In 2022, the median age of the population of the United Kingdom was 40.7 years, compared with 37.9 years in 2001. The average age of the UK population has been increasing throughout this time period, although between 2014 and 2016 the median age remained at 40.
The statistic depicts the median age of the population in the United Kingdom from 1950 to 2100*. The median age of a population is an index that divides the population into two equal groups: half of the population is older than the median age and the other half younger. In 2020, the median age of United Kingdom's population was 39.2 years. Population of the United Kingdom The United Kingdom (UK) includes Great Britain (England, Scotland and Wales) and Northern Ireland, and is a state located off the coast of continental Europe. The United Kingdom is a constitutional monarchy, which means the Queen acts as representative head of state, while laws and constitutional issues are discussed and passed by a parliament. The total UK population figures have been steadily increasing, albeit only slightly, over the last decade; in 2011, the population growth rate was lower than in the previous year for the first time in eight years. Like many other countries, the UK and its economy were severely affected by the economic crisis in 2009. Since then, the unemployment rate has doubled and is only recovering slowly. UK inhabitants tend to move to the cities to find work and better living conditions; urbanization in the United Kingdom has been on the rise. At the same time, population density in the United Kingdom has been increasing due to several factors, for example, the rising number of inhabitants and their life expectancy at birth, an increasing fertility rate, and a very low number of emigrants. In fact, the United Kingdom is now among the 20 countries with the highest life expectancy at birth worldwide. As can be seen above, the median age of UK residents has also been increasing significantly since the seventies; another indicator for a well-working economy and society.
Between 1991 and 2021 there has been a clear trend of mothers having children later in life in the United Kingdom, with the average age of mothers in the increasing from 27.7 in 1991 to 30.9 by 2021.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
National and subnational mid-year population estimates for the UK and its constituent countries by administrative area, age and sex (including components of population change, median age and population density).
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Provisional deaths registration data for single year of age and average age of death (median and mean) of persons whose death involved coronavirus (COVID-19), England and Wales. Includes deaths due to COVID-19 and breakdowns by sex.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
According to the 2021 Census, 62.9% (37.5 million) of the overall population of England and Wales was of ‘working age’ (between 16 and 64 years old).
These statistics on student enrolments and qualifications obtained by higher education (HE) students at HE providers in the UK are produced by the Higher Education Statistics Agency (HESA). Information is available for:
Earlier higher education student statistics bulletins are available on the https://www.hesa.ac.uk/data-and-analysis/statistical-first-releases?date_filter%5Bvalue%5D%5Byear%5D=&topic%5B%5D=4" class="govuk-link">HESA website.
Life expectancy in the United Kingdom was below 39 years in the year 1765, and over the course of the next two and a half centuries, it is expected to have increased by more than double, to 81.1 by the year 2020. Although life expectancy has generally increased throughout the UK's history, there were several times where the rate deviated from its previous trajectory. These changes were the result of smallpox epidemics in the late eighteenth and early nineteenth centuries, new sanitary and medical advancements throughout time (such as compulsory vaccination), and the First world War and Spanish Flu epidemic in the 1910s.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Annual data on death registrations by single year of age for the UK (1974 onwards) and England and Wales (1963 onwards).
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Annual live births in England and Wales by age of mother and father, type of registration, median interval between births, number of previous live-born children and National Statistics Socio-economic Classification (NS-SEC).
This statistic shows the average age of a UK sports ticket-buyer between 2012 and 2020. In 2020, the average age of a ticket-buyer was given as ****; an increase from the 2019 value of ****.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Life expectancy at birth for males and females for Middle Layer Super Output Areas (MSOAs), Leicester: 2016 to 2020The average number of years a person would expect to live based on contemporary mortality rates.For a particular area and time period, it is an estimate of the average number of years a newborn baby would survive if he or she experienced the age-specific mortality rates for that area and time period throughout his or her life.Life expectancy figures have been calculated based on death registrations between 2016 to 2020, which includes the first wave and part of the second wave of the coronavirus (COVID-19) pandemic.
This analysis is no longer being updated. This is because the methodology and data for baseline measurements is no longer applicable.
From February 2024, excess mortality reporting is available at: Excess mortality in England.
Measuring excess mortality: a guide to the main reports details the different analysis available and how and when they should be used for the UK and England.
The data in these reports is from 20 March 2020 to 29 December 2023. The first 2 reports on this page provide an estimate of excess mortality during and after the COVID-19 pandemic in:
‘Excess mortality’ in these analyses is defined as the number of deaths that are above the estimated number expected. The expected number of deaths is modelled using 5 years of data from preceding years to estimate the number of death registrations expected in each week.
In both reports, excess deaths are broken down by age, sex, upper tier local authority, ethnic group, level of deprivation, cause of death and place of death. The England report also includes a breakdown by region.
For previous reports, see:
If you have any comments, questions or feedback, contact us at pha-ohid@dhsc.gov.uk.
We also publish a set of bespoke analyses using the same excess mortality methodology and data but cut in ways that are not included in the England and English regions reports on this page.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Indicators included have been derived from the published 2019 mid-year population estimates for the UK, England, Wales, Scotland and Northern Ireland. These are the number of persons and percentage of the population aged 65 years and over, 85 years and over, 0 to 15 years, 16 to 64 years, 16 years to State Pension age, State Pension age and over, median age and the Old Age Dependency Ratio (the number of people of State Pension age per 1000 of those aged 16 years to below State Pension age).
This dataset has been produced by the Ageing Analysis Team for inclusion in a subnational ageing tool, which was published in July 2020. The tool enables users to compare latest and projected measures of ageing for up to four different areas through selection on a map or from a drop-down menu.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Period and cohort expectation of life in the UK using the principal projection by single year of age 0 to 100.
In 2022 the average age of mothers giving birth to their first child in England and Wales was 29.2 years of age, followed by 31.5 years for the second child, 32.6 for the third child, and 33.6 for the fourth child.
SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of asthma (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to asthma (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with asthma was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with asthma was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with asthma, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have asthmaB) the NUMBER of people within that MSOA who are estimated to have asthmaAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have asthma, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from asthma, and where those people make up a large percentage of the population, indicating there is a real issue with asthma within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of asthma, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of asthma.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.
The latest release of these statistics can be found in the collection of economic labour market status of individuals aged 50 and over statistics.
Due to changes made to the Labour Force Survey as a result of the coronavirus (COVID-19) pandemic, a revised version of these statistics was published on 19 November 2020
This publication details the trends over time in the economic labour market status of individuals aged 50 and over. Analysis is provided on the 3 headline measures announced in the Fuller Working Lives (FWL) Strategy 2017 that the government use to monitor progress on FWL:
Employment rate of 50 year olds and over, by 5-year age bands and gender.
Average age of exit from the labour market, by gender.
Employment rate gap between 50 to 64 year olds and 35 to 49 year olds, broken down by 5-year age band and gender.
The background information and methodology note provides more information including the context, source and limitations of the statistics.
This is an annual release and the next release will be in September 2021.
SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of coronary heart disease (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to coronary heart disease (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with coronary heart disease was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with coronary heart disease was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with coronary heart disease, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have coronary heart diseaseB) the NUMBER of people within that MSOA who are estimated to have coronary heart diseaseAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have coronary heart disease, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from coronary heart disease, and where those people make up a large percentage of the population, indicating there is a real issue with coronary heart disease within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of coronary heart disease, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of coronary heart disease.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.
In 2023, there were estimated to be 956,116 people who were aged 35 in the United Kingdom, the most of any age in this year. The two largest age groups during this year were 30-34, and 35 to 39, at 4.7 million and 4.64 million people respectively. There is also a noticeable spike of 693,679 people who were aged 76, which is due to the high number of births that followed in the aftermath of the Second World War. Over one million born in 1964 In post-war Britain, there have only been two years when the number of live births was over one million, in 1947 and in 1964. The number of births recorded in the years between these two years was consistently high as well, with 1955 having the fewest births in this period at 789,000. This meant that until relatively recently, Baby Boomers were the largest generational cohort in the UK. As of 2022, there were approximately 13.76 million Baby Boomers, compared with 14 million in Generation X, 14.48 million Millennials, and 12.9 million members of Gen Z. The youngest generation in the UK, Generation Alpha numbered approximately 7.5 million in the same year. Median age to hit 44.5 years by 2050 The population of the United Kingdom is aging at a substantial rate, with the median age of the population expected to reach 44.5 years by 2050. By comparison, in 1950 the average age in the United Kingdom stood at 34.9 years. This phenomenon is not unique to the United Kingdom, with median age of people worldwide increasing from 23.6 years in 1950 to a forecasted 41.9 years by 2100. As of 2022, the region with the oldest median age in the UK was South West England, at 43.9 years, compared with 35.9 in London, the region with the youngest median age.
In 2022, the median age of the population of the United Kingdom was 40.7 years, compared with 37.9 years in 2001. The average age of the UK population has been increasing throughout this time period, although between 2014 and 2016 the median age remained at 40.