integrated crop production knowledge with detailed ground truth information and multiple satellite and aerial image resources to conduct remote sensing land use analysis at the field scale. Individual fields (boundaries of homogeneous crop types representing cropped area, rather than legal parcel boundaries) were classified using a crop category legend and a more specific crop type legend. A supervised classification method using a random forest approach was used to classify delineated fields and was carried out county by county where training samples were available. Random forest approaches are currently some of the highest performing methods for data classification and regression. To determine frequency and seasonality of multiple-cropped fields, peak growth dates were determined for annual crops. Fields were attributed with DWR crop categories and included citrus/subtropical, deciduous fruits and nuts, field crops, grain and hay, idle, pasture, rice, truck crops, urban, vineyards, and young perennials. These categories represent aggregated groups of specific crop types in the Land IQ dataset. Accuracy was calculated for the crop mapping using both DWR and Land IQ crop legends. The overall accuracy result for the crop mapping statewide was 98.4% at the DWR Class level and 97.4% at the DWR Subclass level. Accuracy and error results varied among crop types. In particular, some less extensive crops that have very few validation samples may have a skewed accuracy result depending on the number and nature of validation sample points. DWR revised crops and conditions from the Land IQ classification were encoded using standard DWR land use codes added to feature attributes, and each modified classification is indicated by the value 'r' in the ‘DWR_REVISE' data field. Polygons drawn by DWR, not included in Land IQ dataset receive the 'n' code for new. Boundary change (i.e. DWR changed the boundary that LIQ delivered could be split boundary) indicated by 'b'. Each polygon classification is consistent with DWR attribute standards, however some of DWR's traditional attribute definitions are modified and extended to accommodate unavoidable constraints within remote-sensing classifications, or to make data more specific for DWR's water balance computation needs. The original Land IQ classifications reported for each polygon are preserved for comparison, and are also expressed as DWR standard attributes. Comments, problems, improvements, updates, or suggestions about local conditions or revisions in the final data set should be forwarded to the appropriate Regional Office Senior Land Use Supervisor. Revisions were made if: - DWR corrected the original crop classification based on local knowledge and analysis, -PARTIALLY IRRIGATED CROPS Crops irrigated for only part of their normal irrigation season were given the special condition of ‘X’, -In certain areas, DWR changed the irrigation status to irrigated or non-irrigated. Among those areas the special condition may have been changed to 'Partially Irrigated' based on image analysis and local knowledge, - young versus mature stages of perennial orchards and vineyards were identified (DWR added ‘Young’ to Special Condition attributes), - DWR determined that a field originally classified ‘Idle’ was actually cropped one or more times during the year, - the percent of cropped area was changed from the original acres reported by Land IQ (values indicated in DWR ‘Percent’ column), - DWR determined that the field boundary should have been split to better reflect separate crops within the same polygon and identified by a 'b' in the DWR_REVISED column, - The ‘Mixed’ was added to the MULTIUSE column refers to no boundary change, but percent of field is changed where more than one crop is found, - DWR identified a distinct early or late crop on the field before the main season crop (‘Double’ was added to the MULTIUSE column); if the 1st and 2nd sequential crops occupied different portions of the total field acreage, the area percentages were indicated for each crop). This dataset includes multicropped fields. If the field was determined to have more than one crop during the course of the water year, the order of the crops is sequential, beginning with Class 1. All single cropped fields will be placed in Class 2, so every polygon will have a crop in the Class 2 and CropType2 columns. In the case that a permanent crop was removed during the water year, the Class 2 crop will be the permanent crop followed by ‘X’ – Unclassified fallow in the Class 3 column. In the case of Intercropping, the main crop will be placed in the Class 2 column with the partial crop in the Class 3 column. The column 'MAIN_CROP' was added in 2019 and has been continued through the 2023 dataset. This column indicates which field Land IQ identified as the main season crop for the water year representing the crop grown during the dominant growing season for each county. The column ‘MAIN_CROP_DATE’, continued in the 2023 dataset, indicates the NDVI peak date for this main season crop. Asterisks (* or **) in attribute table indicates no data have been collected for that specific attribute.Prior to WY 2021 final mapping release, pasture areas that where mechanically harvested during a water year were classified as P6-Miscellaneous Grasses. Starting with the WY 2021 final mapping release and moving forward these harvested pasture areas are classified as P3-Mixed Pasture.
Geoform is a configurable app template for form based data editing of a Feature Service. This application allows users to enter data through a form instead of a map's pop-up while leveraging the power of the Web Map and editable Feature Services. This app geo-enables data and workflows by lowering the barrier of entry for completing simple tasks. Use CasesProvides a form-based experience for entering data through a form instead of a map pop-up. This is a good choice for users who find forms a more intuitive format than pop-ups for entering data.Useful to collect new point data from a large audience of non technical staff or members of the community.Configurable OptionsGeoform has an interactive builder used to configure the app in a step-by-step process. Use Geoform to collect new point data and configure it using the following options:Choose a web map and the editable layer(s) to be used for collection.Provide a title, logo image, and form instructions/details.Control and choose what attribute fields will be present in the form. Customize how they appear in the form, the order they appear in, and add hint text.Select from over 15 different layout themes.Choose the display field that will be used for sorting when viewing submitted entries.Enable offline support, social media sharing, default map extent, locate on load, and a basemap toggle button.Choose which locate methods are available in the form, including: current location, search, latitude and longitude, USNG coordinates, MGRS coordinates, and UTM coordinates.Supported DevicesThis application is responsively designed to support use in browsers on desktops, mobile phones, and tablets.Data RequirementsThis web app includes the capability to edit a hosted feature service or an ArcGIS Server feature service. Creating hosted feature services requires an ArcGIS Online organizational subscription or an ArcGIS Developer account. Get Started This application can be created in the following ways:Click the Create a Web App button on this pageShare a map and choose to Create a Web AppOn the Content page, click Create - App - From Template Click the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.
https://www.arcgis.com/home/item.html?id=806c857d504c476ba6477ac475c45bf5https://www.arcgis.com/home/item.html?id=806c857d504c476ba6477ac475c45bf5
Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations.Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals.Dataset SummaryPhenomenon Mapped: Ready-to-use project packages with over 170 attributes derived from the SSURGO dataset, split up by HUC8s. Geographic Extent: The dataset covers the 48 contiguous United States plus Hawaii and portions of Alaska. Map packages are available for Puerto Rico and the US Virgin Islands. A project package for US Island Territories and associated states of the Pacific Ocean can be downloaded by clicking one of the included areas in the map. The Pacific Project Package includes: Guam, the Marshall Islands, the Northern Marianas Islands, Palau, the Federated States of Micronesia, and American Samoa.Source: Natural Resources Conservation ServiceUpdate Frequency: AnnualPublication Date: December 2024Link to source metadata*Not all areas within SSURGO have completed soil surveys and many attributes have areas with no data.The soil data in the packages is also available as a feature layer in the ArcGIS Living Atlas of the World.AttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them.Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units.Area SymbolSpatial VersionMap Unit SymbolMap Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field.Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability RatingLegend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field.Project ScaleSurvey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields.Survey Area VersionTabular VersionMap Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field.Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Map Unit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Map Unit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - PresenceRating for Manure and Food Processing Waste - Weighted AverageComponent Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected.Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent KeyComponent Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r).Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence - High ValueTotal Subsidence - Low ValueTotal Subsidence - Representative ValueTotal Subsidence - High ValueCrop Productivity IndexEsri SymbologyThis field was created to provide symbology based on the Taxonomic Order field (taxorder). Because some map units have a null value for soil order, a custom script was used to populate this field using the Component Name (compname) and Map Unit Name (muname) fields. This field was created using the dominant soil order of each map unit.Esri SymbologyHorizon TableEach map unit polygon has one or more components and each component has one or more layers known as horizons. To incorporate this field from the Horizon table into the attributes for this layer, a custom script was used to first calculate the mean value weighted by thickness of the horizon for each component and then a mean value of components weighted by the Component Percentage Representative Value field for each map unit. K-Factor Rock FreeEsri Soil OrderThese fields were calculated from the Component table using a model that included the Pivot Table Tool, the Summarize Tool and a custom script. The first 11 fields provide the sum of Component Percentage Representative Value for each soil order for each map unit. The Soil Order Dominant Condition field was calculated by selecting the highest value in the preceding 11 soil order fields. In the case of tied values the component with the lowest average slope value (slope_r) was selected. If both soil order and slope were tied