100+ datasets found
  1. a

    How To Find Attribute Data, Use Attribute Tables and Pop Ups

    • hub.arcgis.com
    Updated Nov 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    melanie.chatten (2021). How To Find Attribute Data, Use Attribute Tables and Pop Ups [Dataset]. https://hub.arcgis.com/documents/b0873a6cf9bd4586b1bb93ef346dcbb0
    Explore at:
    Dataset updated
    Nov 6, 2021
    Dataset authored and provided by
    melanie.chatten
    License

    https://public-townofcobourg.hub.arcgis.com/pages/terms-of-usehttps://public-townofcobourg.hub.arcgis.com/pages/terms-of-use

    Description

    This is a guide that describes how to interact with pop ups and the attribute tables in web maps where that functionality is available. Not all widgets or functionality is available in every web map.

  2. a

    ArcGIS Attribute Rule Audit

    • ohio-gis-code-repository-geohio.hub.arcgis.com
    Updated Sep 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ohio Geographic Information and Data Exchange (2023). ArcGIS Attribute Rule Audit [Dataset]. https://ohio-gis-code-repository-geohio.hub.arcgis.com/documents/02fd5f9e50c1487d86185e2702f28154
    Explore at:
    Dataset updated
    Sep 19, 2023
    Dataset authored and provided by
    Ohio Geographic Information and Data Exchange
    Description

    This script will prompt the user for a path to a file geodatabase or a sde geodatabase connection file. Then the script will loop through the feature classes\tables and document details about the attribute rules. All of the data gathered is written to a csv file. This is a Jupyter Notebook written using arcpy.Sources used to develop this notebook:Iterate through SDE to find and export FCs with Attribute Rules with python?Attribute Rule propertiesA Python script to Automate Attribute Rules Deployment

  3. d

    Converting analog interpretive data to digital formats for use in database...

    • datadiscoverystudio.org
    Updated Jun 6, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2008). Converting analog interpretive data to digital formats for use in database and GIS applications [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/ed9bb80881c64dc38dfc614d7d454022/html
    Explore at:
    Dataset updated
    Jun 6, 2008
    Description

    Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information

  4. d

    Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot...

    • search.dataone.org
    • data.ess-dive.lbl.gov
    • +2more
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
    Time period covered
    Jan 1, 2008 - Jan 1, 2012
    Area covered
    Description

    This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

  5. Activity FACTS Common Attributes (Feature Layer)

    • agdatacommons.nal.usda.gov
    • catalog.data.gov
    • +5more
    bin
    Updated Jun 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Activity FACTS Common Attributes (Feature Layer) [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Activity_FACTS_Common_Attributes_Feature_Layer_/25974223
    Explore at:
    binAvailable download formats
    Dataset updated
    Jun 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data in this map service is updated every weekend.Note: This data includes all activities regardless of whether there is a spatial feature attached.Note: This is a large dataset. Metadata and Downloads are available at: https://data.fs.usda.gov/geodata/edw/datasets.php?xmlKeyword=FACTS+common+attributesTo download FACTS activities layers, search for the activity types you want, such as timber harvest or hazardous fuels treatments. The Forest Service's Natural Resource Manager (NRM) Forest Activity Tracking System (FACTS) is the agency standard for managing information about activities related to fire/fuels, silviculture, and invasive species. This feature class contains the FACTS attributes most commonly needed to describe FACTS activities.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService CSV Shapefile GeoJSON KML https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_ActivityFactsCommonAttributes_01/MapServer/0 Geodatabase Download Shapefile Download For complete information, please visit https://data.gov.

  6. w

    ArcGIS Tool: Inserts file name into attribute table

    • data.wu.ac.at
    • datadiscoverystudio.org
    • +1more
    zip
    Updated Jun 24, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2013). ArcGIS Tool: Inserts file name into attribute table [Dataset]. https://data.wu.ac.at/schema/data_gov/MGZmNGZlM2EtYWEyNy00ODRmLTlhODctNGE2YmJlOWFiOGQ1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 24, 2013
    Dataset provided by
    Department of the Interior
    Description

    This ArcGIS model inserts a file name into a feature class attribute table. The tool allows an user to identify features by a field that reference the name of the original file. It is useful when an user have to merge multiple feature classes and needs to identify which layer the features come from.

  7. a

    08.1 Working with Geodatabase Domains and Subtypes in ArcGIS

    • hub.arcgis.com
    • training-iowadot.opendata.arcgis.com
    Updated Feb 23, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 08.1 Working with Geodatabase Domains and Subtypes in ArcGIS [Dataset]. https://hub.arcgis.com/documents/e436ce085783468e8ea2025ceb12c150
    Explore at:
    Dataset updated
    Feb 23, 2017
    Dataset authored and provided by
    Iowa Department of Transportation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Maintaining accurate data is a concern of all GIS users. The geodatabase offers you the ability to create geographic features that represent the real world. As the real world changes, you must update these features and their attributes. When creating or updating data, you can add behavior to your features and other objects to minimize the potential for errors.After completing this course, you will be able to:Define the two types of attribute domains and discuss how they differ.Create attribute domains and use them when editing data.Create subtypes and use them when editing data.Explain the difference between an attribute domain and a subtype.

  8. d

    Geospatial Dataset of Wells and Attributes in the New England Groundwater...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Geospatial Dataset of Wells and Attributes in the New England Groundwater Level Network, 2017 (ver. 1.1, December 2019) [Dataset]. https://catalog.data.gov/dataset/geospatial-dataset-of-wells-and-attributes-in-the-new-england-groundwater-level-network-20
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    New England
    Description

    A dataset of well information and geospatial data was developed for 426 U.S. Geological Survey (USGS) observation wells in Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont. An extensive list of attributes is included about each well, its location, and water-level history to provide the public and water-resources community with comprehensive information on the USGS well network in New England and data available from these sites. These data may be useful for evaluating groundwater conditions and variability across the region. The well list and site attributes, which were extracted from USGS National Water Information System (NWIS), represent all of the active wells in the New England network up to the end of 2017, and an additional 45 wells that were inactive (discontinued or replaced by a nearby well) at that time. Inactive wells were included in the database because they (1) contain periods of water-level record that may be useful for groundwater assessments, (2) may become active again at some point, or (3) are being monitored by another agency (most discontinued New Hampshire wells are still being monitored and the data are available in the National Groundwater Monitoring Network (https://cida.usgs.gov/ngwmn/index.jsp). The wells in this database have been sites of water-level data collection (periodic levels and/or continuous levels) for an average of 31 years. Water-level records go back to 1913. The groundwater-level statistics included in the dataset represent hydrologic conditions for the period of record for inactive wells, or through the end of water year 2017 (September 30, 2017) for active wells. Geographic Information Systems (GIS) data layers were compiled from various sources and dates ranging from 2003 to 2018. These GIS data were used to calculate attributes related to topographic setting, climate, land cover, soil, and geology giving hydrologic and environmental context to each well. In total, the data include 90 attributes for each well. In addition to site number and station name, attributes were developed for site information (15 attributes); groundwater-level statistics through water year 2017 (16 attributes); well-construction information (9 attributes); topographic setting (11 attributes); climate (2 attributes); land use and cover (17 attributes); soils (4 attributes); and geology (14 attributes). Basic well and site information includes well location, period of record, well-construction details, continuous versus intermittent data collection, and ground altitudes. Attributes that may influence groundwater levels include: well depth, location of open or screened interval, aquifer type, surficial and bedrock geology, topographic position, flow distance to surface water, land use and cover near the well, soil texture and drainage, precipitation, and air temperature.

  9. l

    Parcels Shapefile

    • maps.leegov.com
    • hub.arcgis.com
    Updated Aug 9, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lee County Florida GIS (2022). Parcels Shapefile [Dataset]. https://maps.leegov.com/datasets/80708a2f5f56426f94c8be97c182176b
    Explore at:
    Dataset updated
    Aug 9, 2022
    Dataset authored and provided by
    Lee County Florida GIS
    Area covered
    Description

    Parcels and property data maintained and provided by Lee County Property Appraiser. This dataset includes condominium units. Property attribute data joined to parcel GIS layer by Lee County Government GIS.Projected coordinate system name: NAD_1983_StatePlane_Florida_West_FIPS_0902_FeetGeographic coordinate system name: GCS_North_American_1983

     Name
     Type
     Length
     Description
    
    
     STRAP
     String
     25
     17-digit Property ID (Section, Township, Range, Area, Block, Lot)
    
    
     BLOCK
     String
     10
     5-digit portion of STRAP (positions 9-13)
    
    
     LOT
     String
     8
     Last 4-digits of STRAP
    
    
     FOLIOID
     Double
     8
     Unique Property ID
    
    
     MAINTDATE
     Date
     8
     Date LeePA staff updated record
    
    
     MAINTWHO
     String
     20
     LeePA staff who updated record
    
    
     UPDATED
     Date
     8
     Data compilation date
    
    
     HIDE_STRAP
     String
     1
     Confidential parcel ownership
    
    
     TRSPARCEL
     String
     17
     Parcel ID sorted by Township, Range & Section
    
    
     DORCODE
     String
     2
     Department of Revenue property classification code
    
    
     CONDOTYPE
     String
     1
     Type of condominium: C (commercial) or R (residential)
    
    
     UNITOFMEAS
     String
     2
     Type of Unit of Measure (ex: AC=acre, LT=lot, FF=frontage in feet)
    
    
     NUMUNITS
     Double
     8
     Number of Land Units (units defined in UNITOFMEAS)
    
    
     FRONTAGE
     Integer
     4
     Road Frontage in Feet
    
    
     DEPTH
     Integer
     4
     Property Depth in Feet
    
    
     GISACRES
     Double
     8
     Total Computed Acres from GIS
    
    
     TAXINGDIST
     String
     3
     Taxing District of Property
    
    
     TAXDISTDES
     String
     60
     Taxing District Description
    
    
     FIREDIST
     String
     3
     Fire District of Property
    
    
     FIREDISTDE
     String
     60
     Fire District Description
    
    
     ZONING
     String
     10
     Zoning of Property
    
    
     ZONINGAREA
     String
     3
     Governing Area for Zoning
    
    
     LANDUSECOD
     SmallInteger
     2
     Land Use Code
    
    
     LANDUSEDES
     String
     60
     Land Use Description
    
    
     LANDISON
     String
     5
     BAY,CANAL,CREEK,GULF,LAKE,RIVER & GOLF
    
    
     SITEADDR
     String
     55
     Lee County Addressing/E911
    
    
     SITENUMBER
     String
     10
     Property Location - Street Number
    
    
     SITESTREET
     String
     40
     Street Name
    
    
     SITEUNIT
     String
     5
     Unit Number
    
    
     SITECITY
     String
     20
     City
    
    
     SITEZIP
     String
     5
     Zip Code
    
    
     JUST
     Double
     8
     Market Value
    
    
     ASSESSED
     Double
     8
     Building Value + Land Value
    
    
     TAXABLE
     Double
     8
     Taxable Value
    
    
     LAND
     Double
     8
     Land Value
    
    
     BUILDING
     Double
     8
     Building Value
    
    
     LXFV
     Double
     8
     Land Extra Feature Value
    
    
     BXFV
     Double
     8
     Building Extra Feature value
    
    
     NEWBUILT
     Double
     8
     New Construction Value
    
    
     AGAMOUNT
     Double
     8
     Agriculture Exemption Value
    
    
     DISAMOUNT
     Double
     8
     Disability Exemption Value
    
    
     HISTAMOUNT
     Double
     8
     Historical Exemption Value
    
    
     HSTDAMOUNT
     Double
     8
     Homestead Exemption Value
    
    
     SNRAMOUNT
     Double
     8
     Senior Exemption Value
    
    
     WHLYAMOUNT
     Double
     8
     Wholly Exemption Value
    
    
     WIDAMOUNT
     Double
     8
     Widow Exemption Value
    
    
     WIDRAMOUNT
     Double
     8
     Widower Exemption Value
    
    
     BLDGCOUNT
     SmallInteger
     2
     Total Number of Buildings on Parcel
    
    
     MINBUILTY
     SmallInteger
     2
     Oldest Building Built
    
    
     MAXBUILTY
     SmallInteger
     2
     Newest Building Built
    
    
     TOTALAREA
     Double
     8
     Total Building Area
    
    
     HEATEDAREA
     Double
     8
     Total Heated Area
    
    
     MAXSTORIES
     Double
     8
     Tallest Building on Parcel
    
    
     BEDROOMS
     Integer
     4
     Total Number of Bedrooms
    
    
     BATHROOMS
     Double
     8
     Total Number of Bathrooms / Not For Comm
    
    
     GARAGE
     String
     1
     Garage on Property 'Y'
    
    
     CARPORT
     String
     1
     Carport on Property 'Y'
    
    
     POOL
     String
     1
     Pool on Property 'Y'
    
    
     BOATDOCK
     String
     1
     Boat Dock on Property 'Y'
    
    
     SEAWALL
     String
     1
     Sea Wall on Property 'Y'
    
    
     NBLDGCOUNT
     SmallInteger
     2
     Total Number of New Buildings on ParcelTotal Number of New Buildings on Parcel
    
    
     NMINBUILTY
     SmallInteger
     2
     Oldest New Building Built
    
    
     NMAXBUILTY
     SmallInteger
     2
     Newest New Building Built
    
    
     NTOTALAREA
     Double
     8
     Total New Building Area
    
    
     NHEATEDARE
     Double
     8
     Total New Heated Area
    
    
     NMAXSTORIE
     Double
     8
     Tallest New Building on Parcel
    
    
     NBEDROOMS
     Integer
     4
     Total Number of New Bedrooms
    
    
     NBATHROOMS
     Double
     8
     Total Number of New Bathrooms/Not For Comm
    
    
     NGARAGE
     String
     1
     New Garage on Property 'Y'
    
    
     NCARPORT
     String
     1
     New Carport on Property 'Y'
    
    
     NPOOL
     String
     1
     New Pool on Property 'Y'
    
    
     NBOATDOCK
     String
     1
     New Boat Dock on Property 'Y'
    
    
     NSEAWALL
     String
     1
     New Sea Wall on Property 'Y'
    
    
     O_NAME
     String
     30
     Owner Name
    
    
     O_OTHERS
     String
     120
     Other Owners
    
    
     O_CAREOF
     String
     30
     In Care Of Line
    
    
     O_ADDR1
     String
     30
     Owner Mailing Address Line 1
    
    
     O_ADDR2
     String
     30
     Owner Mailing Address Line 2
    
    
     O_CITY
     String
     30
     Owner Mailing City
    
    
     O_STATE
     String
     2
     Owner Mailing State
    
    
     O_ZIP
     String
     9
     Owner Mailing Zip
    
    
     O_COUNTRY
     String
     30
     Owner Mailing Country
    
    
     S_1DATE
     Date
     8
     Most Current Sale Date > $100.00
    
    
     S_1AMOUNT
     Double
     8
     Sale Amount
    
    
     S_1VI
     String
     1
     Sale Vacant or Improved
    
    
     S_1TC
     String
     2
     Sale Transaction Code
    
    
     S_1TOC
     String
     2
     Sale Transaction Override Code
    
    
     S_1OR_NUM
     String
     13
     Original Record (Lee County Clerk)
    
    
     S_2DATE
     Date
     8
     Previous Sale Date > $100.00
    
    
     S_2AMOUNT
     Double
     8
     Sale Amount
    
    
     S_2VI
     String
     1
     Sale Vacant or Improved
    
    
     S_2TC
     String
     2
     Sale Transaction Code
    
    
     S_2TOC
     String
     2
     Sale Transaction Override Code
    
    
     S_2OR_NUM
     String
     13
     Original Record (Lee County Clerk)
    
    
     S_3DATE
     Date
     8
     Next Previous Sale Date > $100.00
    
    
     S_3AMOUNT
     Double
     8
     Sale Amount
    
    
     S_3VI
     String
     1
     Sale Vacant or Improved
    
    
     S_3TC
     String
     2
     Sale Transaction Code
    
    
     S_3TOC
     String
     2
     Sale Transaction Override Code
    
    
     S_3OR_NUM
     String
     13
     Original Record (Lee County Clerk)
    
    
     S_4DATE
     Date
     8
     Next Previous Sale Date > $100.00
    
    
     S_4AMOUNT
     Double
     8
     Sale Amount
    
    
     S_4VI
     String
     1
     Sale Vacant or Improved
    
    
     S_4TC
     String
     2
     Sale Transaction Code
    
    
     S_4TOC
     String
     2
     Sale Transaction Override Code
    
    
     S_4OR_NUM
     String
     13
     Original Record (Lee County Clerk)
    
    
     LEGAL
     String
     255
     Full Legal Description (On Deed)
    
    
     GARBDIST
     String
     3
     County Garbage Hauling Area
    
    
     GARBTYPE
     String
     1
     County Garbage Pick-up Type
    
    
     GARBCOMCAT
     String
     1
     County Garbage Commercial Category
    
    
     GARBHEADER
     String
     1
     Garbage Header Code
    
    
     GARBUNITS
     Double
     8
     Number of Garbage Units
    
    
     CREATEYEAR
    
  10. MDOT SHA Right-Of-Way (Polygons)

    • data.imap.maryland.gov
    • data-maryland.opendata.arcgis.com
    Updated Apr 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Online for Maryland (2022). MDOT SHA Right-Of-Way (Polygons) [Dataset]. https://data.imap.maryland.gov/datasets/mdot-sha-right-of-way-polygons
    Explore at:
    Dataset updated
    Apr 6, 2022
    Dataset provided by
    https://arcgis.com/
    Authors
    ArcGIS Online for Maryland
    Area covered
    Description

    This is a publicly available map image service with limited GIS attributes. A downloadable version of this data is now available through the MDOT GIS Open Data Portal: Download MDOT SHA Right-of-Way Polygons (Open Data Portal) The following related versions of this data are available here:MDOT SHA Right-of-Way (Secured)Line dataFull attribute tableAccessible to only MDOT employees and contractors upon requestMDOT SHA Right-of-Way (Map Image Service)Read-only map serviceLine dataLimited attributes (quality level)Accessible to publicMDOT SHA Right-of-Way data is a composite layer of PSD field-collected survey sources, PSD in-house computations, traced PSD hardcopy materials, and historical Maryland Department of Planning (MDP) parcel boundaries.This data product was intended to replace MDOT SHA Planning Level Right-of-Way (Tax Map Legacy), which is an increasingly obsolete legacy product for MDOT SHA Right-of-Way information that in some areas remains the most comprehensive. For continuity, many MDP parcel boundaries found in MDOT SHA Planning Level Right-of-Way (Tax Map Legacy) have been incorporated into MDOT SHA Right-of-Way data with an "Estimated" quality level. Please see below for a description of the primary attribute.-----------------------------------------------------The polygons in this layer are divided into 318 arbitrary grid zones across the State of Maryland. Updates to the parent ROW boundary line data set [MDOT SHA Right-of-Way (Secured)] are made by grid and reflected in this polygon layer.For more information or to report errors in this data, please contact MDOT SHA OIT Enterprise Information Services:Email: GIS@mdot.maryland.gov

  11. M

    Metro Regional Parcel Dataset - (Updated Quarterly)

    • gisdata.mn.gov
    ags_mapserver, fgdb +4
    Updated Apr 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MetroGIS (2025). Metro Regional Parcel Dataset - (Updated Quarterly) [Dataset]. https://gisdata.mn.gov/dataset/us-mn-state-metrogis-plan-regional-parcels
    Explore at:
    fgdb, gpkg, html, shp, jpeg, ags_mapserverAvailable download formats
    Dataset updated
    Apr 19, 2025
    Dataset provided by
    MetroGIS
    Description

    This dataset includes all 7 metro counties that have made their parcel data freely available without a license or fees.

    This dataset is a compilation of tax parcel polygon and point layers assembled into a common coordinate system from Twin Cities, Minnesota metropolitan area counties. No attempt has been made to edgematch or rubbersheet between counties. A standard set of attribute fields is included for each county. The attributes are the same for the polygon and points layers. Not all attributes are populated for all counties.

    NOTICE: The standard set of attributes changed to the MN Parcel Data Transfer Standard on 1/1/2019.
    https://www.mngeo.state.mn.us/committee/standards/parcel_attrib/parcel_attrib.html

    See section 5 of the metadata for an attribute summary.

    Detailed information about the attributes can be found in the Metro Regional Parcel Attributes document.

    The polygon layer contains one record for each real estate/tax parcel polygon within each county's parcel dataset. Some counties have polygons for each individual condominium, and others do not. (See Completeness in Section 2 of the metadata for more information.) The points layer includes the same attribute fields as the polygon dataset. The points are intended to provide information in situations where multiple tax parcels are represented by a single polygon. One primary example of this is the condominium, though some counties stacked polygons for condos. Condominiums, by definition, are legally owned as individual, taxed real estate units. Records for condominiums may not show up in the polygon dataset. The points for the point dataset often will be randomly placed or stacked within the parcel polygon with which they are associated.

    The polygon layer is broken into individual county shape files. The points layer is provided as both individual county files and as one file for the entire metro area.

    In many places a one-to-one relationship does not exist between these parcel polygons or points and the actual buildings or occupancy units that lie within them. There may be many buildings on one parcel and there may be many occupancy units (e.g. apartments, stores or offices) within each building. Additionally, no information exists within this dataset about residents of parcels. Parcel owner and taxpayer information exists for many, but not all counties.

    This is a MetroGIS Regionally Endorsed dataset.

    Additional information may be available from each county at the links listed below. Also, any questions or comments about suspected errors or omissions in this dataset can be addressed to the contact person at each individual county.

    Anoka = http://www.anokacounty.us/315/GIS
    Caver = http://www.co.carver.mn.us/GIS
    Dakota = http://www.co.dakota.mn.us/homeproperty/propertymaps/pages/default.aspx
    Hennepin = https://gis-hennepin.hub.arcgis.com/pages/open-data
    Ramsey = https://www.ramseycounty.us/your-government/open-government/research-data
    Scott = http://opendata.gis.co.scott.mn.us/
    Washington: http://www.co.washington.mn.us/index.aspx?NID=1606

  12. a

    Querying Data Using ArcGIS Pro

    • hub.arcgis.com
    Updated Jan 30, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2019). Querying Data Using ArcGIS Pro [Dataset]. https://hub.arcgis.com/documents/1feba2ff29904387a4920f5c45c77d2c
    Explore at:
    Dataset updated
    Jan 30, 2019
    Dataset authored and provided by
    State of Delaware
    Description

    Learn the building blocks of a query expression and how to select features that meet one or more attribute criteria.

  13. National Hydrography Dataset Plus High Resolution

    • hub.arcgis.com
    Updated Mar 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). National Hydrography Dataset Plus High Resolution [Dataset]. https://hub.arcgis.com/maps/f1f45a3ba37a4f03a5f48d7454e4b654
    Explore at:
    Dataset updated
    Mar 16, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  14. M

    Parcels, Compiled from Opt-In Open Data Counties, Minnesota

    • gisdata.mn.gov
    fgdb, gpkg, html +2
    Updated May 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geospatial Information Office (2025). Parcels, Compiled from Opt-In Open Data Counties, Minnesota [Dataset]. https://gisdata.mn.gov/dataset/plan-parcels-open
    Explore at:
    html, webapp, jpeg, fgdb, gpkgAvailable download formats
    Dataset updated
    May 13, 2025
    Dataset provided by
    Geospatial Information Office
    Area covered
    Minnesota
    Description

    This dataset is a compilation of county parcel data from Minnesota counties that have opted-in for their parcel data to be included in this dataset.

    It includes the following 55 counties that have opted-in as of the publication date of this dataset: Aitkin, Anoka, Becker, Benton, Big Stone, Carlton, Carver, Cass, Chippewa, Chisago, Clay, Clearwater, Cook, Crow Wing, Dakota, Douglas, Fillmore, Grant, Hennepin, Houston, Isanti, Itasca, Jackson, Koochiching, Lac qui Parle, Lake, Lyon, Marshall, McLeod, Mille Lacs, Morrison, Mower, Murray, Norman, Olmsted, Otter Tail, Pennington, Pipestone, Polk, Pope, Ramsey, Renville, Rice, Saint Louis, Scott, Sherburne, Stearns, Stevens, Traverse, Waseca, Washington, Wilkin, Winona, Wright, and Yellow Medicine.

    If you represent a county not included in this dataset and would like to opt-in, please contact Heather Albrecht (Heather.Albrecht@hennepin.us), co-chair of the Minnesota Geospatial Advisory Council (GAC)’s Parcels and Land Records Committee's Open Data Subcommittee. County parcel data does not need to be in the GAC parcel data standard to be included. MnGeo will map the county fields to the GAC standard.

    County parcel data records have been assembled into a single dataset with a common coordinate system (UTM Zone 15) and common attribute schema. The county parcel data attributes have been mapped to the GAC parcel data standard for Minnesota: https://www.mngeo.state.mn.us/committee/standards/parcel_attrib/parcel_attrib.html

    This compiled parcel dataset was created using Python code developed by Minnesota state agency GIS professionals, and represents a best effort to map individual county source file attributes into the common attribute schema of the GAC parcel data standard. The attributes from counties are mapped to the most appropriate destination column. In some cases, the county source files included attributes that were not mapped to the GAC standard. Additionally, some county attribute fields were parsed and mapped to multiple GAC standard fields, such as a single line address. Each quarter, MnGeo provides a text file to counties that shows how county fields are mapped to the GAC standard. Additionally, this text file shows the fields that are not mapped to the standard and those that are parsed. If a county shares changes to how their data should be mapped, MnGeo updates the compilation. If you represent a county and would like to update how MnGeo is mapping your county attribute fields to this compiled dataset, please contact us.

    This dataset is a snapshot of parcel data, and the source date of the county data may vary. Users should consult County websites to see the most up-to-date and complete parcel data.

    There have been recent changes in date/time fields, and their processing, introduced by our software vendor. In some cases, this has resulted in date fields being empty. We are aware of the issue and are working to correct it for future parcel data releases.

    The State of Minnesota makes no representation or warranties, express or implied, with respect to the use or reuse of data provided herewith, regardless of its format or the means of its transmission. THE DATA IS PROVIDED “AS IS” WITH NO GUARANTEE OR REPRESENTATION ABOUT THE ACCURACY, CURRENCY, SUITABILITY, PERFORMANCE, MECHANTABILITY, RELIABILITY OR FITINESS OF THIS DATA FOR ANY PARTICULAR PURPOSE. This dataset is NOT suitable for accurate boundary determination. Contact a licensed land surveyor if you have questions about boundary determinations.

    DOWNLOAD NOTES: This dataset is only provided in Esri File Geodatabase and OGC GeoPackage formats. A shapefile is not available because the size of the dataset exceeds the limit for that format. The distribution version of the fgdb is compressed to help reduce the data footprint. QGIS users should consider using the Geopackage format for better results.

  15. C

    Denton Attribute Definitions

    • data.cityofdenton.com
    docx
    Updated Mar 10, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Denton (2017). Denton Attribute Definitions [Dataset]. https://data.cityofdenton.com/dataset/denton-attribute-definitions
    Explore at:
    docxAvailable download formats
    Dataset updated
    Mar 10, 2017
    Dataset authored and provided by
    City of Denton
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Denton
    Description

    These tables list all GIS attributes associated with both the land cover and urban tree canopy results, along with attribute definitions, and associated raster values from the input raster datasets.

  16. D

    Atolls of France: geospatial vector data (MCRMP project)

    • dataverse.ird.fr
    Updated Sep 4, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Serge Andréfouët; Serge Andréfouët (2023). Atolls of France: geospatial vector data (MCRMP project) [Dataset]. http://doi.org/10.23708/LHTEVZ
    Explore at:
    application/zipped-shapefile(314981), application/zipped-shapefile(319150), application/zipped-shapefile(16957), application/zipped-shapefile(34377), application/zipped-shapefile(145542), application/zipped-shapefile(12969324), application/zipped-shapefile(1049821), application/zipped-shapefile(2979211), txt(1819)Available download formats
    Dataset updated
    Sep 4, 2023
    Dataset provided by
    DataSuds
    Authors
    Serge Andréfouët; Serge Andréfouët
    License

    https://dataverse.ird.fr/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.23708/LHTEVZhttps://dataverse.ird.fr/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.23708/LHTEVZ

    Area covered
    French Polynesia, France, Wallis and Futuna, New Caledonia
    Dataset funded by
    NASA (2001-2007)
    IRD (2003-present)
    Description

    The Millennium Coral Reef Mapping Project provides thematic maps of coral reefs worldwide at geomorphological scale. Maps were created by photo-interpretation of Landsat 7 and Landsat 8 satellite images. Maps are provided as standard Shapefiles usable in GIS software. The geomorphological classification scheme is hierarchical and includes 5 levels. The GIS products include for each polygon a number of attributes. The 5 level geomorphological attributes are provided (numerical codes or text). The Level 1 corresponds to the differentiation between oceanic and continental reefs. Then from Levels 2 to 5, the higher the level, the more detailed the thematic classification is. Other binary attributes specify for each polygon if it belongs to terrestrial area (LAND attribute), and sedimentary or hard-bottom reef areas (REEF attribute). Examples and more details on the attributes are provided in the references cited. The products distributed here were created by IRD, in their last version. Shapefiles for 102 atolls of France (in the Pacific and Indian Oceans) as mapped by the Global coral reef mapping project at geomorphological scale using LANDSAT satellite data (L7 and L8). The data set provides one zip file per region of interest. Global coral reef mapping project at geomorphological scale using LANDSAT satellite data (L7 and L8). Funded by National Aeronautics and Space Administration, NASA grants NAG5-10908 (University of South Florida, PIs: Franck Muller-Karger and Serge Andréfouët) and CARBON-0000-0257 (NASA, PI: Julie Robinson) from 2001 to 2007. Funded by IRD since 2003 (in kind, PI: Serge Andréfouët).

  17. w

    Procedures to access point spatial and attribute data in an Oracle database...

    • data.wu.ac.at
    pdf
    Updated Jun 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Corp (2018). Procedures to access point spatial and attribute data in an Oracle database from within the ARC/INFO GIS [Dataset]. https://data.wu.ac.at/schema/data_gov_au/ZGRhYzViNDItNDFlNC00NzRmLTliMjMtZTZhN2RiYzBiMTJh
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 26, 2018
    Dataset provided by
    Corp
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Legacy product - no abstract available

  18. e

    GIS Shapefile - Crime Risk Database, MSA

    • portal.edirepository.org
    zip
    Updated Dec 31, 2009
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jarlath O'Neil-Dunne (2009). GIS Shapefile - Crime Risk Database, MSA [Dataset]. http://doi.org/10.6073/pasta/46369b3e4f41b0a4ef2c8ef9a116e531
    Explore at:
    zip(3235 kilobyte)Available download formats
    Dataset updated
    Dec 31, 2009
    Dataset provided by
    EDI
    Authors
    Jarlath O'Neil-Dunne
    Time period covered
    Jan 1, 2004 - Nov 17, 2011
    Area covered
    Description

    Crime data assembled by census block group for the MSA from the Applied Geographic Solutions' (AGS) 1999 and 2005 'CrimeRisk' databases distributed by the Tetrad Computer Applications Inc. CrimeRisk is the result of an extensive analysis of FBI crime statistics. Based on detailed modeling of the relationships between crime and demographics, CrimeRisk provides an accurate view of the relative risk of specific crime types at the block group level. Data from 1990 - 1996,1999, and 2004-2005 were used to compute the attributes, please refer to the 'Supplemental Information' section of the metadata for more details. Attributes are available for two categories of crimes, personal crimes and property crimes, along with total and personal crime indices. Attributes for personal crimes include murder, rape, robbery, and assault. Attributes for property crimes include burglary, larceny, and mother vehicle theft. 12 block groups have no attribute information. CrimeRisk is a block group and higher level geographic database consisting of a series of standardized indexes for a range of serious crimes against both persons and property. It is derived from an extensive analysis of several years of crime reports from the vast majority of law enforcement jurisdictions nationwide. The crimes included in the database are the "Part I" crimes and include murder, rape, robbery, assault, burglary, theft, and motor vehicle theft. These categories are the primary reporting categories used by the FBI in its Uniform Crime Report (UCR), with the exception of Arson, for which data is very inconsistently reported at the jurisdictional level. Part II crimes are not reported in the detail databases and are generally available only for selected areas or at high levels of geography. In accordance with the reporting procedures using in the UCR reports, aggregate indexes have been prepared for personal and property crimes separately, as well as a total index. While this provides a useful measure of the relative "overall" crime rate in an area, it must be recognized that these are unweighted indexes, in that a murder is weighted no more heavily than a purse snatching in the computation. For this reason, caution is advised when using any of the aggregate index values. The block group boundaries used in the dataset come from TeleAtlas's (formerly GDT) Dynamap data, and are consistent with all other block group boundaries in the BES geodatabase.

       This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase.
    
    
       The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive.
    
    
       The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders.
    
    
       Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful.
    
    
       This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase.
    
    
       The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive.
    
    
       The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders.
    
    
       Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful.
    
  19. BLM National SMA Surface Management Agency Area Polygons

    • catalog.data.gov
    • datasets.ai
    • +4more
    Updated May 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Land Management (2025). BLM National SMA Surface Management Agency Area Polygons [Dataset]. https://catalog.data.gov/dataset/blm-natl-sma-surface-management-agency-area-polygons-national-geospatial-data-asset-ngda
    Explore at:
    Dataset updated
    May 31, 2025
    Dataset provided by
    Bureau of Land Managementhttp://www.blm.gov/
    Description

    The Surface Management Agency (SMA) Geographic Information System (GIS) dataset depicts Federal land for the United States and classifies this land by its active Federal surface managing agency. The SMA feature class covers the continental United States, Alaska, Hawaii, Puerto Rico, Guam, American Samoa and the Virgin Islands. A Federal SMA agency refers to a Federal agency with administrative jurisdiction over the surface of Federal lands. Jurisdiction over the land is defined when the land is either: Withdrawn by some administrative or legislative action, or Acquired or Exchanged by a Federal Agency. This layer is a dynamic assembly of spatial data layers maintained at various federal and local government offices. The GIS data contained in this dataset represents the polygon features that show the boundaries for Surface Management Agency and the surface extent of each Federal agency’s surface administrative jurisdiction. SMA data depicts current withdrawn areas for a particular agency and (when appropriate) includes land that was acquired or exchanged and is located outside of a withdrawal area for that agency. The SMA data do not illustrate land status ownership pattern boundaries or contain land ownership attribute details. The SMA Withdrawals feature class covers the continental United States, Alaska, Hawaii, Puerto Rico, Guam, American Samoa and the Virgin Islands. A Federal SMA Withdrawal is defined by formal actions that set aside, withhold, or reserve Federal land by statute or administrative order for public purposes. A withdrawal creates a title encumbrance on the land. Withdrawals must accomplish one or more of the following: A. Transfer total or partial jurisdiction of Federal land between Federal agencies. B. Close (segregate) Federal land to operation of all or some of the public land laws and/or mineral laws. C. Dedicate Federal land to a specific public purpose. There are four major categories of formal withdrawals: (1) Administrative, (2) Presidential Proclamations, (3) Congressional, and (4) Federal Power Act (FPA) or Federal Energy Regulatory Commission (FERC) Withdrawals. These SMA Withdrawals will include the present total extent of withdrawn areas rather than all of the individual withdrawal actions that created them over time. A Federal SMA agency refers to a Federal agency with administrative jurisdiction over the surface of Federal lands. Jurisdiction over the land is defined when the land is either: Withdrawn by some administrative or legislative action, or Acquired or Exchanged by a Federal Agency. This layer is a dynamic assembly of spatial data layers maintained at various federal and local government offices. The GIS data contained in this dataset represents the polygon features that show the boundaries for Surface Management Agency and the surface extent of each Federal agency’s surface administrative jurisdiction. SMA data depicts current withdrawn areas for a particular agency and (when appropriate) includes land that was acquired or exchanged and is located outside of a withdrawal area for that agency. The SMA data do not illustrate land status ownership pattern boundaries or contain land ownership attribute details.

  20. r

    Natural Earth Vector (NE)

    • researchdata.edu.au
    • catalogue.eatlas.org.au
    bin
    Updated Aug 2, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nathaniel Vaughn KELSO (2016). Natural Earth Vector (NE) [Dataset]. https://researchdata.edu.au/natural-earth-vector-ne/675135
    Explore at:
    binAvailable download formats
    Dataset updated
    Aug 2, 2016
    Dataset provided by
    eAtlas
    Authors
    Nathaniel Vaughn KELSO
    Area covered
    Description

    Natural Earth is a public domain map dataset available at 1:10m, 1:50m, and 1:110 million scales. Featuring tightly integrated vector and raster data, with Natural Earth you can make a variety of visually pleasing, well-crafted maps with cartography or GIS software.

    Natural Earth was built through a collaboration of many volunteers and is supported by NACIS (North American Cartographic Information Society).

    Natural Earth Vector comes in ESRI shapefile format, the de facto standard for vector geodata. Character encoding is Windows-1252.

    Natural Earth Vector includes features corresponding to the following:

    Cultural Vector Data Thremes:

    • Countries: matched boundary lines and polygons with names attributes for countries and sovereign states. Includes dependencies (French Polynesia), map units (U.S. Pacific Island Territories) and sub-national map subunits (Corsica versus mainland Metropolitan France).
    • Disputed areas and breakaway regions - From Kashmir to the Elemi Triangle, Northern Cyprus to Western Sahara.
    • First order admin (provinces, departments, states, etc.): internal boundaries and polygons for all but a few tiny island nations. Includes names attributes and some statistical groupings of the same for smaller countries.
    • Populated places: point symbols with name attributes. Includes capitals, major cities and towns, plus significant smaller towns in sparsely inhabited regions. We favor regional significance over population census in determining rankings.
    • Urban polygons: derived from 2002-2003 MODIS satellite data.
    • Parks and protected areas: US National Park Service units.
    • Pacific nation groupings: boxes for keeping these far-flung islands tidy.
    • Water boundary indicators: partial selection of key 200-mile nautical limits, plus some disputed, treaty, and median lines.

    Physical Vector Data Themes:

    • Coastline: ocean coastline, including major islands. Coastline is matched to land and water polygons.
    • Land: Land polygons including major islands
    • Ocean: Ocean polygon split into contiguous pieces.
    • Minor Islands: additional small ocean islands ranked to two levels of relative importance.
    • Reefs: major coral reefs from WDB2.
    • Physical region features: polygon and point labels of major physical features.
    • Rivers and Lake Centerlines: ranked by relative importance. Includes name and line width attributes. Don’t want minor lakes? Turn on their centerlines to avoid unseemly data gaps.
    • Lakes: ranked by relative importance, coordinating with river ranking. Includes name attributes.
    • Glaciated areas: polygons derived from DCW, except for Antarctica derived from MOA. Includes name attributes for major polar glaciers.
    • Antarctic ice shelves: derived from 2003-2004 MOA. Reflects recent ice shelf collapses.
    • Bathymetry: nested polygons at 0, -200, -1,000, -2,000, -3,000, -4,000, -5,000, -6,000, -7,000, -8,000, -9,000,and -10,000 meters. Created from SRTM Plus.
    • Geographic lines: Polar circles, tropical circles, equator, and International Date Line.
    • Graticules: 1-, 5-, 10-, 15-, 20-, and 30-degree increments. Includes WGS84 bounding box.
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
melanie.chatten (2021). How To Find Attribute Data, Use Attribute Tables and Pop Ups [Dataset]. https://hub.arcgis.com/documents/b0873a6cf9bd4586b1bb93ef346dcbb0

How To Find Attribute Data, Use Attribute Tables and Pop Ups

Explore at:
Dataset updated
Nov 6, 2021
Dataset authored and provided by
melanie.chatten
License

https://public-townofcobourg.hub.arcgis.com/pages/terms-of-usehttps://public-townofcobourg.hub.arcgis.com/pages/terms-of-use

Description

This is a guide that describes how to interact with pop ups and the attribute tables in web maps where that functionality is available. Not all widgets or functionality is available in every web map.

Search
Clear search
Close search
Google apps
Main menu