10 datasets found
  1. d

    Factori USA Consumer Graph Data | socio-demographic, location, interest and...

    • datarade.ai
    .json, .csv
    Updated Jul 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Factori (2022). Factori USA Consumer Graph Data | socio-demographic, location, interest and intent data | E-Commere |Mobile Apps | Online Services [Dataset]. https://datarade.ai/data-products/factori-usa-consumer-graph-data-socio-demographic-location-factori
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Jul 23, 2022
    Dataset authored and provided by
    Factori
    Area covered
    United States of America
    Description

    Our consumer data is gathered and aggregated via surveys, digital services, and public data sources. We use powerful profiling algorithms to collect and ingest only fresh and reliable data points.

    Our comprehensive data enrichment solution includes a variety of data sets that can help you address gaps in your customer data, gain a deeper understanding of your customers, and power superior client experiences.

    1. Geography - City, State, ZIP, County, CBSA, Census Tract, etc.
    2. Demographics - Gender, Age Group, Marital Status, Language etc.
    3. Financial - Income Range, Credit Rating Range, Credit Type, Net worth Range, etc
    4. Persona - Consumer type, Communication preferences, Family type, etc
    5. Interests - Content, Brands, Shopping, Hobbies, Lifestyle etc.
    6. Household - Number of Children, Number of Adults, IP Address, etc.
    7. Behaviours - Brand Affinity, App Usage, Web Browsing etc.
    8. Firmographics - Industry, Company, Occupation, Revenue, etc
    9. Retail Purchase - Store, Category, Brand, SKU, Quantity, Price etc.
    10. Auto - Car Make, Model, Type, Year, etc.
    11. Housing - Home type, Home value, Renter/Owner, Year Built etc.

    Consumer Graph Schema & Reach: Our data reach represents the total number of counts available within various categories and comprises attributes such as country location, MAU, DAU & Monthly Location Pings:

    Data Export Methodology: Since we collect data dynamically, we provide the most updated data and insights via a best-suited method on a suitable interval (daily/weekly/monthly).

    Consumer Graph Use Cases:

    360-Degree Customer View:Get a comprehensive image of customers by the means of internal and external data aggregation.

    Data Enrichment:Leverage Online to offline consumer profiles to build holistic audience segments to improve campaign targeting using user data enrichment

    Fraud Detection: Use multiple digital (web and mobile) identities to verify real users and detect anomalies or fraudulent activity.

    Advertising & Marketing:Understand audience demographics, interests, lifestyle, hobbies, and behaviors to build targeted marketing campaigns.

    Using Factori Consumer Data graph you can solve use cases like:

    Acquisition Marketing Expand your reach to new users and customers using lookalike modeling with your first party audiences to extend to other potential consumers with similar traits and attributes.

    Lookalike Modeling

    Build lookalike audience segments using your first party audiences as a seed to extend your reach for running marketing campaigns to acquire new users or customers

    And also, CRM Data Enrichment, Consumer Data Enrichment B2B Data Enrichment B2C Data Enrichment Customer Acquisition Audience Segmentation 360-Degree Customer View Consumer Profiling Consumer Behaviour Data

    Here's the schema of Consumer Data: person_id first_name last_name age gender linkedin_url twitter_url facebook_url city state address zip zip4 country delivery_point_bar_code carrier_route walk_seuqence_code fips_state_code fips_country_code country_name latitude longtiude address_type metropolitan_statistical_area core_based+statistical_area census_tract census_block_group census_block primary_address pre_address streer post_address address_suffix address_secondline address_abrev census_median_home_value home_market_value property_build+year property_with_ac property_with_pool property_with_water property_with_sewer general_home_value property_fuel_type year month household_id Census_median_household_income household_size marital_status length+of_residence number_of_kids pre_school_kids single_parents working_women_in_house_hold homeowner children adults generations net_worth education_level occupation education_history credit_lines credit_card_user newly_issued_credit_card_user credit_range_new
    credit_cards loan_to_value mortgage_loan2_amount mortgage_loan_type
    mortgage_loan2_type mortgage_lender_code
    mortgage_loan2_render_code
    mortgage_lender mortgage_loan2_lender
    mortgage_loan2_ratetype mortgage_rate
    mortgage_loan2_rate donor investor interest buyer hobby personal_email work_email devices phone employee_title employee_department employee_job_function skills recent_job_change company_id company_name company_description technologies_used office_address office_city office_country office_state office_zip5 office_zip4 office_carrier_route office_latitude office_longitude office_cbsa_code
    office_census_block_group
    office_census_tract office_county_code
    company_phone
    company_credit_score
    company_csa_code
    company_dpbc
    company_franchiseflag
    company_facebookurl company_linkedinurl company_twitterurl
    company_website company_fortune_rank
    company_government_type company_headquarters_branch company_home_business
    company_industry
    company_num_pcs_used
    company_num_employees
    company_firm_individual company_msa company_msa_name
    company_naics_code
    company_naics_description
    company_naics_code2 company_naics_description2
    company_sic_code2
    company_sic_code2_desc...

  2. d

    Audience Targeting Data | 330M+ Global Devices | Audience Data & Advertising...

    • datarade.ai
    .json, .csv
    Updated Feb 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DRAKO (2025). Audience Targeting Data | 330M+ Global Devices | Audience Data & Advertising | API Delivery [Dataset]. https://datarade.ai/data-products/audience-targeting-data-330m-global-devices-audience-dat-drako
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Feb 4, 2025
    Dataset authored and provided by
    DRAKO
    Area covered
    Armenia, Czech Republic, Curaçao, Namibia, Equatorial Guinea, Serbia, Eritrea, Suriname, Russian Federation, San Marino
    Description

    DRAKO is a Mobile Location Audience Targeting provider with a programmatic trading desk specialising in geolocation analytics and programmatic advertising. Through our customised approach, we offer business and consumer insights as well as addressable audiences for advertising.

    Mobile Location Data can be meaningfully transformed into Audience Targeting when used in conjunction with other dataset. Our expansive POI Data allows us to segment users by visitation to major brands and retailers as well as categorizes them into syndicated segments. Beyond POI visits, our proprietary Home Location Model determines residents of geographic areas such as Designated Market Areas, Counties, or States. Relatedly, our Home Location Model also fuels our Geodemographic Census Data segments as we are able to determine residents of the smallest census units. Additionally, we also have audiences of: ticketed event and venue visitors; survey data; and retail data.

    All of our Audience Targeting is 100% deterministic in that it only includes high-quality, real visits to locations as defined by a POIs satellite imagery buildings contour. We never use a radius when building an audience unless requested. We have a horizontal accuracy of 5m.

    Additionally, we can always cross reference your audience targeting with our syndicated segments:

    Overview of our Syndicated Audience Data Segments: - Brand/POI segments (specific named stores and locations) - Categories (behavioural segments - revealed habits) - Census demographic segments (HH income, race, religion, age, family structure, language, etc.,) - Events segments (ticketed live events, conferences, and seminars) - Resident segments (State/province, CMAs, DMAs, city, county, sub-county) - Political segments (Canadian Federal and Provincial, US Congressional Upper and Lower House, US States, City elections, etc.,) - Survey Data (Psychosocial/Demographic survey data) - Retail Data (Receipt/transaction data)

    All of our syndicated segments are customizable. That means you can limit them to people within a certain geography, remove employees, include only the most frequent visitors, define your own custom lookback, or extend our audiences using our Home, Work, and Social Extensions.

    In addition to our syndicated segments, we’re also able to run custom queries return to you all the Mobile Ad IDs (MAIDs) seen at in a specific location (address; latitude and longitude; or WKT84 Polygon) or in your defined geographic area of interest (political districts, DMAs, Zip Codes, etc.,)

    Beyond just returning all the MAIDs seen within a geofence, we are also able to offer additional customizable advantages: - Average precision between 5 and 15 meters - CRM list activation + extension - Extend beyond Mobile Location Data (MAIDs) with our device graph - Filter by frequency of visitations - Home and Work targeting (retrieve only employees or residents of an address) - Home extensions (devices that reside in the same dwelling from your seed geofence) - Rooftop level address geofencing precision (no radius used EVER unless user specified) - Social extensions (devices in the same social circle as users in your seed geofence) - Turn analytics into addressable audiences - Work extensions (coworkers of users in your seed geofence)

    Data Compliance: All of our Audience Targeting Data is fully CCPA compliant and 100% sourced from SDKs (Software Development Kits), the most reliable and consistent mobile data stream with end user consent available with only a 4-5 day delay. This means that our location and device ID data comes from partnerships with over 1,500+ mobile apps. This data comes with an associated location which is how we are able to segment using geofences.

    Data Quality: In addition to partnering with trusted SDKs, DRAKO has additional screening methods to ensure that our mobile location data is consistent and reliable. This includes data harmonization and quality scoring from all of our partners in order to disregard MAIDs with a low quality score.

  3. O

    Homeless Services Program Demographics

    • data.mesaaz.gov
    • citydata.mesaaz.gov
    application/rdfxml +5
    Updated Jul 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HMIS AZ (2025). Homeless Services Program Demographics [Dataset]. https://data.mesaaz.gov/Community-Services/Homeless-Services-Program-Demographics/t3h8-4u4a
    Explore at:
    csv, tsv, application/rssxml, application/rdfxml, xml, jsonAvailable download formats
    Dataset updated
    Jul 23, 2025
    Dataset authored and provided by
    HMIS AZ
    Description

    Information about individuals experiencing homelessness and receiving services through Maricopa Regional Continuum of Care Coordinated Entry Points managed by Maricopa Association of Governments (MAG). See Reporting Interval and Report Date columns for more information about the date range covered. Information about "Mesa residents only" defined by value "client" in Demographic Audience field. Information about all individuals (Mesa resident and non-resident) receiving services from a Mesa-based provider defined by value "provider" in the Demographic Audience field. Data is collected by the Homeless Management Information System Arizona (HMIS AZ). See also https://community.solari-inc.org/homeless-management-information-system/

  4. Covid-19 information sources by segment.

    • plos.figshare.com
    xls
    Updated Jan 31, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stephen Coleman; Michael D. Slater; Phil Wright; Oliver Wright; Lauren Skardon; Gillian Hayes (2024). Covid-19 information sources by segment. [Dataset]. http://doi.org/10.1371/journal.pone.0296049.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jan 31, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Stephen Coleman; Michael D. Slater; Phil Wright; Oliver Wright; Lauren Skardon; Gillian Hayes
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Pandemics such as Covid-19 pose tremendous public health communication challenges in promoting protective behaviours, vaccination, and educating the public about risks. Segmenting audiences based on attitudes and behaviours is a means to increase the precision and potential effectiveness of such communication. The present study reports on such an audience segmentation effort for the population of England, sponsored by the United Kingdom Health Security Agency (UKHSA) and involving a collaboration of market research and academic experts. A cross-sectional online survey was conducted between 4 and 24 January 2022 with 5525 respondents (5178 used in our analyses) in England using market research opt-in panel. An additional 105 telephone interviews were conducted to sample persons without online or smartphone access. Respondents were quota sampled to be demographically representative. The primary analytic technique was k means cluster analysis, supplemented with other techniques including multi-dimensional scaling and use of respondent ‐ as well as sample-standardized data when necessary to address differences in response set for some groups of respondents. Identified segments were profiled against demographic, behavioural self-report, attitudinal, and communication channel variables, with differences by segment tested for statistical significance. Seven segments were identified, including distinctly different groups of persons who tended toward a high level of compliance and several that were relatively low in compliance. The segments were characterized by distinctive patterns of demographics, attitudes, behaviours, trust in information sources, and communication channels preferred. Segments were further validated by comparing the segmentation variable versus a set of demographic variables as predictors of reported protective behaviours in the past two weeks and of vaccine refusal; the demographics together had about one-quarter the effect size of the single seven-level segment variable. With respect to managerial implications, different communication strategies for each segment are suggested for each segment, illustrating advantages of rich segmentation descriptions for understanding public health communication audiences. Strengths and weaknesses of the methods used are discussed, to help guide future efforts.

  5. U.S. leading social media platform users 2024, by age group

    • statista.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. leading social media platform users 2024, by age group [Dataset]. https://www.statista.com/statistics/1337525/us-distribution-leading-social-media-platforms-by-age-group/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 4, 2024 - Dec 12, 2024
    Area covered
    United States
    Description

    As of January 2025, ** percent of social media users in the United States aged 40 to 49 years were users of Facebook, as were ** percent of ** to ** year olds in the country. Overall, ** percent of those aged 18 to 29 years were using Instagram in the U.S. The social media market in the United States The number of social media users in the United States has shown continuous growth in the past years, and it is forecast to continue increasing to reach *** million users in 2029. As of 2023, the social network user penetration in the United States amounted to an impressive ***** percent, meaning that more than nine in ten people in the country engaged with online platforms. Furthermore, Facebook was by far the most popular social media platform in the United States, accounting for ** percent of all social media visits in 2023, followed by Pinterest with **** percent of visits. The global social media landscape As of April 2024, **** billion people were social media users, accounting for **** percent of the world’s population. Northern Europe was the region with the highest social media penetration rate with a reach of **** percent, followed by Western Europe with **** percent and Eastern Asia **** percent. In contrast, less than one in ten people in Middle Africa used social networks. Facebook’s popularity is not limited to the United States: this network leads the market on a global scale, and it accumulated more than three billion monthly active users (MAU) as of 2024, which is far more any other social media platform. YouTube, Instagram, and WhatsApp followed, all with *** billion or more MAU.

  6. Amazon Prime TV Shows

    • kaggle.com
    Updated Oct 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neelima Jauhari (2020). Amazon Prime TV Shows [Dataset]. https://www.kaggle.com/nilimajauhari/amazon-prime-tv-shows/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 13, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Neelima Jauhari
    Description

    Context

    This data set was created so as to analyze the latest shows available on Amazon Prime as well as the shows with a high rating.

    Content

    The data set contains the name of the show or title, year of the release which is the year in which the show was released or went on-air, No.of seasons means the number of seasons of the show which are available on Prime, Language is for the audio language of the show and does not take into consideration the language of the subtitles, genre of the show like Kids, Drama, Action and so on, IMDB ratings of the show: though for many tv shows and kid shows the rating was not available, Age of Viewers is to specify the age of the target audience- All in age means that the content is not restricted to any particular age group and all audiences can view it.

    Acknowledgements

    I have collected this data from Amazon Prime's Website.

    Inspiration

    Since a lot many TV shows have high IMDB ratings but don't get viewed that much because the audience is not aware of it or it is not advertised much. I have created this data set so as to find out the highest-rated shows in each category or in a particular genre.

  7. Canada: Facebook users 2025, by age group

    • statista.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Canada: Facebook users 2025, by age group [Dataset]. https://www.statista.com/statistics/863754/facebook-user-share-in-canada-by-age/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2025
    Area covered
    Canada
    Description

    As of January 2025, around *********** of Facebook users in Canada were aged between ********* years, meaning that this age group accounted for the largest share of Facebook's audience in the country. Users aged 35 to 44 years accounted for **** percent of users.

  8. f

    Demographic factors of participants (n = 680).

    • figshare.com
    xls
    Updated May 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fiona Lamb; Allison Andrukonis; Alexandra Protopopova (2023). Demographic factors of participants (n = 680). [Dataset]. http://doi.org/10.1371/journal.pone.0255551.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Fiona Lamb; Allison Andrukonis; Alexandra Protopopova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Demographic factors of participants (n = 680).

  9. X/Twitter: distribution of global audiences 2025, by gender

    • statista.com
    Updated Jun 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). X/Twitter: distribution of global audiences 2025, by gender [Dataset]. https://www.statista.com/statistics/828092/distribution-of-users-on-twitter-worldwide-gender/
    Explore at:
    Dataset updated
    Jun 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 2025
    Area covered
    Worldwide
    Description

    As of February 2025, micro-blogging platform X (formerly Twitter) was more popular with men than women, with male audiences accounting for 63.7 percent of global users. Additionally, users between the ages of 25 and 34 were particularly active on X/Twitter, making up more than 37 percent of users worldwide. How many people use? Although X/Twitter holds its status as a mainstream social media site, it falls short in comparison to other well-known platforms in terms of user numbers. As of early 2022, X/Twitter had around 436 million monthly active users, whilst Meta’s Facebook reached almost three billion MAU. Overall, the United States is home to over 105 million X/Twitter users, making up Twitter’s largest audience base, followed by Japan, India, and the United Kingdom, respectively. How is Twitter used? X/Twitter is utilized by its audience for many different purposes. In May 2021, over 80 percent of high-volume X/Twitter users (defined as users who tweet around 20 times per month) in the United States reported using the platform for entertainment, whilst 78 percent said they used it as a way to stay informed. High-volume X/Twitter users were far more likely to use the service as a means of expressing their opinion. Furthermore, in 2022, over half of social media users in the U.S. used Twitter as a news resource.  

  10. HelloFresh brand profile in the UK 2023

    • statista.com
    • ai-chatbox.pro
    Updated Jul 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). HelloFresh brand profile in the UK 2023 [Dataset]. https://www.statista.com/forecasts/1304360/hellofresh-online-grocery-delivery-brand-profile-in-the-united-kingdom
    Explore at:
    Dataset updated
    Jul 18, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Nov 2023
    Area covered
    United Kingdom
    Description

    How high is the brand awareness of HelloFresh in the UK?When it comes to online grocery delivery users, brand awareness of HelloFresh is at ** percent in the UK. The survey was conducted using the concept of aided brand recognition, showing respondents both the brand's logo and the written brand name.How popular is HelloFresh in the UK?In total, ** percent of UK online grocery delivery users say they like HelloFresh. However, in actuality, among the ** percent of UK respondents who know HelloFresh, ** percent of people like the brand.What is the usage share of HelloFresh in the UK?All in all, ** percent of online grocery delivery users in the UK use HelloFresh. That means, of the ** percent who know the brand, ** percent use them.How loyal are the customers of HelloFresh?Around * percent of online grocery delivery users in the UK say they are likely to use HelloFresh again. Set in relation to the ** percent usage share of the brand, this means that ** percent of their customers show loyalty to the brand.What's the buzz around HelloFresh in the UK?In November 2023, about ** percent of UK online grocery delivery users had heard about HelloFresh in the media, on social media, or in advertising over the past four weeks. Of the ** percent who know the brand, that's ** percent, meaning at the time of the survey there's some buzz around HelloFresh in the UK.If you want to compare brands, do deep-dives by survey items of your choice, filter by total online population or users of a certain brand, or drill down on your very own hand-tailored target groups, our Consumer Insights Brand KPI survey has you covered.

  11. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Factori (2022). Factori USA Consumer Graph Data | socio-demographic, location, interest and intent data | E-Commere |Mobile Apps | Online Services [Dataset]. https://datarade.ai/data-products/factori-usa-consumer-graph-data-socio-demographic-location-factori

Factori USA Consumer Graph Data | socio-demographic, location, interest and intent data | E-Commere |Mobile Apps | Online Services

Explore at:
.json, .csvAvailable download formats
Dataset updated
Jul 23, 2022
Dataset authored and provided by
Factori
Area covered
United States of America
Description

Our consumer data is gathered and aggregated via surveys, digital services, and public data sources. We use powerful profiling algorithms to collect and ingest only fresh and reliable data points.

Our comprehensive data enrichment solution includes a variety of data sets that can help you address gaps in your customer data, gain a deeper understanding of your customers, and power superior client experiences.

  1. Geography - City, State, ZIP, County, CBSA, Census Tract, etc.
  2. Demographics - Gender, Age Group, Marital Status, Language etc.
  3. Financial - Income Range, Credit Rating Range, Credit Type, Net worth Range, etc
  4. Persona - Consumer type, Communication preferences, Family type, etc
  5. Interests - Content, Brands, Shopping, Hobbies, Lifestyle etc.
  6. Household - Number of Children, Number of Adults, IP Address, etc.
  7. Behaviours - Brand Affinity, App Usage, Web Browsing etc.
  8. Firmographics - Industry, Company, Occupation, Revenue, etc
  9. Retail Purchase - Store, Category, Brand, SKU, Quantity, Price etc.
  10. Auto - Car Make, Model, Type, Year, etc.
  11. Housing - Home type, Home value, Renter/Owner, Year Built etc.

Consumer Graph Schema & Reach: Our data reach represents the total number of counts available within various categories and comprises attributes such as country location, MAU, DAU & Monthly Location Pings:

Data Export Methodology: Since we collect data dynamically, we provide the most updated data and insights via a best-suited method on a suitable interval (daily/weekly/monthly).

Consumer Graph Use Cases:

360-Degree Customer View:Get a comprehensive image of customers by the means of internal and external data aggregation.

Data Enrichment:Leverage Online to offline consumer profiles to build holistic audience segments to improve campaign targeting using user data enrichment

Fraud Detection: Use multiple digital (web and mobile) identities to verify real users and detect anomalies or fraudulent activity.

Advertising & Marketing:Understand audience demographics, interests, lifestyle, hobbies, and behaviors to build targeted marketing campaigns.

Using Factori Consumer Data graph you can solve use cases like:

Acquisition Marketing Expand your reach to new users and customers using lookalike modeling with your first party audiences to extend to other potential consumers with similar traits and attributes.

Lookalike Modeling

Build lookalike audience segments using your first party audiences as a seed to extend your reach for running marketing campaigns to acquire new users or customers

And also, CRM Data Enrichment, Consumer Data Enrichment B2B Data Enrichment B2C Data Enrichment Customer Acquisition Audience Segmentation 360-Degree Customer View Consumer Profiling Consumer Behaviour Data

Here's the schema of Consumer Data: person_id first_name last_name age gender linkedin_url twitter_url facebook_url city state address zip zip4 country delivery_point_bar_code carrier_route walk_seuqence_code fips_state_code fips_country_code country_name latitude longtiude address_type metropolitan_statistical_area core_based+statistical_area census_tract census_block_group census_block primary_address pre_address streer post_address address_suffix address_secondline address_abrev census_median_home_value home_market_value property_build+year property_with_ac property_with_pool property_with_water property_with_sewer general_home_value property_fuel_type year month household_id Census_median_household_income household_size marital_status length+of_residence number_of_kids pre_school_kids single_parents working_women_in_house_hold homeowner children adults generations net_worth education_level occupation education_history credit_lines credit_card_user newly_issued_credit_card_user credit_range_new
credit_cards loan_to_value mortgage_loan2_amount mortgage_loan_type
mortgage_loan2_type mortgage_lender_code
mortgage_loan2_render_code
mortgage_lender mortgage_loan2_lender
mortgage_loan2_ratetype mortgage_rate
mortgage_loan2_rate donor investor interest buyer hobby personal_email work_email devices phone employee_title employee_department employee_job_function skills recent_job_change company_id company_name company_description technologies_used office_address office_city office_country office_state office_zip5 office_zip4 office_carrier_route office_latitude office_longitude office_cbsa_code
office_census_block_group
office_census_tract office_county_code
company_phone
company_credit_score
company_csa_code
company_dpbc
company_franchiseflag
company_facebookurl company_linkedinurl company_twitterurl
company_website company_fortune_rank
company_government_type company_headquarters_branch company_home_business
company_industry
company_num_pcs_used
company_num_employees
company_firm_individual company_msa company_msa_name
company_naics_code
company_naics_description
company_naics_code2 company_naics_description2
company_sic_code2
company_sic_code2_desc...

Search
Clear search
Close search
Google apps
Main menu