Facebook
TwitterThis ArcGIS model inserts a file name into a feature class attribute table. The tool allows an user to identify features by a field that reference the name of the original file. It is useful when an user have to merge multiple feature classes and needs to identify which layer the features come from.
Facebook
TwitterResilience attribute table.
Facebook
TwitterAttribute tables are an essential part of working with GIS. In addition to the spatial element, feature classes will have additional data associated to them which can be viewed within the attribute table.To open an attribute table...Right click a layer within the contents paneClick 'Attribute Table'.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Building polygons were created in February 2013 by Geoscience Australia by manually digitising the outline of each building off the 2011 orthophotography. Digitisation was done from scratch off the 2011 orthophotography within Quantum GIS. Using the ArcMap 'zonal statistics' tool the minimum, mean and maximum heights were found for each building polygon from the 2011 digital elevation model and the 2011 digital surface model (DSM). This information was then joined to the building polygon attribute table. To find the building height from ground to roof, the difference between the Mean DSM and mean DEM was calculated and added as a field to the attribute table. To find the maximum height of each building the difference between the Maximum DSM and Mean DEM was calculated. Polygon area, perimeter, and x and y coordinates of each building were also attached as attributes. Accuracy is high as the layer was based on the 2011 orthophotography. Error may have been introduced through the digitisation process. Building lean in the orthophotography may also contribute to polygons which are slightly inaccurately placed. Height attribute accuracy is inaccurate for building polygons which have tree cover above them, as the tree elevation would influence the digital surface model. Particularly the Max_height field may include tree heights rather than building heights in some cases. Attribute accuracy could be improved by using the raw 2011 lidar data (.las files) which are classified at 'buildings' to attach heights. This method was tested and was extremely time consuming - only the height_max field was significantly improved. Disclaimer
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Plot attribute table of the QGIS database of the Kunbaja online resource model as dataset in the .xlsx file format
Facebook
TwitterThis is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
https://spdx.org/licenses/ODbL-1.0.htmlhttps://spdx.org/licenses/ODbL-1.0.html
The dataset consists of a table, with building footprint features as rows and attributes as columns, split by country and administrative areas available in the Global ADMinistrative layer version 4.1 (GADM4.1). The attributes include unique identifiers to link to Overture buildings 2024-07-22.0, their centroid coordinates, country and administrative unit location, and building characteristics such as height, shape factor (compactness), functional use, construction year, area, and perimeter. These characteristics are derived from the Global Human Settlement Layer (GHSL) global datasets GHS R2023 and R2024. The dataset is available both as CSV and as SQLite-based geopackages, which incorporate the centroids of building footprints as geometry features.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
biosample attributes table (metadata)Sequencing raw data deposited at SRA of NCBI (SRP308455)
Facebook
TwitterTerrain Inventory Mapping (TIM) contains polygons with key and amalgamated (concatenated) attributes derived from the RISC (Resource Inventory Standards Committee) standard attributes. TIM is multi-purpose and divides the landscape into units according to surficial material, surface expression and geomorphological process using the Terrain Classification System for British Columbia. Most of the inventory mapping was completed in the 1970s and 1980s on 1 to 50,000 scale base maps using air photo interpretation with selective field checking, and manual transfer and drafting of paper maps. These maps were later digitized and have been converted from IGDS or CAPAMP to ArcInfo to Geodatabase. This layer is derived from the STE_TEI_ATTRIBUTE_POLYS_SP layer by filtering on the PROJECT_TYPE attribute. Project types include: TIM and TIMSOI. Current version: v11 (published on 2024-10-03) Previous versions: v10 (published on 2023-11-14), v9 (published on 2023-03-01), v8 (published on 2016-09-01)
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Bioterrain (TBT) contains polygons with key and amalgamated (concatenated) attributes derived from the RISC (Resource Inventory Standards Committee) standard attributes. TBT divides the landscape into units using the Terrain Classification System for British Columbia and ecological criteria. Polygon attributes include (but are not limited to) surficial material, surface expression, geomorphological processes, drainage class and aspect. TBT methods include manual air photo interpretation supported by selective field checking. Bioterrain mapping is integral to ecosystem mapping and its derivative products. This layer is derived from the STE_TEI_ATTRIBUTE_POLYS_SP layer by filtering on the PROJECT_TYPE attribute. Project types include: TEM, TEMNSS, TEMPRE, TEMSEI, TEMSET, TEMTSM, TBS, TBT, TEMWHR, TEMSDM, TEMPRW, and TEMSEW. Current version: v11 (published on 2024-10-03) Previous versions: v10 (published on 2023-11-14), v9 (published on 2023-03-01), v8 (published on 2016-09-01)
Facebook
TwitterThe National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
Twitter*This dataset is authored by ESRI and is being shared as a direct link to the feature service by Pend Oreille County. NHD is a primary hydrologic reference used by our organization.The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesCoordinate System: Web Mercator Auxiliary Sphere Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American Samoa Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not.Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Terrain Stability Mapping (TSM) contains polygons with key and amalgamated (concatenated) attributes derived from the RISC (Resource Inventory Standards Committee) standard attributes. TSM uses air photo interpretation and select field checking to divides the landscape into units using the Terrain Classification System for British Columbia and stability criteria. Polygon attributes include (but are not limited to) surficial material, surface expression, geomorphological processes, drainage class, slope range and stability class. TSM methods include manual air photo interpretation and setting stability criteria supported by selective field checking. This layer is derived from the STE_TEI_ATTRIBUTE_POLYS_SP layer by filtering on the PROJECT_TYPE attribute. Project types include: TEMSET, TEMTSM, TSM, TSMREC, TSMDET, TBW, and TBS. Current version: v11 (published on 2024-10-03) Previous versions: v10 (published on 2023-11-14), v9 (published on 2023-03-01), v8 (published on 2016-09-01)
Facebook
TwitterThis layer contains address point features which are used for geocoding addresses and property identification numbers. Data attributes include property addresses and property identification numbers. Addresses are stored in both parsed and concatenated fields.Link to Attribute Table Information: https://gis.hennepin.us/OpenData/Metadata/Address%20Points.pdfData updated: daily
Facebook
TwitterWetlands are areas where water is present at or near the surface of the soil during at least part of the year. Wetlands provide habitat for many species of plants and animals that are adapted to living in wet habitats. Wetlands form characteristic soils, absorb pollutants and excess nutrients from aquatic systems, help buffer the effects of high flows, and recharge groundwater. Data on the distribution and type of wetland play an important role in land use planning and several federal and state laws require that wetlands be considered during the planning process.The National Wetlands Inventory (NWI) was designed to assist land managers in wetland conservation efforts. The NWI is managed by the US Fish and Wildlife Service.Dataset SummaryPhenomenon Mapped: WetlandsGeographic Extent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, American Samoa, and the Northern Mariana IslandsProjection: Web Mercator Auxiliary SphereVisible Scale: This layer preforms well between scales of 1:1,000,000 to 1:1,000. An imagery layer created from this dataset is also available which you can also use to quickly draw wetlands at smaller scales.Source: U.S. Fish and Wildlife ServiceUpdate Frequency: AnnualPublication Date: October 26, 2024This layer was created from the October 26, 2024 version of the NWI. The features were converted from multi-part to a single part using the Multipart To Singlepart tool. Features with more than 50,000 vertices were split with the Dice tool. The Repair Geometry tool was run on the features, using the OGC option.The layer is published with a related table that contains text fields created by Esri for use in the layer's pop-up. Fields in the table are:Popup Header - this field contains a text string that is used to create the header in the default pop-up System Text - this field contains a text string that is used to create the system description text in the default pop-upClass Text - this field contains a text string that is used to create the class description text in the default pop-upModifier Text - this field contains a text string that is used to create the modifier description text in the default pop-upSpecies Text - this field contains a text string that is used to create the species description text in the default pop-upCodes, names, and text fields were derived from the publication Classification of Wetlands and Deepwater Habitats of the United States.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but an imagery layer created from the same data can be used at smaller scales to produce a webmap that displays across the full scale range. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter for System Name = 'Palustrine' to create a map of palustrine wetlands only.Add labels and set their propertiesCustomize the pop-upArcGIS ProAdd this layer to a 2d or 3d mapUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
STE_TEI_ATTRIBUTE_POLYS_SP contains Terrestrial Ecosystem Information (TEI) polygons with key and amalgamated (concatenated) attributes derived from the RISC (Resource Inventory Standards Committee) standard attributes. These describe the physical and biological characteristics of ecosystems at a landscape level. TEI currently includes Terrestrial Ecosystem Mapping (TEM), Predictive Ecosystem Mapping (PEM), Sensitive Ecosystems Inventory (SEI), Terrain Mapping (TER) and Soil Mapping (SOIL). Mapping methods include manual air photo interpretation and modeling supported by limited field checking. Current version: v11 (published on 2024-10-03) Previous versions: v10 (published on 2023-11-14), v9 (published on 2023-03-01), v8 (published on 2016-09-01)
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Explanation of the abbreviated variable names in the attribute table headings and a description of the variables.
Facebook
TwitterWater level altitudes were measured at 275 observation wells and 1 supply well screened in the upper glacial and Magothy aquifers during April and May of 2016. This shapefile consists of the locations of those sites and includes water level altitude data stored in the attribute table. The shapefile was created and intended for use with geographic information system (GIS) software. The measurement locations and altitude values in this point shapefile are also presented in Sheet 1 of Scientific Investigations Map 3398.
Facebook
TwitterWA RCO Funded Projects shows all projects funded by the Washington State Recreation and Conservation Office since inception in 1964. DMProject data is intended for grant management planning and public information only. Project worksite locations are self-reported by project sponsors and may not have been located accurately nor verified by WA RCO staff. DMProject is a feature class based on vDMProject, a spatial SQL view (not ArcSDE spatial view) of the attribute table joined to the feature class and other attribute tables. The Data Mart feature class is only refreshed nightly and does not show the live data. The spatial SQL view includes all projects, and the SHAPE field may include values.
Facebook
TwitterThe purpose of this data is to provide the county with right of way data. This layer and attribute table explains the ROW transaction type (ie Dedications, Plat, Quit Claim, Short Plats, Vacations, etc) and width acquisition measurements involved in the transaction. Auditor file name, recorded date and volume page listed noted and any comments associated with the transaction. Updated by Real Estate Services Tech Feb2013-Sep2013. Last attribute updated: 30 MAR 2016 by KLB
Facebook
TwitterThis ArcGIS model inserts a file name into a feature class attribute table. The tool allows an user to identify features by a field that reference the name of the original file. It is useful when an user have to merge multiple feature classes and needs to identify which layer the features come from.