17 datasets found
  1. Leading causes of death among Black U.S. residents from 2020 to 2022

    • statista.com
    • ai-chatbox.pro
    Updated Dec 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Leading causes of death among Black U.S. residents from 2020 to 2022 [Dataset]. https://www.statista.com/statistics/233310/distribution-of-the-10-leading-causes-of-death-among-african-americans/
    Explore at:
    Dataset updated
    Dec 13, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The leading causes of death among Black residents in the United States in 2022 included diseases of the heart, cancer, unintentional injuries, and stroke. The leading causes of death for African Americans generally reflects the leading causes of death for the entire United States population. However, a major exception is that death from assault or homicide is the seventh leading cause of death among African Americans, but is not among the ten leading causes for the general population. Homicide among African Americans The homicide rate among African Americans has been higher than that of other races and ethnicities for many years. In 2023, around 9,284 Black people were murdered in the United States, compared to 7,289 white people. A majority of these homicides are committed with firearms, which are easily accessible in the United States. In 2022, around 14,189 Black people died by firearms. However, suicide deaths account for over half of all deaths from firearms in the United States. Cancer disparities There are also major disparities in access to health care and the impact of various diseases. For example, the incidence rate of cancer among African American males is the greatest among all ethnicities and races. Furthermore, although the incidence rate of cancer is lower among African American women than it is among white women, cancer death rates are still higher among African American women.

  2. Life expectancy in North America 2022

    • statista.com
    Updated Jul 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Life expectancy in North America 2022 [Dataset]. https://www.statista.com/statistics/274513/life-expectancy-in-north-america/
    Explore at:
    Dataset updated
    Jul 5, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    North America
    Description

    This statistic shows the average life expectancy in North America for those born in 2022, by gender and region. In Canada, the average life expectancy was 80 years for males and 84 years for females.

    Life expectancy in North America

    Of those considered in this statistic, the life expectancy of female Canadian infants born in 2021 was the longest, at 84 years. Female infants born in America that year had a similarly high life expectancy of 81 years. Male infants, meanwhile, had lower life expectancies of 80 years (Canada) and 76 years (USA).

    Compare this to the worldwide life expectancy for babies born in 2021: 75 years for women and 71 years for men. Of continents worldwide, North America ranks equal first in terms of life expectancy of (77 years for men and 81 years for women). Life expectancy is lowest in Africa at just 63 years and 66 years for males and females respectively. Japan is the country with the highest life expectancy worldwide for babies born in 2020.

    Life expectancy is calculated according to current mortality rates of the population in question. Global variations in life expectancy are caused by differences in medical care, public health and diet, and reflect global inequalities in economic circumstances. Africa’s low life expectancy, for example, can be attributed in part to the AIDS epidemic. In 2019, around 72,000 people died of AIDS in South Africa, the largest amount worldwide. Nigeria, Tanzania and India were also high on the list of countries ranked by AIDS deaths that year. Likewise, Africa has by far the highest rate of mortality by communicable disease (i.e. AIDS, neglected tropics diseases, malaria and tuberculosis).

  3. Life expectancy in Africa 2023

    • statista.com
    • ai-chatbox.pro
    Updated Feb 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Life expectancy in Africa 2023 [Dataset]. https://www.statista.com/statistics/274511/life-expectancy-in-africa/
    Explore at:
    Dataset updated
    Feb 28, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Africa
    Description

    For those born in 2023, the average life expectancy at birth across Africa was 61 years for men and 65 years for women. The average life expectancy globally was 70 years for men and 75 years for women in mid-2023.

    Additional information on life expectancy in Africa

    With the exception of North Africa where life expectancy is around the worldwide average for men and women, life expectancy across all African regions paints a bleak picture. Comparison of life expectancy by continent shows the gap in average life expectancy between Africa and other continent regions. Africa trails Latin America and the Caribbean, the continent with the second lowest average life expectancy, by 10 years for men and 12 years for women.

    Life expectancy in Africa is the lowest globally Moreover, countries from across the African regions dominate the list of countries with the lowest life expectancy worldwide. Nigeria and Lesotho had the lowest life expectancy for those born in 2023 for men and women, respectively. However there is reason for hope despite the low life expectancy rates in many African countries. The Human Development index rating in Sub-Saharan Africa has increased dramatically from 0.43 to 0.55 between 2000 and 2021, demonstrating an improvement in quality of life and as a result greater access to vital services that allow people to live longer lives. One such improvement has been successful efforts to reduce the rate of aids infection and research into combating its effects. The number of new HIV infections across Africa has decreased from around 1.3 million in 2015 to 760,000 in 2022.

  4. Life expectancy by continent and gender 2024

    • statista.com
    Updated Apr 25, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2014). Life expectancy by continent and gender 2024 [Dataset]. https://www.statista.com/statistics/270861/life-expectancy-by-continent/
    Explore at:
    Dataset updated
    Apr 25, 2014
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    In 2024, the average life expectancy in the world was 71 years for men and 76 years for women. The lowest life expectancies were found in Africa, while Oceania and Europe had the highest. What is life expectancy?Life expectancy is defined as a statistical measure of how long a person may live, based on demographic factors such as gender, current age, and most importantly the year of their birth. The most commonly used measure of life expectancy is life expectancy at birth or at age zero. The calculation is based on the assumption that mortality rates at each age were to remain constant in the future. Life expectancy has changed drastically over time, especially during the past 200 years. In the early 20th century, the average life expectancy at birth in the developed world stood at 31 years. It has grown to an average of 70 and 75 years for males and females respectively, and is expected to keep on growing with advances in medical treatment and living standards continuing. Highest and lowest life expectancy worldwide Life expectancy still varies greatly between different regions and countries of the world. The biggest impact on life expectancy is the quality of public health, medical care, and diet. As of 2022, the countries with the highest life expectancy were Japan, Liechtenstein, Switzerland, and Australia, all at 84–83 years. Most of the countries with the lowest life expectancy are mostly African countries. The ranking was led by the Chad, Nigeria, and Lesotho with 53–54 years.

  5. a

    U.S. Heart Disease Mortality 2020-2022

    • hub.arcgis.com
    Updated Nov 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2024). U.S. Heart Disease Mortality 2020-2022 [Dataset]. https://hub.arcgis.com/datasets/870b8cfb42eb40fc9544d6c5bcca7f8e
    Explore at:
    Dataset updated
    Nov 29, 2024
    Dataset authored and provided by
    Centers for Disease Control and Prevention
    Area covered
    Description

    2020 - 2022, county-level U.S. heart disease death rates. Dataset developed by the Centers for Disease Control and Prevention, Division for Heart Disease and Stroke Prevention.Data SourceMortality data were obtained from the National Vital Statistics System. Bridged-Race Postcensal Population Estimates were obtained from the National Center for Health Statistics. International Classification of Diseases, 10th Revision (ICD-10) codes: I00-I09, I11, I13, I20-I51; underlying cause of death.Data DictionaryData for counties with small populations are not displayed when a reliable rate could not be generated. These counties are represented in the data with values of '-1.' CDC excludes these values when classifying the data on a map, indicating those counties as 'Insufficient Data.'Data field names and descriptionsstcty_fips: state FIPS code + county FIPS codeOther fields use the following format: RRR_S_aaaa (e.g., API_M_35UP)  RRR: 3 digits represent race/ethnicity    All - Overall    AIA - American Indian and Alaska Native, non-Hispanic    ASN - Asian, non-Hispanic    BLK - Black, non-Hispanic    HIS - Hispanic NHP – Native Hawaiian or Other Pacific Islander, non-Hispanic MOR – More than one race, non-Hispanic    WHT - White, non-Hispanic  S: 1 digit represents sex    A - All    F - Female    M - Male  aaaa: 4 digits represent age. The first 2 digits are the lower bound for age and the last 2 digits are the upper bound for age. 'UP' indicates the data includes the maximum age available and 'LT' indicates ages less than the upper bound. Example: The column 'BLK_M_65UP' displays rates per 100,000 black men aged 65 years and older.MethodologyRates are calculated using a 3-year average and are age-standardized in 10-year age groups using the 2000 U.S. Standard Population. Rates are calculated and displayed per 100,000 population. Rates were spatially smoothed using a Local Empirical Bayes algorithm to stabilize risk by borrowing information from neighboring geographic areas, making estimates more statistically robust and stable for counties with small populations. Data for counties with small populations are coded as '-1' when a reliable rate could not be generated. County-level rates were generated when the following criteria were met over a 3-year time period within each of the filters (e.g., age, race, and sex).At least one of the following 3 criteria:At least 20 events occurred within the county and its adjacent neighbors.ORAt least 16 events occurred within the county.ORAt least 5,000 population years within the county.AND all 3 of the following criteria:At least 6 population years for each age group used for age adjustment if that age group had 1 or more event.The number of population years in an age group was greater than the number of events.At least 100 population years within the county.More Questions?Interactive Atlas of Heart Disease and StrokeData SourcesStatistical Methods

  6. a

    U.S Stroke Mortality Rates 2017-2019

    • hub.arcgis.com
    Updated Jul 29, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2021). U.S Stroke Mortality Rates 2017-2019 [Dataset]. https://hub.arcgis.com/maps/cdcarcgis::u-s-stroke-mortality-rates-2017-2019
    Explore at:
    Dataset updated
    Jul 29, 2021
    Dataset authored and provided by
    Centers for Disease Control and Prevention
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    Create maps of U.S. stroke death rates by county. Data can be stratified by age, race/ethnicity, and sex. Visit the CDC/DHDSP Atlas of Heart Disease and Stroke for additional data and maps. Atlas of Heart Disease and StrokeData SourceMortality data were obtained from the National Vital Statistics System. Bridged-Race Postcensal Population Estimates were obtained from the National Center for Health Statistics. International Classification of Diseases, 10th Revision (ICD-10) codes: I60-I69; underlying cause of death.Data DictionaryData for counties with small populations are not displayed when a reliable rate could not be generated. These counties are represented in the data with values of '-1.' CDC/DHDSP excludes these values when classifying the data on a map, indicating those counties as 'Insufficient Data.' Data field names and descriptionsstcty_fips: state FIPS code + county FIPS codeOther fields use the following format: RRR_S_aaaa (e.g., API_M_35UP)   RRR: 3 digits represent race/ethnicity     All - Overall     AIA - American Indian and Alaska Native, non-Hispanic     API - Asian and Pacific Islander, non-Hispanic     BLK - Black, non-Hispanic     HIS - Hispanic     WHT - White, non-Hispanic   S: 1 digit represents sex     A - All    F - Female     M - Male  aaaa: 4 digits represent age. The first 2 digits are the lower bound for age and the last 2 digits are the upper bound for age. 'UP' indicates the data includes the maximum age available and 'LT' indicates ages less than the upper bound.  Example: The column 'BLK_M_65UP' displays rates per 100,000 black men aged 65 years and older.MethodologyRates are calculated using a 3-year average and are age-standardized in 10-year age groups using the 2000 U.S. Standard Population. Rates are calculated and displayed per 100,000 population. Rates were spatially smoothed using a Local Empirical Bayes algorithm to stabilize risk by borrowing information from neighboring geographic areas, making estimates more statistically robust and stable for counties with small populations. Data for counties with small populations are coded as '-1' when a reliable rate could not be generated. County-level rates were generated when the following criteria were met over a 3-year time period within each of the filters (e.g., age, race, and sex).At least one of the following 3 criteria: At least 20 events occurred within the county and its adjacent neighbors.ORAt least 16 events occurred within the county.ORAt least 5,000 population years within the county.AND all 3 of the following criteria:At least 6 population years for each age group used for age adjustment if that age group had 1 or more event.The number of population years in an age group was greater than the number of events.At least 100 population years within the county.More Questions?Interactive Atlas of Heart Disease and StrokeData SourcesStatistical Methods

  7. a

    U.S. Stroke Mortality 2020-2022

    • hub.arcgis.com
    Updated Nov 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2024). U.S. Stroke Mortality 2020-2022 [Dataset]. https://hub.arcgis.com/datasets/e1a428474df841b49822b4fe59a47ef0
    Explore at:
    Dataset updated
    Nov 29, 2024
    Dataset authored and provided by
    Centers for Disease Control and Prevention
    Area covered
    Description

    2020 - 2022, county-level U.S. stroke death rates. Dataset developed by the Centers for Disease Control and Prevention, Division for Heart Disease and Stroke Prevention.Create maps of U.S. stroke death rates by county. Data can be stratified by age, race/ethnicity, and sex.Visit the CDC Atlas of Heart Disease and Stroke for additional data and maps. Atlas of Heart Disease and StrokeData SourceMortality data were obtained from the National Vital Statistics System. Bridged-Race Postcensal Population Estimates were obtained from the National Center for Health Statistics. International Classification of Diseases, 10th Revision (ICD-10) codes: I60-I69; underlying cause of death.Data DictionaryData for counties with small populations are not displayed when a reliable rate could not be generated. These counties are represented in the data with values of '-1.' CDC excludes these values when classifying the data on a map, indicating those counties as 'Insufficient Data.'Data field names and descriptionsstcty_fips: state FIPS code + county FIPS codeOther fields use the following format: RRR_S_aaaa (e.g., API_M_35UP)  RRR: 3 digits represent race/ethnicity    All - Overall    AIA - American Indian and Alaska Native, non-Hispanic    ASN - Asian, non-Hispanic    BLK - Black, non-Hispanic    HIS - Hispanic NHP – Native Hawaiian or Other Pacific Islander, non-Hispanic MOR – More than one race, non-Hispanic    WHT - White, non-Hispanic  S: 1 digit represents sex    A - All    F - Female    M - Male  aaaa: 4 digits represent age. The first 2 digits are the lower bound for age and the last 2 digits are the upper bound for age. 'UP' indicates the data includes the maximum age available and 'LT' indicates ages less than the upper bound. Example: The column 'BLK_M_65UP' displays rates per 100,000 black men aged 65 years and older.MethodologyRates are calculated using a 3-year average and are age-standardized in 10-year age groups using the 2000 U.S. Standard Population. Rates are calculated and displayed per 100,000 population. Rates were spatially smoothed using a Local Empirical Bayes algorithm to stabilize risk by borrowing information from neighboring geographic areas, making estimates more statistically robust and stable for counties with small populations. Data for counties with small populations are coded as '-1' when a reliable rate could not be generated. County-level rates were generated when the following criteria were met over a 3-year time period within each of the filters (e.g., age, race, and sex).At least one of the following 3 criteria:At least 20 events occurred within the county and its adjacent neighbors.ORAt least 16 events occurred within the county.ORAt least 5,000 population years within the county.AND all 3 of the following criteria:At least 6 population years for each age group used for age adjustment if that age group had 1 or more event.The number of population years in an age group was greater than the number of events.At least 100 population years within the county.More Questions?Interactive Atlas of Heart Disease and StrokeData SourcesStatistical Methods

  8. Life expectancy at birth, by race, Hispanic origin and sex U.S. 2020

    • statista.com
    Updated Jul 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Life expectancy at birth, by race, Hispanic origin and sex U.S. 2020 [Dataset]. https://www.statista.com/statistics/260410/life-expectancy-at-birth-in-the-us-by-race-hispanic-origin-and-sex/
    Explore at:
    Dataset updated
    Jul 5, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2020
    Area covered
    United States
    Description

    In 2020, a newborn Hispanic child in the United States had a projected life expectancy of 77.9 years, the highest life expectancy among the ethnic groups studied. In comparison, the life expectancy at birth for a Black, non-Hispanic child in 2020 was 71.5 years.

  9. U.S. Heart Disease Mortality Rates 2016-2018

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • hub.arcgis.com
    Updated May 28, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2020). U.S. Heart Disease Mortality Rates 2016-2018 [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/cdcarcgis::u-s-heart-disease-mortality-rates-2016-2018/about
    Explore at:
    Dataset updated
    May 28, 2020
    Dataset authored and provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    Create maps of U.S. heart disease death rates by county. Data can be stratified by age, race/ethnicity, and sex. Visit the CDC/DHDSP Atlas of Heart Disease and Stroke for additional data and maps. Atlas of Heart Disease and StrokeData SourceMortality data were obtained from the National Vital Statistics System. Bridged-Race Postcensal Population Estimates were obtained from the National Center for Health Statistics. International Classification of Diseases, 10th Revision (ICD-10) codes: I00-I09, I11, I13, I20-I51; underlying cause of death.Data DictionaryData for counties with small populations are not displayed when a reliable rate could not be generated. These counties are represented in the data with values of '-1.' CDC/DHDSP excludes these values when classifying the data on a map, indicating those counties as 'Insufficient Data.' Data field names and descriptionsstcty_fips: state FIPS code + county FIPS codeOther fields use the following format: RRR_S_aaaa (e.g., API_M_35UP)   RRR: 3 digits represent race/ethnicity     All - Overall     AIA - American Indian and Alaska Native, non-Hispanic     API - Asian and Pacific Islander, non-Hispanic     BLK - Black, non-Hispanic     HIS - Hispanic     WHT - White, non-Hispanic   S: 1 digit represents sex     A - All    F - Female     M - Male aaaa: 4 digits represent age. The first 2 digits are the lower bound for age and the last 2 digits are the upper bound for age. 'UP' indicates the data includes the maximum age available and 'LT' indicates ages less than the upper bound.  Example: The column 'BLK_M_65UP' displays rates per 100,000 black men aged 65 years and older.MethodologyRates are calculated using a 3-year average and are age-standardized in 10-year age groups using the 2000 U.S. Standard Population. Rates are calculated and displayed per 100,000 population. Rates were spatially smoothed using a Local Empirical Bayes algorithm to stabilize risk by borrowing information from neighboring geographic areas, making estimates more statistically robust and stable for counties with small populations. Data for counties with small populations are coded as '-1' when a reliable rate could not be generated. County-level rates were generated when the following criteria were met over a 3-year time period within each of the filters (e.g., age, race, and sex).At least one of the following 3 criteria: At least 20 events occurred within the county and its adjacent neighbors.ORAt least 16 events occurred within the county.ORAt least 5,000 population years within the county.AND all 3 of the following criteria:At least 6 population years for each age group used for age adjustment if that age group had 1 or more event.The number of population years in an age group was greater than the number of events.At least 100 population years within the county.More Questions?Interactive Atlas of Heart Disease and StrokeData SourcesStatistical Methods

  10. Global life expectancy from birth in selected regions 1820-2020

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Global life expectancy from birth in selected regions 1820-2020 [Dataset]. https://www.statista.com/statistics/1302736/global-life-expectancy-by-region-country-historical/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Europe, North America, Asia, LAC, Africa
    Description

    A global phenomenon, known as the demographic transition, has seen life expectancy from birth increase rapidly over the past two centuries. In pre-industrial societies, the average life expectancy was around 24 years, and it is believed that this was the case throughout most of history, and in all regions. The demographic transition then began in the industrial societies of Europe, North America, and the West Pacific around the turn of the 19th century, and life expectancy rose accordingly. Latin America was the next region to follow, before Africa and most Asian populations saw their life expectancy rise throughout the 20th century.

  11. f

    Measuring the Speed of Aging across Population Subgroups

    • plos.figshare.com
    • figshare.com
    xlsx
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Warren C. Sanderson; Sergei Scherbov (2023). Measuring the Speed of Aging across Population Subgroups [Dataset]. http://doi.org/10.1371/journal.pone.0096289
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Warren C. Sanderson; Sergei Scherbov
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    People in different subgroups age at different rates. Surveys containing biomarkers can be used to assess these subgroup differences. We illustrate this using hand-grip strength to produce an easily interpretable, physical-based measure that allows us to compare characteristic-based ages across educational subgroups in the United States. Hand-grip strength has been shown to be a good predictor of future mortality and morbidity, and therefore a useful indicator of population aging. Data from the Health and Retirement Survey (HRS) were used. Two education subgroups were distinguished, those with less than a high school diploma and those with more education. Regressions on hand-grip strength were run for each sex and race using age and education, their interactions and other covariates as independent variables. Ages of identical mean hand-grip strength across education groups were compared for people in the age range 60 to 80. The hand-grip strength of 65 year old white males with less education was the equivalent to that of 69.6 (68.2, 70.9) year old white men with more education, indicating that the more educated men had aged more slowly. This is a constant characteristic age, as defined in the Sanderson and Scherbov article “The characteristics approach to the measurement of population aging” published 2013 in Population and Development Review. Sixty-five year old white females with less education had the same average hand-grip strength as 69.4 (68.2, 70.7) year old white women with more education. African-American women at ages 60 and 65 with more education also aged more slowly than their less educated counterparts. African American men with more education aged at about the same rate as those with less education. This paper expands the toolkit of those interested in population aging by showing how survey data can be used to measure the differential extent of aging across subpopulations.

  12. f

    Summary of total years of potential life lost (YPLL) from CVD mortality...

    • plos.figshare.com
    xls
    Updated Jun 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wan Shakira Rodzlan Hasani; Nor Asiah Muhamad; Tengku Muhammad Hanis; Nur Hasnah Maamor; Chen Xin Wee; Mohd Azahadi Omar; Shubash Shander Ganapathy; Zulkarnain Abdul Karim; Kamarul Imran Musa (2023). Summary of total years of potential life lost (YPLL) from CVD mortality according to study characteristics. [Dataset]. http://doi.org/10.1371/journal.pone.0283879.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Wan Shakira Rodzlan Hasani; Nor Asiah Muhamad; Tengku Muhammad Hanis; Nur Hasnah Maamor; Chen Xin Wee; Mohd Azahadi Omar; Shubash Shander Ganapathy; Zulkarnain Abdul Karim; Kamarul Imran Musa
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Summary of total years of potential life lost (YPLL) from CVD mortality according to study characteristics.

  13. Life expectancy in African countries 2023

    • statista.com
    • ai-chatbox.pro
    Updated Jun 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Life expectancy in African countries 2023 [Dataset]. https://www.statista.com/statistics/1218173/life-expectancy-in-african-countries/
    Explore at:
    Dataset updated
    Jun 30, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Africa
    Description

    Algeria had the highest life expectancy at birth in Africa as of 2023. A newborn infant was expected to live over 77 years in the country. Cabo Verde, Tunisia, and Mauritius followed, with a life expectancy between 77 and 75 years. On the other hand, Chad registered the lowest average, at nearly 54 years. Overall, the life expectancy in Africa was almost 63 years in the same year.

  14. Life expectancy among the male English aristocracy 1200-1745

    • statista.com
    Updated Apr 26, 1990
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (1990). Life expectancy among the male English aristocracy 1200-1745 [Dataset]. https://www.statista.com/statistics/1102957/life-expectancy-english-aristocracy/
    Explore at:
    Dataset updated
    Apr 26, 1990
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United Kingdom (England)
    Description

    It is only in the past two centuries where demographics and the development of human populations has emerged as a subject in its own right, as industrialization and improvements in medicine gave way to exponential growth of the world's population. There are very few known demographic studies conducted before the 1800s, which means that modern scholars have had to use a variety of documents from centuries gone by, along with archeological and anthropological studies, to try and gain a better understanding of the world's demographic development. Genealogical records One such method is the study of genealogical records from the past; luckily, there are many genealogies relating to European families that date back as far as medieval times. Unfortunately, however, all of these studies relate to families in the upper and elite classes; this is not entirely representative of the overall population as these families had a much higher standard of living and were less susceptible to famine or malnutrition than the average person (although elites were more likely to die during times of war). Nonetheless, there is much to be learned from this data. Impact of the Black Death In the centuries between 1200 and 1745, English male aristocrats who made it to their 21st birthday were generally expected to live to an age between 62 and 72 years old. The only century where life expectancy among this group was much lower was in the 1300s, where the Black Death caused life expectancy among adult English noblemen to drop to just 45 years. Experts assume that the pre-plague population of England was somewhere between four and seven million people in the thirteenth century, and just two million in the fourteenth century, meaning that Britain lost at least half of its population due to the plague. Although the plague only peaked in England for approximately eighteen months, between 1348 and 1350, it devastated the entire population, and further outbreaks in the following decades caused life expectancy in the decade to drop further. The bubonic plague did return to England sporadically until the mid-seventeenth century, although life expectancy among English male aristocrats rose again in the centuries following the worst outbreak, and even peaked at more than 71 years in the first half of the sixteenth century.

  15. Historical life expectancy from birth in selected regions 33-1875

    • statista.com
    Updated Dec 31, 2006
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2006). Historical life expectancy from birth in selected regions 33-1875 [Dataset]. https://www.statista.com/statistics/1069683/life-expectancy-historical-areas/
    Explore at:
    Dataset updated
    Dec 31, 2006
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Egypt, United Kingdom (England), Japan, France, Sweden
    Description

    For most of the world, throughout most of human history, the average life expectancy from birth was around 24. This figure fluctuated greatly depending on the time or region, and was higher than 24 in most individual years, but factors such as pandemics, famines, and conflicts caused regular spikes in mortality and reduced life expectancy. Child mortality The most significant difference between historical mortality rates and modern figures is that child and infant mortality was so high in pre-industrial times; before the introduction of vaccination, water treatment, and other medical knowledge or technologies, women would have around seven children throughout their lifetime, but around half of these would not make it to adulthood. Accurate, historical figures for infant mortality are difficult to ascertain, as it was so prevalent, it took place in the home, and was rarely recorded in censuses; however, figures from this source suggest that the rate was around 300 deaths per 1,000 live births in some years, meaning that almost one in three infants did not make it to their first birthday in certain periods. For those who survived to adolescence, they could expect to live into their forties or fifties on average. Modern figures It was not until the eradication of plague and improvements in housing and infrastructure in recent centuries where life expectancy began to rise in some parts of Europe, before industrialization and medical advances led to the onset of the demographic transition across the world. Today, global life expectancy from birth is roughly three times higher than in pre-industrial times, at almost 73 years. It is higher still in more demographically and economically developed countries; life expectancy is over 82 years in the three European countries shown, and over 84 in Japan. For the least developed countries, mostly found in Sub-Saharan Africa, life expectancy from birth can be as low as 53 years.

  16. Expected share of life spent in good health worldwide 2023, by gender and...

    • statista.com
    Updated Jan 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Expected share of life spent in good health worldwide 2023, by gender and region [Dataset]. https://www.statista.com/statistics/1419115/proportion-life-good-health-gender/
    Explore at:
    Dataset updated
    Jan 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Worldwide
    Description

    In each region of the world, men spend greater proportions of their lives in good health than women. On average, women spend 86 percent of their life expectancy at birth in good health, while men spend 88 percent of their life expectancy at birth in good health. Out of each region, North Africa and Western Asia has the largest gender gap at three percent. Sub-Saharan Africa, Latin America and the Caribbean, and North America and Europe follow with a gap of 2.5 percent. Australia and New Zealand have the smallest gap, at 1.8 percent.

  17. WWII: share of the male population mobilized by selected countries 1937-1945...

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). WWII: share of the male population mobilized by selected countries 1937-1945 [Dataset]. https://www.statista.com/statistics/1342462/wwii-share-male-mobilization-by-country/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    During the Second World War, the three Axis powers of Germany, Italy, and Finland mobilized the largest share of their male population. For the Allies, the Soviet Union mobilized the largest share of men, as well as the largest total army of any country, but it was restricted in its ability to mobilize more due to the impact this would have on its economy. Other notable statistics come from the British Empire, where a larger share of men were drafted from Dominions than from the metropole, and there is also a discrepancy between the share of the black and white populations from South Africa.

    However, it should be noted that there were many external factors from the war that influenced these figures. For example, gender ratios among the adult populations of many European countries was already skewed due to previous conflicts of the 20th century (namely WWI and the Russian Revolution), whereas the share of the male population eligible to fight in many Asian and African countries was lower than more demographically developed societies, as high child mortality rates meant that the average age of the population was much lower.

  18. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Leading causes of death among Black U.S. residents from 2020 to 2022 [Dataset]. https://www.statista.com/statistics/233310/distribution-of-the-10-leading-causes-of-death-among-african-americans/
Organization logo

Leading causes of death among Black U.S. residents from 2020 to 2022

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Dec 13, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

The leading causes of death among Black residents in the United States in 2022 included diseases of the heart, cancer, unintentional injuries, and stroke. The leading causes of death for African Americans generally reflects the leading causes of death for the entire United States population. However, a major exception is that death from assault or homicide is the seventh leading cause of death among African Americans, but is not among the ten leading causes for the general population. Homicide among African Americans The homicide rate among African Americans has been higher than that of other races and ethnicities for many years. In 2023, around 9,284 Black people were murdered in the United States, compared to 7,289 white people. A majority of these homicides are committed with firearms, which are easily accessible in the United States. In 2022, around 14,189 Black people died by firearms. However, suicide deaths account for over half of all deaths from firearms in the United States. Cancer disparities There are also major disparities in access to health care and the impact of various diseases. For example, the incidence rate of cancer among African American males is the greatest among all ethnicities and races. Furthermore, although the incidence rate of cancer is lower among African American women than it is among white women, cancer death rates are still higher among African American women.

Search
Clear search
Close search
Google apps
Main menu