In 2022, the mean age of Hispanic mothers at first birth amounted to 25.7 years in the United States. In comparison, the mean age of mothers of all races and origins in the U.S. was 27.4 years.
Over the past 70 years in the United States, women have gradually started having children at a later point in their lives. Before the 1980s, women in their early twenties had the highest birth rates, however women in their late twenties had the highest rates between 1980 and 2015, but were recently overtaken by women in their early thirties. Another major trend is the decline of teenage pregnancies, which was less than a quarter of it's 1950-1955 rate in the years between 2015 and 2020. In fact, birth rates among 15-19 years olds often doubled birth rates of women aged 35-39 throughout the late twentieth century, but in 2020, the opposite is true.
For women in their forties, birth rates have remained comparatively lower than rates among the other age groups. The high figures in the 1950s and 1960s, can be attributed to the baby boom that followed the Second World War. In more recent decades, rising birth rates among older age groups is not only due to societal trends, but has also been aided by improvements in assisted reproductive technology (ART), such as in vitro fertilization (IVF). Such technologies have granted thousands of women the ability to conceive in circumstances where this would not have been possible in years past.
The fertility rate of a country is the average number of children that women from that country will have throughout their reproductive years. In the United States in 1800, the average woman of childbearing age would have seven children over the course of their lifetime. As factors such as technology, hygiene, medicine and education improved, women were having fewer children than before, reaching just two children per woman in 1940. This changed quite dramatically in the aftermath of the Second World War, rising sharply to over 3.5 children per woman in 1960 (children born between 1946 and 1964 are nowadays known as the 'Baby Boomer' generation, and they make up roughly twenty percent of todays US population). Due to the end of the baby boom and increased access to contraception, fertility reached it's lowest point in the US in 1980, where it was just 1.77. It did however rise to over two children per woman between 1995 and 2010, although it is expected to drop again by 2020, to just 1.78.
This statistic shows the distribution of births in the United States from 2011 to 2019, by age of the mother. In 2019, women aged 20 to 29 years birthed the most children in the United States at ***** percent of all births in that year.
Number and percentage of live births, by age group of mother, 1991 to most recent year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Fertility Rate: Total: Births per Woman data was reported at 1.800 Ratio in 2016. This records a decrease from the previous number of 1.843 Ratio for 2015. United States US: Fertility Rate: Total: Births per Woman data is updated yearly, averaging 2.002 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 3.654 Ratio in 1960 and a record low of 1.738 Ratio in 1976. United States US: Fertility Rate: Total: Births per Woman data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Total fertility rate represents the number of children that would be born to a woman if she were to live to the end of her childbearing years and bear children in accordance with age-specific fertility rates of the specified year.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average; Relevance to gender indicator: it can indicate the status of women within households and a woman’s decision about the number and spacing of children.
Between 1991 and 2021 there has been a clear trend of mothers having children later in life in the United Kingdom, with the average age of mothers in the increasing from 27.7 in 1991 to 30.9 by 2021.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Maternal Mortality Ratio: Modeled Estimate: per 100,000 Live Births data was reported at 14.000 Ratio in 2015. This stayed constant from the previous number of 14.000 Ratio for 2014. United States US: Maternal Mortality Ratio: Modeled Estimate: per 100,000 Live Births data is updated yearly, averaging 13.000 Ratio from Dec 1990 (Median) to 2015, with 26 observations. The data reached an all-time high of 15.000 Ratio in 2009 and a record low of 11.000 Ratio in 1998. United States US: Maternal Mortality Ratio: Modeled Estimate: per 100,000 Live Births data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Maternal mortality ratio is the number of women who die from pregnancy-related causes while pregnant or within 42 days of pregnancy termination per 100,000 live births. The data are estimated with a regression model using information on the proportion of maternal deaths among non-AIDS deaths in women ages 15-49, fertility, birth attendants, and GDP.; ; WHO, UNICEF, UNFPA, World Bank Group, and the United Nations Population Division. Trends in Maternal Mortality: 1990 to 2015. Geneva, World Health Organization, 2015; Weighted average; This indicator represents the risk associated with each pregnancy and is also a Sustainable Development Goal Indicator for monitoring maternal health.
In 2021, the birth rate in the United States was highest in families that had under 10,000 U.S. dollars in income per year, at 62.75 births per 1,000 women. As the income scale increases, the birth rate decreases, with families making 200,000 U.S. dollars or more per year having the second-lowest birth rate, at 47.57 births per 1,000 women. Income and the birth rate Income and high birth rates are strongly linked, not just in the United States, but around the world. Women in lower income brackets tend to have higher birth rates across the board. There are many factors at play in birth rates, such as the education level of the mother, ethnicity of the mother, and even where someone lives. The fertility rate in the United States The fertility rate in the United States has declined in recent years, and it seems that more and more women are waiting longer to begin having children. Studies have shown that the average age of the mother at the birth of their first child in the United States was 27.4 years old, although this figure varies for different ethnic origins.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Prevalence of Wasting: Weight for Height: Female: % of Children Under 5 data was reported at 0.700 % in 2012. This records an increase from the previous number of 0.500 % for 2009. United States US: Prevalence of Wasting: Weight for Height: Female: % of Children Under 5 data is updated yearly, averaging 0.550 % from Dec 1991 (Median) to 2012, with 6 observations. The data reached an all-time high of 0.800 % in 2005 and a record low of 0.100 % in 2001. United States US: Prevalence of Wasting: Weight for Height: Female: % of Children Under 5 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Health Statistics. Prevalence of wasting, female, is the proportion of girls under age 5 whose weight for height is more than two standard deviations below the median for the international reference population ages 0-59.; ; World Health Organization, Global Database on Child Growth and Malnutrition. Country-level data are unadjusted data from national surveys, and thus may not be comparable across countries.; Linear mixed-effect model estimates; Undernourished children have lower resistance to infection and are more likely to die from common childhood ailments such as diarrheal diseases and respiratory infections. Frequent illness saps the nutritional status of those who survive, locking them into a vicious cycle of recurring sickness and faltering growth (UNICEF, www.childinfo.org). Estimates of child malnutrition, based on prevalence of underweight and stunting, are from national survey data. The proportion of underweight children is the most common malnutrition indicator. Being even mildly underweight increases the risk of death and inhibits cognitive development in children. And it perpetuates the problem across generations, as malnourished women are more likely to have low-birth-weight babies. Stunting, or being below median height for age, is often used as a proxy for multifaceted deprivation and as an indicator of long-term changes in malnutrition.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
PurposeThis study aims to present the AMerican PREGNANcy Mother–Child CohorT (AM-PREGNANT) and its maternal and linked-child characteristics.MethodsAM-PREGNANT was built using the Merative™ MarketScan® Commercial Database. We updated and implemented a hierarchical algorithm using ICD-9-CM and ICD-10-CM codes to identify pregnancies in individuals aged 15–45 years (2003–2021). A unique family identifier linked mothers to their children. Enrollment required continuous coverage for 90 days before, during, and 42 days after pregnancy for the mothers and 1 year after birth for the linked children. Pregnancy outcomes were categorized as deliveries, spontaneous abortions, and induced abortions. We characterized AM-PREGNANT (2004–2020) by sociodemographic factors, pregnancy history, comorbidities, and medication dispensing by pregnancy outcome. Medication dispensing, identified through filled prescriptions using drug claims, was analyzed for the 90 days before pregnancy until the last menstrual period (LMP), throughout pregnancy, and from delivery through the postpartum period. Linked children were assessed for low birth weight (LBW), preterm birth, congenital malformations, and other characteristics. Maternal and gestational age distributions were compared with United States (US) national estimates.ResultsWe identified 7,991,200 pregnancies from 6,079,647 persons (2003–2021). Applying continuous enrollment criteria and restricting the study period to 2004–2020 resulted in 4,767,208 pregnancies. Of these, 76.9% resulted in deliveries, 17.3% were spontaneous abortions, and 5.9% were induced abortions. The established linked mother–child cohort comprises 2,578,990 pregnancies. The mean maternal age in the linked mother–child cohort was 30.4 years (SD, 5.4). The mean gestational age at delivery was 38.6 weeks. Infections were the most prevalent maternal comorbidity (11.8%). Among deliveries, the prevalence of medication dispensing in mothers before, during, and after pregnancy were 63.2%, 88.7%, and 82.9%, respectively. Among linked children, 52.1% were male, 12.0% were preterm, and 4.5% had low birth weight. The prevalence of major congenital malformations was 13.1%. The characteristics of children with continuous enrollment were similar to those without, except for medication dispensing during the first year of life (62.9% vs. 45.6%). Both maternal and gestational age distributions of AM-PREGNANT were comparable to the US national estimates.ConclusionAM-PREGNANT is a valuable cohort for studying medication safety in mothers and children. Strict enrollment criteria ensured reliable data, minimizing the risk of misclassification. This cohort is a key resource for multi-country perinatal pharmacoepidemiological studies.
This dataset was created from the CDC's National Vital Statistics Reports Volume 56, Number 6. The dataset includes all data available from this report by state level and includes births by race and Hispanic origin, births to unmarried women, rates of cesarean delivery, and twin and multiple birth rates. The data are final for 2005. No value is represented by a -1. "Descriptive tabulations of data reported on the birth certificates of the 4.1 million births that occurred in 2005 are presented. Denominators for population-based rates are postcensal estimates derived from the U.S. 2000 census".
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Background: Standard pediatric growth curves cannot be used to impute missing height or weight measurements in individual children. The Michaelis-Menten equation, used for characterizing substrate-enzyme saturation curves, has been shown to model growth in many organisms including nonhuman vertebrates. We investigated whether this equation could be used to interpolate missing growth data in children in the first three years of life and compared this interpolation to several common interpolation methods and pediatric growth models.
Methods: We developed a modified Michaelis-Menten equation and compared expected to actual growth, first in a local birth cohort (N=97) and then in a large, outpatient, pediatric sample (N=14,695).
Results: The modified Michaelis-Menten equation showed excellent fit for both infant weight (median RMSE: boys: 0.22kg [IQR:0.19; 90%<0.43]; girls: 0.20kg [IQR:0.17; 90%<0.39]) and height (median RMSE: boys: 0.93cm [IQR:0.53; 90%<1.0]; girls: 0.91cm [IQR:0.50;90%<1.0]). Growth data were modeled accurately with as few as four values from routine well-baby visits in year 1 and seven values in years 1-3; birth weight or length was essential for best fit. Interpolation with this equation had comparable (for weight) or lower (for height) mean RMSE compared to the best-performing alternative models.
Conclusions: A modified Michaelis-Menten equation accurately describes growth in healthy babies aged 0–36 months, allowing interpolation of missing weight and height values in individual longitudinal measurement series. The growth pattern in healthy babies in resource-rich environments mirrors an enzymatic saturation curve.
Methods
Sources of data: Information on infants was ascertained from two sources: the STORK birth cohort and the STARR research registry. (1) Detailed methods for the STORK birth cohort have been described previously. In brief, a multiethnic cohort of mothers and babies was followed from the second trimester of pregnancy to the babies’ third birthday. Healthy women aged 18–42 years with a single-fetus pregnancy were enrolled. Households were visited every four months until the baby’s third birthday (nine baby visits), with the weight of the baby at each visit recorded in pounds. Medical charts were abstracted for birth weight and length. (2) STARR (starr.stanford.edu) contains electronic medical record information from all pediatric and adult patients seen at Stanford Health Care (Stanford, CA). STARR staff provided anonymized information (weight, height and age in days for each visit through age three years; sex; race/ethnicity) for all babies during the period 03/2013–01/2022 followed from birth to at least 36 months of age with at least five well-baby care visits over the first year of life.
Inclusion of data for modeling: All observed weight and height values were evaluated in kilograms (kg) and centimeters (cm), respectively. Any values assessed beyond 1,125 days (roughly 36 months) and values for height and weight deemed implausible by at least two reviewers (e.g., significant losses in height, or marked outliers for weight and height) were excluded from the analysis. Additionally, weights assessed between birth and 19 days were excluded. At least five observations across the 36-month period were required: babies with fewer than five weight or height values after the previous criteria were excluded from analyses.
Model: We developed our weight model using values from STORK babies and then replicated it with values from the STARR babies. Height models were evaluated in STARR babies only because STORK data on height were scant. The Michaelis-Menten equation is described as follows: v = Vmax ([S]/(Km + [S]) , where v is the rate of product formation, Vmax is the maximum rate of the system, [S] is the substrate concentration, and Km is a constant based upon the enzyme’s affinity for the particular substrate. For this study the equation became: P = a1 (Age/(b1+ Age)) + c1, where P was the predicted value of weight (kg) or height (cm), Age was the age of the infant in days, and c1 was an additional constant over the original Michaelis-Menten equation that accounted for the infant’s non-zero weight or length at birth. Each of the parameters a1, b1 and c1 was unique to each child and was calculated using the nonlinear least squares (nls) method. In our case, weight data were fitted to a model using the statistical language R, by calling the formula nls() with the following parameters: fitted_model <-nls(weights~(c1+(a1*ages)/(b1+ages)), start = list(a1 = 5, b1 = 20, c1=2.5)), where weights and ages were vectors of each subject’s weight in kg and age in days. The default Gauss-Newton algorithm was used. The optimization objective is not convex in the parameters and can suffer from local optima and boundary conditions. In such cases good starting values are essential: the starting parameter values (a1=5, b1=20, c1=2.5) were adjusted manually using the STORK dataset to minimize model failures; these tended to occur when the parameter values, particularly a1 and b1, increased without bound during the iterative steps required to optimize the model. These same parameter values were used for the larger STARR dataset. The starting height parameter values for height modeling were higher than those for weight modeling, due to the different units involved (cm vs. kg) (a1=60, b1=530, c1=50). Because this was a non-linear model, goodness of fit was assessed primarily via root mean squared error (RMSE) for both weight and height.
Imputation tests: To test for the influence of specific time points on the models, we limited our analysis to STARR babies with all recommended well-baby visits (12 over three years). Each scheduled visit except day 1 occurred in a time window around the expected well-baby visit (Visit1: Day 1, Visit2: days 20–44, Visit3: 46–90, Visit4: 95–148, Visit5: 158–225, Visit6: 250–298, Visit7: 310–399, Visit8: 410–490, Visit9: 500–600, Visit10: 640–800, Visit11: 842–982, Visit12: 1024–1125). We considered two different sets: infants with all scheduled visits in the first year of life (seven total visits) and those with all scheduled visits over the full three-year timeframe (12 total visits). We fit these two sets to the model, identifying baseline RMSE. Then, every visit, and every combination of two to five visits were dropped, so that the RMSE or model failures for a combination of visits could be compared to baseline.
Prediction: We sought to predict weight or height at 36 months (Y3) from growth measures assessed only up to 12 months (Y1) or to 24 months (Y1+Y2), utilizing the “last value” approach. In brief, the last observation for each child (here, growth measures at 36 months) is used to assess overall model fit, by focusing on how accurately the model can extrapolate the measure at this time point. We identified all STARR infants with at least five time points in Y1 and at least two time points in both Y2 and Y3, with the selection of these time points based on maximizing the number of later time points within the constraints of the well-baby visit schedule for Y2 and Y3. The per-subject set of time points (Y1-Y3) was fitted using the modified Michaelis-Menten equation and the mean squared error was calculated, acting as the “baseline” error. The model was then run on the subset of Y1 only and of Y1+Y2 only. To test predictive accuracy of these subsets, the RMSE was calculated using the actual weights or heights versus the predicted weights or heights of the three time series.
Comparison with other models: We examined how well the modified Michaelis-Menten equation performed interpolation in STARR babies compared to ten other commonly used interpolation methods and pediatric growth models including: (1) the ‘last observation carried forward’ model; (2) the linear model; (3) the robust linear model (RLM method, base R MASS package); (4) the Laird and Ware linear model (LWMOD method); (5) the generalized additive model (GAM method); (6) locally estimated scatterplot smoothing (LOESS method, base R stats package); (7) the smooth spline model (smooth.spline method, base R stats package); (8) the multilevel spline model (Wand method); (9) the SITAR (superimposition by translation and rotation) model and (10) fast covariance estimation (FACE method).
Model fit used the holdout approach: a single datapoint (other than birth weight or birth length) was randomly removed from each subject, and the RMSE of the removed datapoint was calculated as the model fitted to the remaining data.
The hbgd package was used to fit all models except the ‘last observation carried forward’ model, the linear model and the SITAR model. For the ‘last observation carried forward’ model, the holdout data point was interpolated by the last observation by converting the random holdout value to NA and then using the function na.locf() from the zoo R package. For the simple linear model, the holdout-filtered data were used to determine the slope and intercept via R’s lm() function, which were then used to calculate the holdout value. For the SITAR model, each subject was fitted by calling the sitar() function with df=2 to minimize failures, and the RMSE of the random holdout point was subsequently calculated with the predict() function. For this analysis, set.seed(1234) was used to initialize the pseudorandom generator.
This dataset explores Early Care and Education Funding: Head Start Allocation and State-Funded Prekindergarten Expenditure. This data is state level and expresses the expenditure per state in United States (US) Dollars ($). Head Start and Early Head Start are comprehensive child development programs that serve children from birth to age 5, their families, and pregnant women. The overall goal of these programs is to increase the school readiness of young children in families earning low incomes. The Head Start program delivers comprehensive services including: education, health, nutrition, screening for developmental delays, and a variety of social services, if the family needs them. The program is designed to meet the social, emotional, physical and cognitive development of children. This data is from Latest Data: Fiscal Year 2004 (Head Start) and School Year 2002-2003 (State Funded Prekindergarten). This data is from National Child Care Information Center. Refer to NCCIC Child Care Database for detailed state information (http://nccic.org/IMS/Results.asp). Compiled by: National Association of Child Care Resources and Referral Agencies (http://www.naccrra.org/randd/head_start/expenditure.php)
In 2023, the mean age of mothers at the time of their first birth in the United States was **** years among Asian women, significantly higher than the average of **** years for American Indian and Alaska Native women. The average age by the time of first birth among U.S. women from all racial/ethnic groups increased slightly compared to 2016.
In 2023, the mean age of mothers in the United States was **** years by the time of their first birth, an increase compared to the average of **** years in 2016. The average age at birth among U.S. women in total slightly increased in the given interval.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundRacial and ethnic disparities persist in preterm birth (PTB) and gestational age (GA) at delivery in the United States. It remains unclear whether exposure to environmental chemicals contributes to these disparities.ObjectivesWe applied recent methodologies incorporating environmental mixtures as mediators in causal mediation analysis to examine whether racial and ethnic disparities in GA at delivery and PTB may be partially explained by exposures to polybrominated diphenyl ethers (PBDEs), a class of chemicals used as flame retardants in the United States.MethodsData from a multiracial/ethnic US cohort of 2008 individuals with low-risk singleton pregnancies were utilized, with plasma PBDE concentrations measured during early pregnancy. We performed mediation analyses incorporating three forms of mediators: (1) reducing all PBDEs to a weighted index, (2) selecting a PBDE congener, or (3) including all congeners simultaneously as multiple mediators, to evaluate whether PBDEs may contribute to the racial and ethnic disparities in PTB and GA at delivery, adjusted for potential confounders.ResultsAmong the 2008 participants, 552 self-identified as non-Hispanic White, 504 self-identified as non-Hispanic Black, 568 self-identified as Hispanic, and 384 self-identified as Asian/Pacific Islander. The non-Hispanic Black individuals had the highest mean ∑PBDEs, the shortest mean GA at delivery, and the highest rate of PTB. Overall, the difference in GA at delivery comparing non-Hispanic Black to non-Hispanic White women was −0.30 (95% CI: −0.54, −0.05) weeks. This disparity reduced to −0.23 (95% CI: −0.49, 0.02) and −0.18 (95% CI: −0.46, 0.10) weeks if fixing everyone's weighted index of PBDEs to the median and the 25th percentile levels, respectively. The proportion of disparity mediated by the weighted index of PBDEs was 11.8%. No statistically significant mediation was found for PTB, other forms of mediator(s), or other racial and ethnic groups.ConclusionPBDE mixtures may partially mediate the Black vs. White disparity in GA at delivery. While further validations are needed, lowering the PBDEs at the population level might help reduce this disparity.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Maternal obesity has been associated with a higher risk of pregnancy-related complications in mothers and offspring; however, effective interventions have not yet been developed. We tested two common interventions, calorie restriction and pravastatin administration, during pregnancy in a rhesus macaque model with the hypothesis that these interventions would normalize metabolic dysregulation in pregnant mothers leading to an improvement in infant metabolic and cognitive/social development. A total of 19 obese mothers were assigned to either one of the two intervention groups (n=5 for calorie restriction; n=7 for pravastatin) or an obese control group (n=7) with no intervention, and maternal gestational samples and postnatal infant samples were compared with lean control mothers (n=6). Gestational calorie restriction normalized one-carbon metabolism dysregulation in obese mothers but altered energy metabolism in their offspring. Although administration of pravastatin during pregnancy tended to normalize blood cholesterol in the mothers, it potentially impacted the gut microbiome and kidney function of their offspring. In the offspring, both calorie restriction and pravastatin administration during pregnancy tended to normalize the activity of AMPK in the brain at 6 months, and while results of the Visual Paired-Comparison test, which measures infant recognition memory, were not significantly impacted by either of the interventions, gestational pravastatin administration, but not calorie restriction, tended to normalize anxiety assessed by the Human Intruder test. Although the two interventions tested in a non-human primate model led to some improvements in metabolism and/or infant brain development, negative impacts were also found in both mothers and infants. Our study emphasizes the importance of assessing gestational interventions for maternal obesity on both maternal and offspring long-term outcomes. Methods Study population Pregnant female rhesus macaques (Macaca mulatta) from an indoor breeding colony at the California National Primate Research Center with appropriate social behavior and previous successful pregnancies were enrolled. Animal handling was approved by the UC Davis Institutional Animal Care and Use Committee (IACUC) (#19299). A qualitative real-time PCR assay (Jimenez & Tarantal, 2003) was used to identify mothers with male fetuses to include in this study. Since obesity is defined as subjects with body fat above 30% for women, according to guidelines from the American Society of Bariatric Physicians, American Medical Association, and in some publications (Okorodudu et al., 2010; Shah & Braverman, 2012), a Body Condition Score (BCS) of 3.5 (32.8 % body fat on average (Summers et al., 2012)) was used as the cutoff. Therefore, mothers with BCS of 3.5 and above were categorized as obese. Obese mothers were randomly assigned to the Obese Control (OC) group, OR group (received calorie Restriction), or OP group (received Pravastatin). Mothers with BCS of 2.5 and below were assigned to the Lean Control (LC) group. The unbalanced sample size was because some mothers were removed from the analyses due to fetal deaths for unknown reasons, misidentification of a female fetus, different timing for study enrollment, or technical issues upon collecting samples. The number of animals was six for the LC, seven for the OC, five for the OR, and seven for the OP groups. Feeding, rearing, and interventions Adult female animals were provided monkey diet (High Protein Primate Diet Jumbo #5047; LabDiet, St. Louis, MO, USA) twice a day between 6–9 am and 1–3 pm. The calories were provided as 56% from carbohydrates, 30% from protein, and 13% from. Mothers in the LC, OC, and OP groups were fed nine biscuits twice a day once pregnancy was confirmed. Mothers in the OR group received a restricted supply of food once the pregnancy was detected and was maintained throughout pregnancy. The food restriction was set such that the average total weight increase would be 8% body weight from the last day before conception because the recommended total weight gain in the 2nd and 3rd trimesters is 5-9 kg for the average US woman with obesity who weighs 80 kg and is 1.6 m in height (Body Mass Index of 30), according to the Institute of Medicine 2009 guidelines (Institute of Medicine and National Research Council, 2009). During nursing of infants older than 4 months, all mothers were provided twelve biscuits. Fresh produce was provided biweekly, and water was provided ad libitum for all mothers. Mothers in the OP group were given pravastatin sodium (ApexBio Technology, Houston, TX, USA) at 20 mg/kg body weight prepared in a neutralized syrup (20 mg/mL sodium bicarbonate dissolved in a fruit-flavored syrup (Torani, San Leandro, CA, USA)) once a day from the time pregnancy was confirmed until delivery. The caloric value of the administration was made so as not to influence body weight or skew nutritional value of the diet among all treatment groups. Both interventions were applied only during gestation. Although most mothers were allowed to deliver naturally, cesarean delivery was performed for fetal indications when recommended by veterinarians (2 for each of the LC and OC groups, and 1 for the OP group). These mothers did not accept their infant following birth, so foster mothers were provided. Sample Collection and pre-processing prior to sample storage The animal caretakers and researchers who collected samples were blinded for group assignment by coding all animals by IDs. The collected biological samples were randomized by using random numbers and the group assignment was blinded during the data collection. Both mothers (during pregnancy) and infants were weighed every week. One day before sample collection, food was removed 30 min after the afternoon feeding, and biological samples were collected prior to the morning feeding. To collect biological samples, animals were anesthetized using 5–30 mg/kg ketamine or 5–8 mg/kg telazol. Both maternal and infant blood was collected using 5 mL lavender top (EDTA) tubes (Monoject, Cardinal Health, Dublin, OH, USA) and urine was collected from the bladder by ultrasound-guided transabdominal cystotomy using a 22-gauge needle and stored in a 15 mL Falcon tube. A placental sample was collected at GD150 transabdominally under ultrasound guidance using an 18-gauge needle attached to a sterile syringe. Sample processing was as previously described in (Hasegawa et al., 2022). Necropsy was conducted between 9:30 am–1:30 pm. First, infants at the age of PD180 were fasted and anesthetized with ketamine, and plasma and urine were collected. Then, euthanasia was performed with 120 mg/kg pentobarbital, followed by heparin injection, clamping of the descending aorta, and flushing with saline until clear. The kidney and brain (amygdala, hippocampus, hypothalamus, and prefrontal cortex) were collected, weighed, and immediately frozen on dry ice or liquid nitrogen to store at -80 °C until further analyses. Metabolite extraction and analysis by 1H NMR, and measurement of insulin, cholesterol, cytokine, and cortisol Detailed procedures were previously described (Hasegawa et al., 2022). Briefly, plasma and urine samples were filtered using Amicon Ultra Centrifugal Filter (3k molecular weight cutoff; Millipore, Billerica, MA, USA), and the supernatant was used for analysis. For both the placental and brain tissue samples, polar metabolites were extracted using our previously reported method (Hasegawa et al., 2020). A total of 180 μL of sample (tissue extract or filtered urine or serum) was transferred to 3 mm Bruker NMR tubes (Bruker, Billerica, MA, USA). Within 24 h of sample preparation, all 1H NMR spectra were acquired using the noesypr1d pulse sequence on a Bruker Avance 600 MHz NMR spectrometer (Bruker, Billerica, MA, USA) (O’Sullivan et al., 2013). Chenomx NMRSuite (version 8.1, Chenomx Inc., Edmonton, Canada) (Weljie et al., 2006) was used to identify and quantify metabolites. Heparin-treated plasma samples were used to measure insulin and 17 cytokines and chemokines (hs-CRP, Granulocyte-macrophage colony-stimulating factor, IFN-γ, TNF-α, transforming growth factor-α, monocyte chemoattractant protein-1, macrophage inflammatory protein-1β (MIP-1β), and interleukin (IL)-1β, IL-1 receptor antagonist (IL-1ra), IL-2, IL-6, IL-8, IL-10, IL-12/23 p40, IL-13, IL-15, and IL-17A) using a multiplex Bead-Based Kit (Millipore) on a Bio-Plex 100 (Bio-rad, Hercules, CA) following the manufacturer’s protocol. For each sample, a minimum of fifty beads per region were collected and analyzed with Bio-Plex Manager software using a 5-point standard curve with immune marker quantities extrapolated based on the standard curve. Two samples were removed for analysis of TNF-α and IL-1ra as technical errors (both from Animal ID 1132103: 895.2 and 1115.1 pg/mL at gestational days (GD) 90; 510.8 and 617.2 pg/mL at GD120, respectively). Plasma cholesterol level was measured by Clinical Laboratory Diagnostic Product (OSR6116) on Beckman Coulter AU480 (Beckman Coulter, Brea, CA). Infant plasma cortisol level at PD110 was assessed as previously described (Vandeleest et al., 2019; Walker et al., 2018). In short, infants were transferred to a test room at 9 am and blood was drawn at 11 am (Sample 1), followed by another blood collection at 4 pm (Sample 2) and intramuscular injection of 500 μg/kg dexamethasone (Dex) (American Regent Laboratories, Inc., Shirley, NY). On the next day, a blood sample was collected at 8:30 am (Sample 3), and then 2.5 IU of adrenocorticotropic hormone (Amphastar Pharmaceuticals, Inc., Rancho Cucamonga, CA) was injected intramuscularly. The last blood was collected (Sample 4) 30 min after adrenocorticotropic hormone injection. The collected blood samples were processed and stored, and cortisol concentration was assessed by a chemiluminescent assay on the ADVIA Centaur CP platform
While the standard image of the nuclear family with two parents and 2.5 children has persisted in the American imagination, the number of births in the U.S. has steadily been decreasing since 1990, with about 3.6 million babies born in 2023. In 1990, this figure was 4.16 million. Birth and replacement rates A country’s birth rate is defined as the number of live births per 1,000 inhabitants, and it is this particularly important number that has been decreasing over the past few decades. The declining birth rate is not solely an American problem, with EU member states showing comparable rates to the U.S. Additionally, each country has what is called a “replacement rate.” The replacement rate is the rate of fertility needed to keep a population stable when compared with the death rate. In the U.S., the fertility rate needed to keep the population stable is around 2.1 children per woman, but this figure was at 1.67 in 2022. Falling birth rates Currently, there is much discussion as to what exactly is causing the birth rate to decrease in the United States. There seem to be several factors in play, including longer life expectancies, financial concerns (such as the economic crisis of 2008), and an increased focus on careers, all of which are causing people to wait longer to start a family. How international governments will handle falling populations remains to be seen, but what is clear is that the declining birth rate is a multifaceted problem without an easy solution.
Today, globally, women of childbearing age have an average of approximately 2.2 children over the course of their lifetime. In pre-industrial times, most women could expect to have somewhere between five and ten live births throughout their lifetime; however, the demographic transition then sees fertility rates fall significantly. Looking ahead, it is believed that the global fertility rate will fall below replacement level in the 2050s, which will eventually lead to population decline when life expectancy plateaus. Recent decades Between the 1950s and 1970s, the global fertility rate was roughly five children per woman - this was partly due to the post-WWII baby boom in many countries, on top of already-high rates in less-developed countries. The drop around 1960 can be attributed to China's "Great Leap Forward", where famine and disease in the world's most populous country saw the global fertility rate drop by roughly 0.5 children per woman. Between the 1970s and today, fertility rates fell consistently, although the rate of decline noticeably slowed as the baby boomer generation then began having their own children. Replacement level fertility Replacement level fertility, i.e. the number of children born per woman that a population needs for long-term stability, is approximately 2.1 children per woman. Populations may continue to grow naturally despite below-replacement level fertility, due to reduced mortality and increased life expectancy, however, these will plateau with time and then population decline will occur. It is believed that the global fertility rate will drop below replacement level in the mid-2050s, although improvements in healthcare and living standards will see population growth continue into the 2080s when the global population will then start falling.
In 2022, the mean age of Hispanic mothers at first birth amounted to 25.7 years in the United States. In comparison, the mean age of mothers of all races and origins in the U.S. was 27.4 years.