Facebook
TwitterCensus data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, the yellow areas of highest density range from 30,000 to 150,000 persons per square kilometer. In those areas, if the people were spread out evenly across the area, there would be just 4 to 9 meters between them. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.This dataset is comprised of multiple sources. All of the demographic data are from Michael Bauer Research with the exception of the following countries:Australia: Esri Australia and MapData ServicesCanada: Esri Canada and EnvironicsFrance: Esri FranceGermany: Esri Germany and NexigaIndia: Esri India and IndicusJapan: Esri JapanSouth Korea: Esri Korea and OPENmateSpain: Esri España and AISUnited States: Esri Demographics
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset offers a detailed comparison of key global players like USA, Russia, China, India, Canada, Australia, and others across various economic, social, and environmental metrics. By comparing countries on indicators such as GDP, population, healthcare access, education levels, internet penetration, military spending, and much more, this dataset provides valuable insights for researchers, policymakers, and analysts.
🔍 Key Comparisons:
Economic Indicators: GDP, inflation rates, unemployment rates, etc. Social Indicators: Literacy rates, healthcare quality, life expectancy, etc. Environmental Indicators: CO2 emissions, renewable energy usage, protected areas, etc. Technological Advancements: Internet users, mobile subscriptions, tech exports, etc. Military Spending: Defense budgets, military personnel numbers, etc. This dataset is perfect for those who want to compare countries in terms of development, growth, and global standing. It can be used for data analysis, policy planning, research, and even education.
✨ Key Features:
Comprehensive Coverage: Includes multiple countries with key metrics. Multiple Domains: Economic, social, environmental, technological, and military data. Up-to-date Information: Covers data from the last decade to provide recent insights. Research Ready: Suitable for academic research, visualizations, and analysis.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The outbreak of COVID19 pushed Kaggle to launch several competitions to better understand how the new virus spreads.
The data provided by this competition is not only divided by nation (China, US, Canada...), but also sometimes by province/state/dependency/territory (California, Hubei, French Guiana, Saskatchewan...).
Although there are already several Kaggle datasets that provide population estimates by nation, I couldn't find any that provided a population estimate for each one of the constituent states ("provinces/states") included in the data for the 2nd week COVID19 Global Forecasting competition. So here they are, packaged in a super simple two-column CSV file.
Each row in this dataset is a rough estimate of the population in each of the constituent states that appear in the COVID19 Global Forecasting competition. Each row is, of course, one of these inner states. By "constituent state" I mean one of: - the 54 United States of America - the 33 Chinese provinces - 10 Canadian provinces (plus a territory, Northwest Territories) - 11 French overseas territories - 10 British overseas territories - 6 Australian states (plus 2 internal territories) - 5 constituent countries of the Kingdom of the Netherlands - 2 autonomous Danish territories (Faroe Islands and Greenland)
In total, 134 states are listed.
The population estimates were collected from the following sources: - Australia: Wikipedia - Canada: worldpopulationreview.com - China: another Kaggle dataset - Denmark: worldpopulationreview.com - France: worldometers.info (retrieved 2020-04-02, 18:00 UTC) - Netherlands: worldometers.info (retrieved 2020-04-02, 18:00 UTC) - US: worldpopulationreview.com - Guam: worldpopulationreview.com - UK: worldometers.info (retrieved 2020-04-02, 18:00 UTC)
Facebook
TwitterThis dataset, a product of the Trade Team - Development Research Group, is part of a larger effort in the group to measure the extent of the brain drain as part of the International Migration and Development Program. It measures international skilled migration for the years 1975-2000.
The methodology is explained in: "Tendance de long terme des migrations internationals. Analyse à partir des 6 principaux pays recerveurs", Cécily Defoort.
This data set uses the same methodology as used in the Docquier-Marfouk data set on international migration by educational attainment. The authors use data from 6 key receiving countries in the OECD: Australia, Canada, France, Germany, the UK and the US.
It is estimated that the data represent approximately 77 percent of the world’s migrant population.
Bilateral brain drain rates are estimated based observations for every five years, during the period 1975-2000.
Australia, Canada, France, Germany, UK and US
Aggregate data [agg]
Other [oth]
Facebook
TwitterThis map shows where senior populations are found throughout the world. Areas with more than 10% seniors are highlighted with a dark red shading while a dot representation reveals the number of seniors and their distribution in bright red.This dataset is comprised of multiple sources. All of the demographic data are from Michael Bauer Research with the exception of the following countries:Australia: Esri Australia and MapData ServicesCanada: Esri Canada and EnvironicsFrance: Esri FranceGermany: Esri Germany and NexigaIndia: Esri India and IndicusJapan: Esri JapanSouth Korea: Esri Korea and OPENmateSpain: Esri España and AISUnited States: Esri Demographics
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
this graph was created in OurDataWorld:
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F5ba70e2a6c4926d6d6cf25183d04d768%2Fgraph1.png?generation=1721857623801679&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F37881b8889c3e253207b67f0115b704e%2Fgraph2.png?generation=1721857629220811&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F6391ebd97d7f80974d7acd60a10b914d%2Fgraph3.png?generation=1721857634439762&alt=media" alt="">
Population growth is one of the most important topics we cover at Our World in Data.
For most of human history, the global population was a tiny fraction of what it is today. Over the last few centuries, the human population has gone through an extraordinary change. In 1800, there were one billion people. Today there are more than 8 billion of us.
But after a period of very fast population growth, demographers expect the world population to peak by the end of this century.
On this page, you will find all of our data, charts, and writing on changes in population growth. This includes how populations are distributed worldwide, how this has changed, and what demographers expect for the future. Geographical maps show us where the world's landmasses are; not where people are. That means they don't always give us an accurate picture of how global living standards are changing.
One way to understand the distribution of people worldwide is to redraw the world map – not based on the area but according to population.
This is shown here as a population cartogram: a geographical presentation of the world where the size of countries is not drawn according to the distribution of land but by the distribution of people. It’s shown for the year 2018.
As the population size rather than the territory is shown in this map, you can see some significant differences when you compare it to the standard geographical map we’re most familiar with.
Small countries with a high population density increase in size in this cartogram relative to the world maps we are used to – look at Bangladesh, Taiwan, or the Netherlands. Large countries with a small population shrink in size – look for Canada, Mongolia, Australia, or Russia.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
this graph was created in R:
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F55a15c27e578216565ab65e502f9ecf8%2Fgraph1.png?generation=1730674251775717&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F0b481e4d397700978fe5cf15932dbc68%2Fgraph2.png?generation=1730674259213775&alt=media" alt="">
driven primarily by high birth rates in developing countries and advancements in healthcare. According to the United Nations, the global population surpassed 8 billion in 2023, marking a critical milestone in human history. This growth, however, is unevenly distributed across continents and countries, leading to varied population densities and urban pressures.
Surface area and population density play vital roles in shaping the demographic and economic landscape of each country. For instance, countries with large land masses such as Russia, Canada, and Australia have low population densities despite their significant populations, as vast portions of their land are sparsely populated or uninhabitable. Conversely, nations like Bangladesh and South Korea exhibit extremely high population densities due to smaller land areas combined with large populations.
Population density, measured as the number of people per square kilometer, affects resource availability, environmental sustainability, and quality of life. High-density areas face greater challenges in housing, infrastructure, and environmental management, often experiencing increased pollution and resource strain. In contrast, low-density areas may struggle with underdeveloped infrastructure and limited access to services due to the dispersed population.
Urbanization trends are another important aspect of these dynamics. As people migrate to cities seeking better economic opportunities, urban areas grow more densely populated, amplifying the need for efficient land use and sustainable urban planning. The UN reports that over half of the world’s population currently resides in urban areas, with this figure expected to rise to nearly 70% by 2050. This shift requires nations to balance population growth and density with sustainable development strategies to ensure a higher quality of life and environmental stewardship for future generations.
Through an understanding of population size, surface area, and density, policymakers can better address challenges related to urban development, rural depopulation, and resource allocation, supporting a balanced approach to population management and economic development.
Facebook
TwitterThis dataset presents information on historical central government revenues for 31 countries in Europe and the Americas for the period from 1800 (or independence) to 2012. The countries included are: Argentina, Australia, Austria, Belgium, Bolivia, Brazil, Canada, Chile, Colombia, Denmark, Ecuador, Finland, France, Germany (West Germany between 1949 and 1990), Ireland, Italy, Japan, Mexico, New Zealand, Norway, Paraguay, Peru, Portugal, Spain, Sweden, Switzerland, the Netherlands, the United Kingdom, the United States, Uruguay, and Venezuela. In other words, the dataset includes all South American, North American, and Western European countries with a population of more than one million, plus Australia, New Zealand, Japan, and Mexico. The dataset contains information on the public finances of central governments. To make such information comparable cross-nationally we have chosen to normalize nominal revenue figures in two ways: (i) as a share of the total budget, and (ii) as a share of total gross domestic product. The total tax revenue of the central state is disaggregated guided by the Government Finance Statistics Manual 2001 of the International Monetary Fund (IMF) which provides a classification of types of revenue, and describes in detail the contents of each classification category. Given the paucity of detailed historical data and the needs of our project, we combined some subcategories. First, we are interested in total tax revenue (centaxtot), as well as the shares of total revenue coming from direct (centaxdirectsh) and indirect (centaxindirectsh) taxes. Further, we measure two sub-categories of direct taxation, namely taxes on property (centaxpropertysh) and income (centaxincomesh). For indirect taxes, we separate excises (centaxexcisesh), consumption (centaxconssh), and customs(centaxcustomssh).
For a more detailed description of the dataset and the coding process, see the codebook available in the .zip-file.
Purpose:
This dataset presents information on historical central government revenues for 31 countries in Europe and the Americas for the period from 1800 (or independence) to 2012. The countries included are: Argentina, Australia, Austria, Belgium, Bolivia, Brazil, Canada, Chile, Colombia, Denmark, Ecuador, Finland, France, Germany (West Germany between 1949 and 1990), Ireland, Italy, Japan, Mexico, New Zealand, Norway, Paraguay, Peru, Portugal, Spain, Sweden, Switzerland, the Netherlands, the United Kingdom, the United States, Uruguay, and Venezuela. In other words, the dataset includes all South American, North American, and Western European countries with a population of more than one million, plus Australia, New Zealand, Japan, and Mexico. The dataset contains information on the public finances of central governments. To make such information comparable cross-nationally we have chosen to normalize nominal revenue figures in two ways: (i) as a share of the total budget, and (ii) as a share of total gross domestic product. The total tax revenue of the central state is disaggregated guided by the Government Finance Statistics Manual 2001 of the International Monetary Fund (IMF) which provides a classification of types of revenue, and describes in detail the contents of each classification category. Given the paucity of detailed historical data and the needs of our project, we combined some subcategories. First, we are interested in total tax revenue (centaxtot), as well as the shares of total revenue coming from direct (centaxdirectsh) and indirect (centaxindirectsh) taxes. Further, we measure two sub-categories of direct taxation, namely taxes on property (centaxpropertysh) and income (centaxincomesh). For indirect taxes, we separate excises (centaxexcisesh), consumption (centaxconssh), and customs(centaxcustomssh).
Facebook
TwitterTwo datasets provide geographic, land use and population data for US Counties within the contiguous US. Land area, water area, cropland area, farmland area, pastureland area and idle cropland area are given along with latitude and longitude of the county centroid and the county population. Variables in this dataset come from the US Dept. of Agriculture (USDA) Natural Resources Conservation Service (NRCS) and the US Census Bureau.
EOS-WEBSTER provides seven datasets which provide county-level data on agricultural management, crop production, livestock, soil properties, geography and population. These datasets were assembled during the mid-1990's to provide driving variables for an assessment of greenhouse gas production from US agriculture using the DNDC agro-ecosystem model [see, for example, Li et al. (1992), J. Geophys. Res., 97:9759-9776; Li et al. (1996) Global Biogeochem. Cycles, 10:297-306]. The data (except nitrogen fertilizer use) were all derived from publicly available, national databases. Each dataset has a separate DIF.
The US County data has been divided into seven datasets.
US County Data Datasets:
1) Agricultural Management 2) Crop Data (NASS Crop data) 3) Crop Summary (NASS Crop data) 4) Geography and Population 5) Land Use 6) Livestock Populations 7) Soil Properties
Facebook
TwitterThis map shows where youth populations are found throughout the world. Areas with more than 33% youth are highlighted with a dark red shading while a dot representation reveals the number of seniors and their distribution in bright red.This dataset is comprised of multiple sources. All of the demographic data are from Michael Bauer Research with the exception of the following countries:Australia: Esri Australia and MapData ServicesCanada: Esri Canada and EnvironicsFrance: Esri FranceGermany: Esri Germany and NexigaIndia: Esri India and IndicusJapan: Esri JapanSouth Korea: Esri Korea and OPENmateSpain: Esri España and AISUnited States: Esri Demographics
Facebook
TwitterThe Crops Dataset contains nineteen variables which represent different crops sown in China. For each crop (variable) the number of hectares of that crop sown are given. The following crops are represented: Cereal Grains, Corn, Cotton, Double Season Rice, Green Manure, Potatoes, Rapeseed, Rice and Rapeseed, Single Season Rice, Spring Wheat, Sorghum, Soybeans, Sugarbeets, Sugarcane, Tobacco, Vegetables, Winter Wheat, Winter Wheat and Corn, Winter Wheat and Rice.
See the references for the sources of these data.
China County Data collection contains seven datasets which were compiled in the early 1990s for use as inputs to the DNDC (Denitrification-Decomposition) model at UNH. DNDC is a computer simulation model for predicting carbon (C) and nitrogen (N) biogeochemistry in agricultural ecosystems. The datasets were compiled from multiple Chinese sources and all are at the county scale for 1990. The datasets which comprise this collection are listed below.
1) Agricultural Management 2) Crops 3) N-Deposition 4) Geography and Population 5) Land Use 6) Livestock 7) Soil Properties
Facebook
TwitterThis dataset provides county-level data for Nitrogen fertilizer applied to county croplands [1000 kg N/yr]. This includes only those crops used in an assessment of greenhouse gas production from US agriculture using the DNDC agro-ecosystem model [see, for example, Li et al. (1992), J. Geophys. Res., 97:9759-9776; Li et al. (1996) Global Biogeochem. Cycles, 10:297-306]. Cropland area statistics are from the National Agricultural Statistical Service (NASS) for 1990 for most crops, though some are 1992 data from the Census of Agriculture. Data represent total of irrigated and non-irrigated areas. (see NASS Crops County Data).
This is based on 'typical' nitrogen fertilization rates for each of the crops. The fertilizer application rates (see Table below) were derived from USDA NASS state agricultural statistics bulletins.
Crop Typical' N Fert. Rate (kg N/ha) Alfalfa 0 Barley 75 Corn (grain & silage) 125 Cotton 100 Edible Bean 0 Idle Cropland 0 Non-Legume Hay 25 Oats 75 Pasture 0 Peanut 0 Potatoes 250 Rice 140 Sorghum 75 Soybean 0 Spring Wheat 50 Sugarbeets 150 Sugarcane 200 Sunflower 100 Tobacco 100 Vegetables 100 Winter Wheat 75
County crop areas were multiplied by the nitrogen fertilization rates given above to determine total N-fertilization of these croplands per year. The 1990 national total N fertilizer use calculated by this method (8.5 million tonnes N/yr) is 83% of the 1990 national N-fertilizer sales (10.3 million tonnes N/yr). The sales total is expected to be larger because it will include fertilizer sold for other uses (eg. lawns, golf courses, other non-crop uses) as well as farm-use fertilizer applied to crops not included in the crop database (eg. vineyards, orchards, sod). The source for N fertilizer sales is American Assoc. of Plant Food Control Officials, 103 Regulatory Services Building; University of Kentucky; Lexington, KY 40546-0275; Phone (606)257-2668 fax (606)257-7351.
EOS-WEBSTER provides seven datasets which provide county-level data on agricultural management, crop production, livestock, soil properties, geography and population. These datasets were assembled during the mid-1990's to provide driving variables for an assessment of greenhouse gas production from US agriculture using the DNDC agro-ecosystem model [see, for example, Li et al. (1992), J. Geophys. Res., 97:9759-9776; Li et al. (1996) Global Biogeochem. Cycles, 10:297-306]. The data (except nitrogen fertilizer use) were all derived from publicly available, national databases. Each dataset has a separate DIF.
The US County data has been divided into seven datasets.
US County Data Datasets:
1) Agricultural Management 2) Crop Data (NASS Crop data) 3) Crop Summary (NASS Crop data) 4) Geography and Population 5) Land Use 6) Livestock Populations 7) Soil Properties
Facebook
TwitterA later version of the set. Combined with ds516.0 [] to create ds516.2 [https://rda.ucar.edu/datasets/ds516.2/], the preferred set to use.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterCensus data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, the yellow areas of highest density range from 30,000 to 150,000 persons per square kilometer. In those areas, if the people were spread out evenly across the area, there would be just 4 to 9 meters between them. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.This dataset is comprised of multiple sources. All of the demographic data are from Michael Bauer Research with the exception of the following countries:Australia: Esri Australia and MapData ServicesCanada: Esri Canada and EnvironicsFrance: Esri FranceGermany: Esri Germany and NexigaIndia: Esri India and IndicusJapan: Esri JapanSouth Korea: Esri Korea and OPENmateSpain: Esri España and AISUnited States: Esri Demographics