While the average age of members of Congress in the United States has gradually risen in recent years, this number decreased slightly with the beginning of the 119th Congress in 2025. This Congress first convened on January 3rd, 2025, and will end on January 3, 2027. In this Congress, the average age in the House of Representatives was 57 years, and the average age in the Senate was 64 years.
As of 2025, the average age of senators in the 119th Congress was 64. Of the total 100, 33 members of the U.S. Senate were between the ages of 60 and 69 - more than any other age group. The minimum age requirement to be a member of the Senate is 30, opposed to the House of Representatives which has a minimum age requirement of 25. The average age of members of Congress from 2009 to 2023 can be found here.
In the 119th Congress which began in January 2025, almost 27 percent of members of the House of Representatives were between the ages of 50 and 59 in 2025- more than any other age group.
In the 118th Congress which began in January 2023, the average age of staffers working for members of the House of Representatives was 31 years old in 2024. Almost 60 percent were between 21 and 29 years old - more than any other age group.
As of 2024, the average age of staffers in U.S. Senate was 32. Over half of those working for the U.S. Senate were between the ages of 21 and 29 - more than any other age group. The average age of members of Congress from 2009 to 2023 can be found here.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2013-2017, to show population by sex and age by US Congress in the Atlanta region.
The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.
The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2013-2017). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.
For further explanation of ACS estimates and margin of error, visit Census ACS website.
Naming conventions:
Prefixes:
None
Count
p
Percent
r
Rate
m
Median
a
Mean (average)
t
Aggregate (total)
ch
Change in absolute terms (value in t2 - value in t1)
pch
Percent change ((value in t2 - value in t1) / value in t1)
chp
Change in percent (percent in t2 - percent in t1)
Suffixes:
None
Change over two periods
_e
Estimate from most recent ACS
_m
Margin of Error from most recent ACS
_00
Decennial 2000
Attributes:
Attributes and definitions available below under "Attributes" section and in Infrastructure Manifest (due to text box constraints, attributes cannot be displayed here). Source: U.S. Census Bureau, Atlanta Regional Commission
Date: 2013-2017
For additional information, please visit the Census ACS website.
This graph represents the average age of senators after each election in France in 2004, 2008, 2011, 2014 and 2017. We can thus observe that the Senate became younger in these last 13 years: going from an average age of 66 in 2011, to an average 60 years old after the 2017 elections.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Division of the Atlanta Regional Commission using data from the U.S. Census Bureau.
The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.
The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2014-2018). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.
For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.
For further explanation of ACS estimates and margin of error, visit Census ACS website.
Naming conventions:
Prefixes:
None
Count
p
Percent
r
Rate
m
Median
a
Mean (average)
t
Aggregate (total)
ch
Change in absolute terms (value in t2 - value in t1)
pch
Percent change ((value in t2 - value in t1) / value in t1)
chp
Change in percent (percent in t2 - percent in t1)
s
Significance flag for change: 1 = statistically significant with a 90% Confidence Interval, 0 = not statistically significant, blank = cannot be computed
Suffixes:
_e18
Estimate from 2014-18 ACS
_m18
Margin of Error from 2014-18 ACS
_00_v18
Decennial 2000 in 2018 geography boundary
_00_18
Change, 2000-18
_e10_v18
Estimate from 2006-10 ACS in 2018 geography boundary
_m10_v18
Margin of Error from 2006-10 ACS in 2018 geography boundary
_e10_18
Change, 2010-18
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2013-2017, to show numbers and percentages for voting age population by US Congress in the Atlanta region.
The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.
The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2013-2017). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.
For further explanation of ACS estimates and margin of error, visit Census ACS website.
Naming conventions:
Prefixes:
None
Count
p
Percent
r
Rate
m
Median
a
Mean (average)
t
Aggregate (total)
ch
Change in absolute terms (value in t2 - value in t1)
pch
Percent change ((value in t2 - value in t1) / value in t1)
chp
Change in percent (percent in t2 - percent in t1)
Suffixes:
None
Change over two periods
_e
Estimate from most recent ACS
_m
Margin of Error from most recent ACS
_00
Decennial 2000
Attributes:
SumLevel
Summary level of geographic unit (e.g., County, Tract, NSA, NPU, DSNI, SuperDistrict, etc)
GEOID
Census tract Federal Information Processing Series (FIPS) code
NAME
Name of geographic unit
Planning_Region
Planning region designation for ARC purposes
Acres
Total area within the tract (in acres)
SqMi
Total area within the tract (in square miles)
County
County identifier (combination of Federal Information Processing Series (FIPS) codes for state and county)
CountyName
County Name
VotingAgeCitizen_e
# Citizen, 18 and over population, 2017
VotingAgeCitizen_m
# Citizen, 18 and over population, 2017 (MOE)
VotingAgeCitizenMale_e
# Male citizen, 18 and over population, 2017
VotingAgeCitizenMale_m
# Male citizen, 18 and over population, 2017 (MOE)
pVotingAgeCitizenMale_e
% Male citizen, 18 and over population, 2017
pVotingAgeCitizenMale_m
% Male citizen, 18 and over population, 2017 (MOE)
VotingAgeCitizenFemale_e
# Female citizen, 18 and over population, 2017
VotingAgeCitizenFemale_m
# Female citizen, 18 and over population, 2017 (MOE)
pVotingAgeCitizenFemale_e
% Female citizen, 18 and over population, 2017
pVotingAgeCitizenFemale_m
% Female citizen, 18 and over population, 2017 (MOE)
last_edited_date
Last date the feature was edited by ARC
Source: U.S. Census Bureau, Atlanta Regional Commission
Date: 2013-2017
For additional information, please visit the Census ACS website.
US Census American Community Survey (ACS) 2021, 5-year estimates of the key economic characteristics of Congressional Districts (116th US Congress) geographic level in Orange County, California. The data contains 397 fields for the variable groups E01: Employment status (universe: population 16 years and over, table X23, 7 fields); E02: Work status by age of worker (universe: population 16 years and over, table X23, 36 fields); E03: Commuting to work (universe: workers 16 years and over, table X8, 8 fields); E04: Travel time to work (universe: workers 16 years and over who did not work at home, table X8, 14 fields); E05: Number of vehicles available for workers (universe: workers 16 years and over in households, table X8, 8 fields); E06: Median age by means of transportation to work (universe: median age, workers 16 years and over, table X8, 7 fields); E07: Means of transportation to work by race (universe: workers 16 years and over, table X8, 64 fields); E08: Occupation (universe: civilian employed population 16 years and over, table X24, 53 fields); E09: Industry (universe: civilian employed population 16 years and over, table X24, 43 fields); E10: Class of worker (universe: civilian employed population 16 years and over, table X24, 19 fields); E11: Household income and earnings in the past 12 months (universe: total households, table X19, 37 fields); E12: Income and earnings in dollars (universe: inflation-adjusted dollars, tables X19-X20, 31 fields); E13: Family income in dollars (universe: total families, table X19, 17 fields); E14: Health insurance coverage (universe: total families, table X19, 17 fields); E15: Ratio of income to Poverty level (universe: total population for whom Poverty level is determined, table X17, 8 fields); E16: Poverty in population in the past 12 months (universe: total population for whom Poverty level is determined, table X17, 7 fields); E17: Poverty in households in the past 12 months (universe: total households, table X17, 9 fields); E18: Percentage of families and people whose income in the past 12 months is below the poverty level (universe: families, population, table X17, 8 fields), and; X19: Poverty and income deficit (dollars) in the past 12 months for families (universe: families with income below Poverty level in the past 12 months, table X17, 4 fields). The US Census geodemographic data are based on the 2021 TigerLines across multiple geographies. The spatial geographies were merged with ACS data tables. See full documentation at the OCACS project GitHub page (https://github.com/ktalexan/OCACS-Geodemographics).
US Census American Community Survey (ACS) 2013, 5-year estimates of the key economic characteristics of Congressional Districts (113th US Congress) geographic level in Orange County, California. The data contains 397 fields for the variable groups E01: Employment status (universe: population 16 years and over, table X23, 7 fields); E02: Work status by age of worker (universe: population 16 years and over, table X23, 36 fields); E03: Commuting to work (universe: workers 16 years and over, table X8, 8 fields); E04: Travel time to work (universe: workers 16 years and over who did not work at home, table X8, 14 fields); E05: Number of vehicles available for workers (universe: workers 16 years and over in households, table X8, 8 fields); E06: Median age by means of transportation to work (universe: median age, workers 16 years and over, table X8, 7 fields); E07: Means of transportation to work by race (universe: workers 16 years and over, table X8, 64 fields); E08: Occupation (universe: civilian employed population 16 years and over, table X24, 53 fields); E09: Industry (universe: civilian employed population 16 years and over, table X24, 43 fields); E10: Class of worker (universe: civilian employed population 16 years and over, table X24, 19 fields); E11: Household income and earnings in the past 12 months (universe: total households, table X19, 37 fields); E12: Income and earnings in dollars (universe: inflation-adjusted dollars, tables X19-X20, 31 fields); E13: Family income in dollars (universe: total families, table X19, 17 fields); E14: Health insurance coverage (universe: total families, table X19, 17 fields); E15: Ratio of income to Poverty level (universe: total population for whom Poverty level is determined, table X17, 8 fields); E16: Poverty in population in the past 12 months (universe: total population for whom Poverty level is determined, table X17, 7 fields); E17: Poverty in households in the past 12 months (universe: total households, table X17, 9 fields); E18: Percentage of families and people whose income in the past 12 months is below the poverty level (universe: families, population, table X17, 8 fields), and; X19: Poverty and income deficit (dollars) in the past 12 months for families (universe: families with income below Poverty level in the past 12 months, table X17, 4 fields). The US Census geodemographic data are based on the 2013 TigerLines across multiple geographies. The spatial geographies were merged with ACS data tables. See full documentation at the OCACS project github page (https://github.com/ktalexan/OCACS-Geodemographics).
US Census American Community Survey (ACS) 2020, 5-year estimates of the key demographic characteristics of Congressional Districts (116th US Congress) geographic level in Orange County, California. The data contains 105 fields for the variable groups D01: Sex and age (universe: total population, table X1, 49 fields); D02: Median age by sex and race (universe: total population, table X1, 12 fields); D03: Race (universe: total population, table X2, 8 fields); D04: Race alone or in combination with one or more other races (universe: total population, table X2, 7 fields); D05: Hispanic or Latino and race (universe: total population, table X3, 21 fields), and; D06: Citizen voting age population (universe: citizen, 18 and over, table X5, 8 fields). The US Census geodemographic data are based on the 2020 TigerLines across multiple geographies. The spatial geographies were merged with ACS data tables. See full documentation at the OCACS project GitHub page (https://github.com/ktalexan/OCACS-Geodemographics).
US Census American Community Survey (ACS) 2017, 5-year estimates of the key economic characteristics of Congressional Districts (115th US Congress) geographic level in Orange County, California. The data contains 397 fields for the variable groups E01: Employment status (universe: population 16 years and over, table X23, 7 fields); E02: Work status by age of worker (universe: population 16 years and over, table X23, 36 fields); E03: Commuting to work (universe: workers 16 years and over, table X8, 8 fields); E04: Travel time to work (universe: workers 16 years and over who did not work at home, table X8, 14 fields); E05: Number of vehicles available for workers (universe: workers 16 years and over in households, table X8, 8 fields); E06: Median age by means of transportation to work (universe: median age, workers 16 years and over, table X8, 7 fields); E07: Means of transportation to work by race (universe: workers 16 years and over, table X8, 64 fields); E08: Occupation (universe: civilian employed population 16 years and over, table X24, 53 fields); E09: Industry (universe: civilian employed population 16 years and over, table X24, 43 fields); E10: Class of worker (universe: civilian employed population 16 years and over, table X24, 19 fields); E11: Household income and earnings in the past 12 months (universe: total households, table X19, 37 fields); E12: Income and earnings in dollars (universe: inflation-adjusted dollars, tables X19-X20, 31 fields); E13: Family income in dollars (universe: total families, table X19, 17 fields); E14: Health insurance coverage (universe: total families, table X19, 17 fields); E15: Ratio of income to Poverty level (universe: total population for whom Poverty level is determined, table X17, 8 fields); E16: Poverty in population in the past 12 months (universe: total population for whom Poverty level is determined, table X17, 7 fields); E17: Poverty in households in the past 12 months (universe: total households, table X17, 9 fields); E18: Percentage of families and people whose income in the past 12 months is below the poverty level (universe: families, population, table X17, 8 fields), and; X19: Poverty and income deficit (dollars) in the past 12 months for families (universe: families with income below Poverty level in the past 12 months, table X17, 4 fields). The US Census geodemographic data are based on the 2017 TigerLines across multiple geographies. The spatial geographies were merged with ACS data tables. See full documentation at the OCACS project github page (https://github.com/ktalexan/OCACS-Geodemographics).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2013-2017, to show age, type, vacancy rates, and owner/renter tenure of housing units by US Congress in the Atlanta region.
The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.
The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2013-2017). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.
For further explanation of ACS estimates and margin of error, visit Census ACS website.
Naming conventions:
Prefixes:
None
Count
p
Percent
r
Rate
m
Median
a
Mean (average)
t
Aggregate (total)
ch
Change in absolute terms (value in t2 - value in t1)
pch
Percent change ((value in t2 - value in t1) / value in t1)
chp
Change in percent (percent in t2 - percent in t1)
Suffixes:
None
Change over two periods
_e
Estimate from most recent ACS
_m
Margin of Error from most recent ACS
_00
Decennial 2000
Attributes:
Attributes and definitions available below under "Attributes" section and in Infrastructure Manifest (due to text box constraints, attributes cannot be displayed here).
Source: U.S. Census Bureau, Atlanta Regional Commission
Date: 2013-2017
For additional information, please visit the Census ACS website.
The most recent polling data from February 2025 puts the approval rating of the United States Congress at 29 percent, reflecting a significant increase from January. The approval rating remained low throughout the 118th Congress cycle, which began in January 2025. Congressional approval Congressional approval, particularly over the past few years, has not been high. Americans tend to see Congress as a group of ineffectual politicians who are out of touch with their constituents. The 118th Congress began in 2023 with a rocky start. The Democratic Party maintains control of the Senate, but Republicans took back control of the House of Representatives after the 2022 midterm elections. The House caught media attention from its first days with a contentious fight for the position of Speaker of the House. Representative Kevin McCarthy was eventually sworn in as Speaker after a historic fifteen rounds of voting. Despite the current Congress having a historic share of women and being the most diverse Congress in American history, very little has been done to improve the opinion of Americans regarding its central lawmaking body. Ye of little faith However, Americans tend not to have much confidence in many of the institutions in the United States. Additionally, public confidence in the ability of the Republican and Democratic parties to work together has decreased drastically between 2008 and 2022, with nearly 60 percent of Americans having no confidence the parties can govern in a bipartisan way.
The annual salary received by members of the United States Congress in 2025 is 174,000 U.S. dollars. This has been the case since 2009. The Government Ethics Reform Act of 1989 provides an automatic cost of living adjustment increase in line with the
Since 1789, 45 different men have served as President of the United States, and the average age of these men when taking office for the first time was approximately 57 years. Two men, Grover Cleveland and Donald Trump, were elected to two non-consecutive terms, and Donald Trump's victory in 2024 made him the oldest man ever elected as president, where he will be 78 years and seven months old when taking office again. Record holders The oldest president to take office for the first time was Joe Biden in 2021, at 78 years and two months - around five months younger than Donald Trump when he assumes office in 2025. The youngest presidents to take office were Theodore Roosevelt in 1901 (42 years and 322 days), who assumed office following the assassination of William McKinley, and the youngest elected president was John F Kennedy in 1961 (43 years and 236 days). Historically, there seems to be little correlation between age and electability, and the past five presidents have included the two oldest to ever take office, and two of the youngest. Requirements to become president The United States Constitution states that both the President and Vice President must be at least 35 years old when taking office, and must have lived in the United States for at least 14 years of their life. Such restrictions are also in place for members of the U.S. Congress, although the age and residency barriers are lower. Additionally, for the roles of President and Vice President, there is a "natural-born-citizen" clause that was traditionally interpreted to mean candidates must have been born in the U.S. (or were citizens when the Constitution was adopted). However, the clause's ambiguity has led to something of a reinterpretation in the past decades, with most now interpreting it as also applying to those eligible for birthright citizenship, as some recent candidates were born overseas.
According to a 2023 survey, Americans between 18 and 29 years of age were more likely to identify with the Democratic Party than any other surveyed age group. While 39 percent identified as Democrats, only 14 percent identified ad Republicans. However, those 50 and older identified more with the Republican Party.
While the average age of members of Congress in the United States has gradually risen in recent years, this number decreased slightly with the beginning of the 119th Congress in 2025. This Congress first convened on January 3rd, 2025, and will end on January 3, 2027. In this Congress, the average age in the House of Representatives was 57 years, and the average age in the Senate was 64 years.