64 datasets found
  1. Life expectancy among the male English aristocracy 1200-1745

    • statista.com
    Updated Apr 26, 1990
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (1990). Life expectancy among the male English aristocracy 1200-1745 [Dataset]. https://www.statista.com/statistics/1102957/life-expectancy-english-aristocracy/
    Explore at:
    Dataset updated
    Apr 26, 1990
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United Kingdom (England)
    Description

    It is only in the past two centuries where demographics and the development of human populations has emerged as a subject in its own right, as industrialization and improvements in medicine gave way to exponential growth of the world's population. There are very few known demographic studies conducted before the 1800s, which means that modern scholars have had to use a variety of documents from centuries gone by, along with archeological and anthropological studies, to try and gain a better understanding of the world's demographic development. Genealogical records One such method is the study of genealogical records from the past; luckily, there are many genealogies relating to European families that date back as far as medieval times. Unfortunately, however, all of these studies relate to families in the upper and elite classes; this is not entirely representative of the overall population as these families had a much higher standard of living and were less susceptible to famine or malnutrition than the average person (although elites were more likely to die during times of war). Nonetheless, there is much to be learned from this data. Impact of the Black Death In the centuries between 1200 and 1745, English male aristocrats who made it to their 21st birthday were generally expected to live to an age between 62 and 72 years old. The only century where life expectancy among this group was much lower was in the 1300s, where the Black Death caused life expectancy among adult English noblemen to drop to just 45 years. Experts assume that the pre-plague population of England was somewhere between four and seven million people in the thirteenth century, and just two million in the fourteenth century, meaning that Britain lost at least half of its population due to the plague. Although the plague only peaked in England for approximately eighteen months, between 1348 and 1350, it devastated the entire population, and further outbreaks in the following decades caused life expectancy in the decade to drop further. The bubonic plague did return to England sporadically until the mid-seventeenth century, although life expectancy among English male aristocrats rose again in the centuries following the worst outbreak, and even peaked at more than 71 years in the first half of the sixteenth century.

  2. U.S. median household income by age 2023

    • statista.com
    Updated Sep 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. median household income by age 2023 [Dataset]. https://www.statista.com/statistics/233184/median-household-income-in-the-united-states-by-age/
    Explore at:
    Dataset updated
    Sep 16, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, the real median household income for householders aged 15 to 24 was at 54,930 U.S. dollars. The highest median household income was found amongst those aged between 45 and 54. Household median income for the United States since 1990 can be accessed here.

  3. Income of individuals by age group, sex and income source, Canada, provinces...

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +2more
    Updated May 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Income of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas [Dataset]. http://doi.org/10.25318/1110023901-eng
    Explore at:
    Dataset updated
    May 1, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Income of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas, annual.

  4. Life expectancy at various ages, by population group and sex, Canada

    • www150.statcan.gc.ca
    • datasets.ai
    • +2more
    Updated Dec 17, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2015). Life expectancy at various ages, by population group and sex, Canada [Dataset]. http://doi.org/10.25318/1310013401-eng
    Explore at:
    Dataset updated
    Dec 17, 2015
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    This table contains 2394 series, with data for years 1991 - 1991 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Population group (19 items: Entire cohort; Income adequacy quintile 1 (lowest);Income adequacy quintile 2;Income adequacy quintile 3 ...), Age (14 items: At 25 years; At 30 years; At 40 years; At 35 years ...), Sex (3 items: Both sexes; Females; Males ...), Characteristics (3 items: Life expectancy; High 95% confidence interval; life expectancy; Low 95% confidence interval; life expectancy ...).

  5. Birth rate by family income in the U.S. 2021

    • statista.com
    Updated Oct 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Birth rate by family income in the U.S. 2021 [Dataset]. https://www.statista.com/statistics/241530/birth-rate-by-family-income-in-the-us/
    Explore at:
    Dataset updated
    Oct 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    United States
    Description

    In 2021, the birth rate in the United States was highest in families that had under 10,000 U.S. dollars in income per year, at 62.75 births per 1,000 women. As the income scale increases, the birth rate decreases, with families making 200,000 U.S. dollars or more per year having the second-lowest birth rate, at 47.57 births per 1,000 women. Income and the birth rate Income and high birth rates are strongly linked, not just in the United States, but around the world. Women in lower income brackets tend to have higher birth rates across the board. There are many factors at play in birth rates, such as the education level of the mother, ethnicity of the mother, and even where someone lives. The fertility rate in the United States The fertility rate in the United States has declined in recent years, and it seems that more and more women are waiting longer to begin having children. Studies have shown that the average age of the mother at the birth of their first child in the United States was 27.4 years old, although this figure varies for different ethnic origins.

  6. F

    Real Median Personal Income in the United States

    • fred.stlouisfed.org
    json
    Updated Sep 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Real Median Personal Income in the United States [Dataset]. https://fred.stlouisfed.org/series/MEPAINUSA672N
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 10, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Real Median Personal Income in the United States (MEPAINUSA672N) from 1974 to 2023 about personal income, personal, median, income, real, and USA.

  7. Higher education student statistics UK: 2019 to 2020

    • gov.uk
    Updated Jan 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Higher Education Statistics Agency (2021). Higher education student statistics UK: 2019 to 2020 [Dataset]. https://www.gov.uk/government/statistics/higher-education-student-statistics-uk-2019-to-2020
    Explore at:
    Dataset updated
    Jan 27, 2021
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Higher Education Statistics Agency
    Area covered
    United Kingdom
    Description

    These statistics on student enrolments and qualifications obtained by higher education (HE) students at HE providers in the UK are produced by the Higher Education Statistics Agency (HESA). Information is available for:

    • undergraduate and postgraduate study
    • full-time and part-time study
    • country of domicile
    • subject area
    • demographics and disadvantage
    • degree classifications

    Earlier higher education student statistics bulletins are available on the https://www.hesa.ac.uk/data-and-analysis/statistical-first-releases?date_filter%5Bvalue%5D%5Byear%5D=&topic%5B%5D=4" class="govuk-link">HESA website.

  8. U.S. median household income1970-2020, by income tier

    • statista.com
    Updated Aug 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. median household income1970-2020, by income tier [Dataset]. https://www.statista.com/statistics/500385/median-household-income-in-the-us-by-income-tier/
    Explore at:
    Dataset updated
    Aug 7, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    This statistic shows the median household income in the United States from 1970 to 2020, by income tier. In 2020, the median household income for the middle class stood at 90,131 U.S. dollars, which was approximately a 50 percent increase from 1970. However, the median income of upper income households in the U.S. increased by almost 70 percent compared to 1970.

  9. t

    Tucson Equity Priority Index (TEPI): Ward 2 Census Block Groups

    • teds.tucsonaz.gov
    Updated Feb 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tucson (2025). Tucson Equity Priority Index (TEPI): Ward 2 Census Block Groups [Dataset]. https://teds.tucsonaz.gov/maps/cotgis::tucson-equity-priority-index-tepi-ward-2-census-block-groups
    Explore at:
    Dataset updated
    Feb 4, 2025
    Dataset authored and provided by
    City of Tucson
    Area covered
    Description

    For detailed information, visit the Tucson Equity Priority Index StoryMap.Download the Data DictionaryWhat is the Tucson Equity Priority Index (TEPI)?The Tucson Equity Priority Index (TEPI) is a tool that describes the distribution of socially vulnerable demographics. It categorizes the dataset into 5 classes that represent the differing prioritization needs based on the presence of social vulnerability: Low (0-20), Low-Moderate (20-40), Moderate (40-60), Moderate-High (60-80) High (80-100). Each class represents 20% of the dataset’s features in order of their values. The features within the Low (0-20) classification represent the areas that, when compared to all other locations in the study area, have the lowest need for prioritization, as they tend to have less socially vulnerable demographics. The features that fall into the High (80-100) classification represent the 20% of locations in the dataset that have the greatest need for prioritization, as they tend to have the highest proportions of socially vulnerable demographics. How is social vulnerability measured?The Tucson Equity Priority Index (TEPI) examines the proportion of vulnerability per feature using 11 demographic indicators:Income Below Poverty: Households with income at or below the federal poverty level (FPL), which in 2023 was $14,500 for an individual and $30,000 for a family of fourUnemployment: Measured as the percentage of unemployed persons in the civilian labor forceHousing Cost Burdened: Homeowners who spend more than 30% of their income on housing expenses, including mortgage, maintenance, and taxesRenter Cost Burdened: Renters who spend more than 30% of their income on rentNo Health Insurance: Those without private health insurance, Medicare, Medicaid, or any other plan or programNo Vehicle Access: Households without automobile, van, or truck accessHigh School Education or Less: Those highest level of educational attainment is a High School diploma, equivalency, or lessLimited English Ability: Those whose ability to speak English is "Less Than Well."People of Color: Those who identify as anything other than Non-Hispanic White Disability: Households with one or more physical or cognitive disabilities Age: Groups that tend to have higher levels of vulnerability, including children (those below 18), and seniors (those 65 and older)An overall percentile value is calculated for each feature based on the total proportion of the above indicators in each area. How are the variables combined?These indicators are divided into two main categories that we call Thematic Indices: Economic and Personal Characteristics. The two thematic indices are further divided into five sub-indices called Tier-2 Sub-Indices. Each Tier-2 Sub-Index contains 2-3 indicators. Indicators are the datasets used to measure vulnerability within each sub-index. The variables for each feature are re-scaled using the percentile normalization method, which converts them to the same scale using values between 0 to 100. The variables are then combined first into each of the five Tier-2 Sub-Indices, then the Thematic Indices, then the overall TEPI using the mean aggregation method and equal weighting. The resulting dataset is then divided into the five classes, where:High Vulnerability (80-100%): Representing the top classification, this category includes the highest 20% of regions that are the most socially vulnerable. These areas require the most focused attention. Moderate-High Vulnerability (60-80%): This upper-middle classification includes areas with higher levels of vulnerability compared to the median. While not the highest, these areas are more vulnerable than a majority of the dataset and should be considered for targeted interventions. Moderate Vulnerability (40-60%): Representing the middle or median quintile, this category includes areas of average vulnerability. These areas may show a balanced mix of high and low vulnerability. Detailed examination of specific indicators is recommended to understand the nuanced needs of these areas. Low-Moderate Vulnerability (20-40%): Falling into the lower-middle classification, this range includes areas that are less vulnerable than most but may still exhibit certain vulnerable characteristics. These areas typically have a mix of lower and higher indicators, with the lower values predominating. Low Vulnerability (0-20%): This category represents the bottom classification, encompassing the lowest 20% of data points. Areas in this range are the least vulnerable, making them the most resilient compared to all other features in the dataset.

  10. t

    Tucson Equity Priority Index (TEPI): Ward 4 Census Block Groups

    • teds.tucsonaz.gov
    Updated Feb 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tucson (2025). Tucson Equity Priority Index (TEPI): Ward 4 Census Block Groups [Dataset]. https://teds.tucsonaz.gov/maps/cotgis::tucson-equity-priority-index-tepi-ward-4-census-block-groups
    Explore at:
    Dataset updated
    Feb 4, 2025
    Dataset authored and provided by
    City of Tucson
    Area covered
    Description

    For detailed information, visit the Tucson Equity Priority Index StoryMap.Download the Data DictionaryWhat is the Tucson Equity Priority Index (TEPI)?The Tucson Equity Priority Index (TEPI) is a tool that describes the distribution of socially vulnerable demographics. It categorizes the dataset into 5 classes that represent the differing prioritization needs based on the presence of social vulnerability: Low (0-20), Low-Moderate (20-40), Moderate (40-60), Moderate-High (60-80) High (80-100). Each class represents 20% of the dataset’s features in order of their values. The features within the Low (0-20) classification represent the areas that, when compared to all other locations in the study area, have the lowest need for prioritization, as they tend to have less socially vulnerable demographics. The features that fall into the High (80-100) classification represent the 20% of locations in the dataset that have the greatest need for prioritization, as they tend to have the highest proportions of socially vulnerable demographics. How is social vulnerability measured?The Tucson Equity Priority Index (TEPI) examines the proportion of vulnerability per feature using 11 demographic indicators:Income Below Poverty: Households with income at or below the federal poverty level (FPL), which in 2023 was $14,500 for an individual and $30,000 for a family of fourUnemployment: Measured as the percentage of unemployed persons in the civilian labor forceHousing Cost Burdened: Homeowners who spend more than 30% of their income on housing expenses, including mortgage, maintenance, and taxesRenter Cost Burdened: Renters who spend more than 30% of their income on rentNo Health Insurance: Those without private health insurance, Medicare, Medicaid, or any other plan or programNo Vehicle Access: Households without automobile, van, or truck accessHigh School Education or Less: Those highest level of educational attainment is a High School diploma, equivalency, or lessLimited English Ability: Those whose ability to speak English is "Less Than Well."People of Color: Those who identify as anything other than Non-Hispanic White Disability: Households with one or more physical or cognitive disabilities Age: Groups that tend to have higher levels of vulnerability, including children (those below 18), and seniors (those 65 and older)An overall percentile value is calculated for each feature based on the total proportion of the above indicators in each area. How are the variables combined?These indicators are divided into two main categories that we call Thematic Indices: Economic and Personal Characteristics. The two thematic indices are further divided into five sub-indices called Tier-2 Sub-Indices. Each Tier-2 Sub-Index contains 2-3 indicators. Indicators are the datasets used to measure vulnerability within each sub-index. The variables for each feature are re-scaled using the percentile normalization method, which converts them to the same scale using values between 0 to 100. The variables are then combined first into each of the five Tier-2 Sub-Indices, then the Thematic Indices, then the overall TEPI using the mean aggregation method and equal weighting. The resulting dataset is then divided into the five classes, where:High Vulnerability (80-100%): Representing the top classification, this category includes the highest 20% of regions that are the most socially vulnerable. These areas require the most focused attention. Moderate-High Vulnerability (60-80%): This upper-middle classification includes areas with higher levels of vulnerability compared to the median. While not the highest, these areas are more vulnerable than a majority of the dataset and should be considered for targeted interventions. Moderate Vulnerability (40-60%): Representing the middle or median quintile, this category includes areas of average vulnerability. These areas may show a balanced mix of high and low vulnerability. Detailed examination of specific indicators is recommended to understand the nuanced needs of these areas. Low-Moderate Vulnerability (20-40%): Falling into the lower-middle classification, this range includes areas that are less vulnerable than most but may still exhibit certain vulnerable characteristics. These areas typically have a mix of lower and higher indicators, with the lower values predominating. Low Vulnerability (0-20%): This category represents the bottom classification, encompassing the lowest 20% of data points. Areas in this range are the least vulnerable, making them the most resilient compared to all other features in the dataset.

  11. 2023 American Community Survey: S2419 | Class of Worker by Sex and Median...

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2023 American Community Survey: S2419 | Class of Worker by Sex and Median Earnings in the Past 12 Months (in 2023 Inflation-Adjusted Dollars) for the Full-Time, Year-Round Civilian Employed Population 16 Years and Over (ACS 1-Year Estimates Subject Tables) [Dataset]. https://data.census.gov/table/ACSST1Y2023.S2419?q=Age+and+Sex&t=Class+of+Worker&g=040XX00US06
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2023
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..The Class of Worker status "unpaid family workers" may have earnings. Earnings reflect any earnings from all jobs held during the 12 months prior to the ACS interview. The Class of Worker status reflects the job or business held the week prior to the ACS interview, or the last job held by the respondent..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  12. F

    Share of Net Worth Held by the Top 1% (99th to 100th Wealth Percentiles)

    • fred.stlouisfed.org
    json
    Updated Jun 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Share of Net Worth Held by the Top 1% (99th to 100th Wealth Percentiles) [Dataset]. https://fred.stlouisfed.org/series/WFRBST01134
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 20, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Share of Net Worth Held by the Top 1% (99th to 100th Wealth Percentiles) (WFRBST01134) from Q3 1989 to Q1 2025 about net worth, wealth, percentile, Net, and USA.

  13. a

    GRID3 ZMB - Population v1.0

    • grid3.africageoportal.com
    • data.grid3.org
    • +1more
    Updated Apr 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GRID3 (2024). GRID3 ZMB - Population v1.0 [Dataset]. https://grid3.africageoportal.com/maps/GRID3::grid3-zmb-population-v1-0
    Explore at:
    Dataset updated
    Apr 23, 2024
    Dataset authored and provided by
    GRID3
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Description

    These data feature gridded population estimates (~100 m grid cells) and population estimates for specific age groups, with national coverage for Zambia.The zipfiles contain the following files:ZMB_population_v1_0_gridded.tifThis geotiff raster contains estimates of total population size for each approximately 100m grid cell (0.0008333 decimal degrees grid) across Zambia. The values are the mean of the posterior probability distribution for the predicted population size in each grid cell. NA values represent areas that were mapped as unsettled according to building footprints data [8]. Note: This raster is accompanied by one ancillary file that contains metadata (ZMB_population_v1_0_gridded.tif.xml).ZMB_population_v1_0_uncertainty.tifThis geotiff raster contains estimates of uncertainty in the population estimates within each approximately 100m grid cell across Zambia. The uncertainty values are the difference between the upper and lower 95% credible intervals of the posterior prediction divided by the mean of the posterior prediction: (upper – lower)/mean. These numbers provide a comparable measure of uncertainty in population estimates across the country. Uncertainty estimates cannot be summed across grid cells to produce an uncertainty measure for a multi-cell area. Uncertainty for multiple cells can be calculated using the cells’ posterior predictions. Note: This raster is accompanied by one ancillary file that contains metadata (ZMB_population_v1_0_uncertainty.tif.xml).ZMB_population_v1_0_agesex.zipThis zip file contains 40 rasters in geotiff format. Each raster provides gridded population estimates for an age-sex group. We provide 36 rasters for the commonly reported age-sex groupings of sequential age classes for males and females separately. These are labelled with either an “m” (male) or an “f” (female) followed by the number of the first year of the age class represented by the data. “f0” and “m0” are population counts of under 1 year olds for females and males, respectively. “f1” and “m1” are population counts of 1 to 4 year olds for females and males, respectively. Over 4 years old, the age groups are in five year bins labelled with a “5”, “10”, etc. Eighty year olds and over are represented in the groups “f80” and “m80”. We provide an addition four rasters that represent demographic groups often targeted by programmes and interventions. These are “under1” (all females and males under the age of 1), “under5” (all females and males under the age of 5), “under15” (all females and males under the age of 15) and “f15_49” (all females between the ages of 15 and 49, inclusive). These data were produced using the gridded age-sex proportions from Carioli et al. [1] by multiplying the gridded population estimates(ZMB_population_v1_0_gridded.tif) by the gridded age-sex proportions which differ by region. While this data represents population counts, values contain decimals, i.e. fractions of people. This is because we do not estimate which grid cell each individual in a given age group occupies. For example, if four grid cells next to each other have values of 0.25 this indicates that there is 1 person of that age group somewhere in those four grid cells.Note, these data are operational population estimates and are not official government statistics.The downloadable Metadata provides more information about Source Data, Methods Overview, Assumptions & Limitations and Works and Data CitedContact release@worldpop.org for more information or gohere.Data Citation: WorldPop (School of Geography and Environmental Science, University of Southampton). 2020. Bottom-up gridded population estimates for Zambia, version 1.0. https://dx.doi.org/10.5258/SOTON/WP00662 CREDITS: The modelling work was led by Claire A. Dooley with support from Douglas R. Leasure. Geospatial data processing was carried out by Heather R. Chamberlain, Claire A. Dooley and Oliver Pannell. Coordination and stakeholder engagement was led by Heather R. Chamberlain and Claire A. Dooley with support from Polly Marshall. Oversight was provided by Andrew J. Tatem and Attila N. Lazar.These data were produced by the WorldPop Research Group at the University of Southampton. This work is part of the GRID3 (Geo-Referenced Infrastructure and Demographic Data for Development) programme funded by the Bill and Melinda Gates Foundation (BMGF) and the United Kingdom’s Foreign, Commonwealth & Development Office. It is implemented by Columbia University’s Center for International Earth Science Information Network (CIESIN), the United Nations Population Fund (UNFPA), WorldPop at the University of Southampton, and the Flowminder Foundation.

  14. e

    Data from: The Population Dynamics and Behavior of Beavers in the Sierra...

    • knb.ecoinformatics.org
    Updated Aug 14, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sagehen Creek Field Station; University of California Natural Reserve System; Peter Edward Busher (2015). The Population Dynamics and Behavior of Beavers in the Sierra Nevada [Dataset]. http://doi.org/10.5063/AA/nrs.678.1
    Explore at:
    Dataset updated
    Aug 14, 2015
    Dataset provided by
    Knowledge Network for Biocomplexity
    Authors
    Sagehen Creek Field Station; University of California Natural Reserve System; Peter Edward Busher
    Time period covered
    Jun 1, 1977 - Oct 1, 1979
    Area covered
    Description

    DOCTORATE DISSERTATION: The population dynamics and behavior of a populationof beavers, Castor canadensis, at Sagehen Creek, Nevada County, CA, were investigated from June 1977 through October 1979. A total of 29 beavers from four colonies were live-trapped, assigned to age classes, sexed, marked with color coded ear tags for individual identification, fitted with radio transmitters if older than kits, and released. The primary objective of the research was to examine the similarities and differences in behavior among members of the various age-sex classes. Resting associations and locations for all radio-tagged animals were also ascertained. The population size increased by 6 individuals, and increases in population density, average length of stream occupied per colony, total length of stream occupied by all colonies, and intercolonial movement occurred during the research. The sex ratio increased from 1 male:1 female in 1977 to 1.5 males: 1 female in 1979, which resulted from the presence of four new young adult males living at the borders of the existing colonies during the summer of 1979. The age class composition also changed, with more adults and two-year olds and fewer kits present in 1979 than in previous years. Three of the four colonies were typical family groups, consisting of the mated adult pair, several yearlings and the young of the year. Reproduction occurred all three years, but not in every colony, and the average litter size was 2.33 kits. Only one known mortality occurred and this was a male kit, although several subadults of both sexes disappeared from the population. Dispersal of the subadults is thought to regulate population size, although four two-year old individuals remained with their parent colonies at the termination of the research. The observed population changes suggest that the carrying capacity of the habitat for beavers has been reached and that the growth of the population should slow down or cease during the next few years. Seventeen types of behavior, which were grouped into three categories based on biological function, were recorded. Younger animals had a higher rate of occurrence of personal maintenance and social behaviors, while older animals had a higher rate for colony maintenance behaviors. Adult males had the highest rate of colony maintenance during both the summer and fall, and males of all age classes (excluding kits) had higher rates of colony maintenance in the fall than females. Adult males are considered to invest in the family group primarily through the performance of colony maintenance behaviors. Kits had the highest rate of social behaviors and initiated the most encounters with other beavers. The adult females were involved in the most interactions and had the lowest frequency of submissive interactions. The adult males had the highest frequency of dominant interactions. An age class dominance hierarchy was present within the families, with older age classes always dominant to younger age classes. No evidence for a sexual hierarchy was found, and the adults within a colony were considered to be codominant. Beavers in all colonies used a number of rest sites, both lodges and bank burrows. Most colonies had one preferred rest site that was used by all members, while some colonies had two preferred rest sites. Use of rst sites and resting associations were affected by season of the year, number of young in the family, and specific age of the adults in the mated pair.

  15. 2010 American Community Survey: S2408 | CLASS OF WORKER BY SEX AND MEDIAN...

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2010 American Community Survey: S2408 | CLASS OF WORKER BY SEX AND MEDIAN EARNINGS IN THE PAST 12 MONTHS (IN 2010 INFLATION-ADJUSTED DOLLARS) FOR THE CIVILIAN EMPLOYED POPULATION 16 YEARS AND OVER (ACS 5-Year Estimates Subject Tables) [Dataset]. https://data.census.gov/table/ACSST5Y2010.S2408?q=population+by+age+in+isle+of+palms+sc+in+2010
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2010
    Description

    Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Data and Documentation section...Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, for 2010, the 2010 Census provides the official counts of the population and housing units for the nation, states, counties, cities and towns. For 2006 to 2009, the Population Estimates Program provides intercensal estimates of the population for the nation, states, and counties..Explanation of Symbols:.An ''**'' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate..An ''-'' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution..An ''-'' following a median estimate means the median falls in the lowest interval of an open-ended distribution..An ''+'' following a median estimate means the median falls in the upper interval of an open-ended distribution..An ''***'' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate..An ''*****'' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. .An ''N'' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small..An ''(X)'' means that the estimate is not applicable or not available..Estimates of urban and rural population, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2000 data. Boundaries for urban areas have not been updated since Census 2000. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..While the 2006-2010 American Community Survey (ACS) data generally reflect the December 2009 Office of Management and Budget (OMB) definitions of metropolitan and micropolitan statistical areas; in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB definitions due to differences in the effective dates of the geographic entities..The Class of Worker status "unpaid family workers" may have earnings. Earnings reflect any earnings from all jobs held during the 12 months prior to the ACS interview. The Class of Worker status reflects the job or business held the week prior to the ACS interview, or the last job held by the respondent..The methodology for calculating median income and median earnings changed between 2008 and 2009. Medians over $75,000 were most likely affected. The underlying income and earning distribution now uses $2,500 increments up to $250,000 for households, non-family households, families, and individuals and employs a linear interpolation method for median calculations. Before 2009 the highest income category was $200,000 for households, families and non-family households ($100,000 for individuals) and portions of the income and earnings distribution contained intervals wider than $2,500. Those cases used a Pareto Interpolation Method..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables..Source: U.S. Census Bureau, 2006-2010 American Community Survey

  16. f

    Data_Sheet_1_Selected elements of the lifestyle of Silesian seniors, taking...

    • frontiersin.figshare.com
    docx
    Updated Mar 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Józefa Dąbek; Magdalena Szynal; Ewelina Łebek; Oskar Sierka (2024). Data_Sheet_1_Selected elements of the lifestyle of Silesian seniors, taking into account their participation in the activities of the Third Age Universities.docx [Dataset]. http://doi.org/10.3389/fpubh.2024.1375238.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Mar 4, 2024
    Dataset provided by
    Frontiers
    Authors
    Józefa Dąbek; Magdalena Szynal; Ewelina Łebek; Oskar Sierka
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    IntroductionUTA can provide older adult people with the satisfaction of needs and creates the opportunity to pursue youthful interests and passions. The aim of the study was to assess selected elements of the lifestyle of Silesian seniors, taking into account their participation in the activities of Universities of the Third Age.MethodsThe study involved 631 (100%) senior residents of the Silesian agglomeration. The majority of the study group were women (475; 75.28%), and the average age of the participants was 70.28 ± 6.09 years. To conduct the study, an original survey questionnaire was used, complemented by PPS-10, PAQE and Yesavage Geriatric Depression Rating Scale.ResultsAmong the surveyed Silesian seniors who did not attend classes at the University of the Third Age, a statistically significantly higher score on the Yesavage’s Geriatric Depression Rating Scale was found compared to those confirming their participation in the mentioned activity (p = 0.002). Almost 40% (107; 38.63%) of seniors who did not attend classes at the Universities of the Third Age showed a high level of stress, and every fourth (89; 25.14%) Silesian senior taking part in the above-mentioned activity had a low level of stress (p = 0.04). The median of points obtained on the physical activity assessment scale (PAQE) by seniors attending classes at Universities of the Third Age was statistically higher than seniors who denied participation in the mentioned activity (p = 0.017).ConclusionParticipation in the various activities at the Universities of the Third Age influenced positively well-being, reduced stress and raised physical activity of examined seniors. It is important to promote and start actions leading to seniors’ better and easier inclusion to the society life. Future research should concentrate on reasons why many seniors do not attend activities in their leisure time - especially on accessibility of various activities and financial reasons, which in the future will play crucial role in the aging societies.

  17. f

    Demographics and multinomial logistic regression results for covariates by...

    • plos.figshare.com
    xls
    Updated Jan 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Finn Breinholt Larsen; Mathias Lasgaard; Morten Vejs Willert; Jes Bak Sørensen (2025). Demographics and multinomial logistic regression results for covariates by latent class of stressors (intercept omitted from table). [Dataset]. http://doi.org/10.1371/journal.pone.0316759.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jan 16, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Finn Breinholt Larsen; Mathias Lasgaard; Morten Vejs Willert; Jes Bak Sørensen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Demographics and multinomial logistic regression results for covariates by latent class of stressors (intercept omitted from table).

  18. f

    Fit statistics and diagnostic criteria for latent class analyses.

    • plos.figshare.com
    xls
    Updated Jan 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Finn Breinholt Larsen; Mathias Lasgaard; Morten Vejs Willert; Jes Bak Sørensen (2025). Fit statistics and diagnostic criteria for latent class analyses. [Dataset]. http://doi.org/10.1371/journal.pone.0316759.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jan 16, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Finn Breinholt Larsen; Mathias Lasgaard; Morten Vejs Willert; Jes Bak Sørensen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Fit statistics and diagnostic criteria for latent class analyses.

  19. Table 3.1a Percentile points from 1 to 99 for total income before and after...

    • gov.uk
    Updated Mar 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HM Revenue & Customs (2025). Table 3.1a Percentile points from 1 to 99 for total income before and after tax [Dataset]. https://www.gov.uk/government/statistics/percentile-points-from-1-to-99-for-total-income-before-and-after-tax
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    HM Revenue & Customs
    Description

    The table only covers individuals who have some liability to Income Tax. The percentile points have been independently calculated on total income before tax and total income after tax.

    These statistics are classified as accredited official statistics.

    You can find more information about these statistics and collated tables for the latest and previous tax years on the Statistics about personal incomes page.

    Supporting documentation on the methodology used to produce these statistics is available in the release for each tax year.

    Note: comparisons over time may be affected by changes in methodology. Notably, there was a revision to the grossing factors in the 2018 to 2019 publication, which is discussed in the commentary and supporting documentation for that tax year. Further details, including a summary of significant methodological changes over time, data suitability and coverage, are included in the Background Quality Report.

  20. a

    TW TractPriorities TEPI 20250430

    • cotgis.hub.arcgis.com
    Updated Apr 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tucson (2025). TW TractPriorities TEPI 20250430 [Dataset]. https://cotgis.hub.arcgis.com/maps/cotgis::tw-tractpriorities-tepi-20250430
    Explore at:
    Dataset updated
    Apr 30, 2025
    Dataset authored and provided by
    City of Tucson
    Area covered
    Description

    For detailed information, visit the Tucson Equity Priority Index StoryMap.Download the layer's data dictionaryWhat is the Tucson Equity Priority Index (TEPI)?The Tucson Equity Priority Index (TEPI) is a tool that describes the distribution of socially vulnerable demographics. It categorizes the dataset into 5 classes that represent the differing prioritization needs based on the presence of social vulnerability: Low (0-20), Low-Moderate (20-40), Moderate (40-60), Moderate-High (60-80) High (80-100). Each class represents 20% of the dataset’s features in order of their values. The features within the Low (0-20) classification represent the areas that, when compared to all other locations in the study area, have the lowest need for prioritization, as they tend to have less socially vulnerable demographics. The features that fall into the High (80-100) classification represent the 20% of locations in the dataset that have the greatest need for prioritization, as they tend to have the highest proportions of socially vulnerable demographics. How is social vulnerability measured?The Tucson Equity Priority Index (TEPI) examines the proportion of vulnerability per feature using 11 demographic indicators:Income Below Poverty: Households with income at or below the federal poverty level (FPL), which in 2023 was $14,500 for an individual and $30,000 for a family of fourUnemployment: Measured as the percentage of unemployed persons in the civilian labor forceHousing Cost Burdened: Homeowners who spend more than 30% of their income on housing expenses, including mortgage, maintenance, and taxesRenter Cost Burdened: Renters who spend more than 30% of their income on rentNo Health Insurance: Those without private health insurance, Medicare, Medicaid, or any other plan or programNo Vehicle Access: Households without automobile, van, or truck accessHigh School Education or Less: Those highest level of educational attainment is a High School diploma, equivalency, or lessLimited English Ability: Those whose ability to speak English is "Less Than Well."People of Color: Those who identify as anything other than Non-Hispanic White Disability: Households with one or more physical or cognitive disabilities Age: Groups that tend to have higher levels of vulnerability, including children (those below 18), and seniors (those 65 and older)An overall percentile value is calculated for each feature based on the total proportion of the above indicators in each area. How are the variables combined?These indicators are divided into two main categories that we call Thematic Indices: Economic and Personal Characteristics. The two thematic indices are further divided into five sub-indices called Tier-2 Sub-Indices. Each Tier-2 Sub-Index contains 2-3 indicators. Indicators are the datasets used to measure vulnerability within each sub-index. The variables for each feature are re-scaled using the percentile normalization method, which converts them to the same scale using values between 0 to 100. The variables are then combined first into each of the five Tier-2 Sub-Indices, then the Thematic Indices, then the overall TEPI using the mean aggregation method and equal weighting. The resulting dataset is then divided into the five classes, where:High Vulnerability (80-100%): Representing the top classification, this category includes the highest 20% of regions that are the most socially vulnerable. These areas require the most focused attention. Moderate-High Vulnerability (60-80%): This upper-middle classification includes areas with higher levels of vulnerability compared to the median. While not the highest, these areas are more vulnerable than a majority of the dataset and should be considered for targeted interventions. Moderate Vulnerability (40-60%): Representing the middle or median quintile, this category includes areas of average vulnerability. These areas may show a balanced mix of high and low vulnerability. Detailed examination of specific indicators is recommended to understand the nuanced needs of these areas. Low-Moderate Vulnerability (20-40%): Falling into the lower-middle classification, this range includes areas that are less vulnerable than most but may still exhibit certain vulnerable characteristics. These areas typically have a mix of lower and higher indicators, with the lower values predominating. Low Vulnerability (0-20%): This category represents the bottom classification, encompassing the lowest 20% of data points. Areas in this range are the least vulnerable, making them the most resilient compared to all other features in the dataset.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (1990). Life expectancy among the male English aristocracy 1200-1745 [Dataset]. https://www.statista.com/statistics/1102957/life-expectancy-english-aristocracy/
Organization logo

Life expectancy among the male English aristocracy 1200-1745

Explore at:
Dataset updated
Apr 26, 1990
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United Kingdom (England)
Description

It is only in the past two centuries where demographics and the development of human populations has emerged as a subject in its own right, as industrialization and improvements in medicine gave way to exponential growth of the world's population. There are very few known demographic studies conducted before the 1800s, which means that modern scholars have had to use a variety of documents from centuries gone by, along with archeological and anthropological studies, to try and gain a better understanding of the world's demographic development. Genealogical records One such method is the study of genealogical records from the past; luckily, there are many genealogies relating to European families that date back as far as medieval times. Unfortunately, however, all of these studies relate to families in the upper and elite classes; this is not entirely representative of the overall population as these families had a much higher standard of living and were less susceptible to famine or malnutrition than the average person (although elites were more likely to die during times of war). Nonetheless, there is much to be learned from this data. Impact of the Black Death In the centuries between 1200 and 1745, English male aristocrats who made it to their 21st birthday were generally expected to live to an age between 62 and 72 years old. The only century where life expectancy among this group was much lower was in the 1300s, where the Black Death caused life expectancy among adult English noblemen to drop to just 45 years. Experts assume that the pre-plague population of England was somewhere between four and seven million people in the thirteenth century, and just two million in the fourteenth century, meaning that Britain lost at least half of its population due to the plague. Although the plague only peaked in England for approximately eighteen months, between 1348 and 1350, it devastated the entire population, and further outbreaks in the following decades caused life expectancy in the decade to drop further. The bubonic plague did return to England sporadically until the mid-seventeenth century, although life expectancy among English male aristocrats rose again in the centuries following the worst outbreak, and even peaked at more than 71 years in the first half of the sixteenth century.

Search
Clear search
Close search
Google apps
Main menu