Among Central and Eastern European countries, young Croatians were the latest to leave their family home in 2023 at nearly 32 years old. Estonians and Lithuanians moved out of their parent's homes at an average age of 23 and 24, respectively.
This graph shows the answers to a survey conducted in Italy in 2018. Individuals were asked how old they were when they permanently moved out of their parents' home. One in four respondents declared that they haven't yet moved out of their parents' home. On the other hand, 32 percent of the respondents permanently moved out when they were 26 years of age or older and 38 percent when they were 25 years of age or younger.
In a survey conducted by Milieu Insight on the living situation of Singaporeans, 29 percent of respondents who no longer lived with their parents stated that they moved out of their parents' home between 26 to 30 years. In comparison, 18 percent moved out between 19 to 21 years.
This statistic shows the median age at which young people leave the parental home in and outside Île-de-France in 1999, 2006 and 2011. In 2011, the median age for young adults to leave their parents' house was 24.7 years old in the Ile-de-France region. Outside Île-de-France, the median age was 22.1 years old.
In 2023, Croatia was the country where, on average, people left their parent's household the latest, at nearly 32 years old. Ranked second and third were Slovakia and Greece. Denmark, Sweden, and Finland were the countries where people became independent the youngest, with the average person in those countries leaving their parent's household before 22.
https://fred.stlouisfed.org/legal/https://fred.stlouisfed.org/legal/
Graph and download economic data for 12-Month Moving Average of Unweighted Median Hourly Wage Growth: Age: 25-54 Years (FRBATLWGT12MMUMHWGA2554Y) from Dec 1997 to Feb 2025 about growth, moving average, 25 to 54 years, 1-year, average, wages, median, and USA.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Total number of young adults aged 15 to 34 years and total number of young adults aged 20 to 34 years in the UK living with their parents.
In 2023, nearly 58 percent of 18-24-year old men in the United States lived with a parent, whereas approximately 5.6 percent lived alone. In comparison, the share of women living with a parent was about 54, compared to 4.3 percent who lived alone.
This table contains 49005 series, with data for years 1987 - 2014 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (11 items: Canada; Newfoundland and Labrador; Nova Scotia; Prince Edward Island ...), Days lost (5 items: Total days lost (including maternity leave);Own illness or disability; Total days lost (excluding maternity leave);Other personal (including maternity leave) ...), National Occupational Classification for Statistics (NOC-S) (33 items: Total; all occupations; Other management occupations; Senior management occupations; Management occupations ...), Sex (3 items: Both sexes; Males; Females ...), Age group (9 items: 15 years and over;15 to 24 years;25 to 44 years;25 years and over ...).
This dataset contains replication files for "The Effects of Exposure to Better Neighborhoods on Children: New Evidence from the Moving to Opportunity Experiment" by Raj Chetty, Nathaniel Hendren, and Lawrence Katz. For more information, see https://opportunityinsights.org/paper/newmto/. A summary of the related publication follows. There are large differences in individuals’ economic, health, and educational outcomes across neighborhoods in the United States. Motivated by these disparities, the U.S. Department of Housing and Urban Development designed the Moving to Opportunity (MTO) experiment to determine whether providing low-income families assistance in moving to better neighborhoods could improve their economic and health outcomes. The MTO experiment was conducted between 1994 and 1998 in five large U.S. cities. Approximately 4,600 families living in high-poverty public housing projects were randomly assigned to one of three groups: an experimental voucher group that was offered a subsidized housing voucher that came with a requirement to move to a census tract with a poverty rate below 10%, a Section 8 voucher group that was offered a standard housing voucher with no additional contingencies, and a control group that was not offered a voucher (but retained access to public housing). Previous research on the MTO experiment has found that moving to lower-poverty areas greatly improved the mental and physical health of adults. However, prior work found no impacts of the MTO treatments on the earnings of adults and older youth, leading some to conclude that neighborhood environments are not an important component of economic success. In this study, we present a new analysis of the effect of the MTO experiment on children’s long-term outcomes. Our re-analysis is motivated by new research showing that a neighborhood’s effect on children’s outcomes may depend critically on the duration of exposure to that environment. In particular, Chetty and Hendren (2015) use quasi-experimental methods to show that every year spent in a better area during childhood increases a child’s earnings in adulthood, implying that the gains from moving to a better area are larger for children who are younger at the time of the move. In light of this new evidence on childhood exposure effects, we study the long-term impacts of MTO on children who were young when their families moved to better neighborhoods. Prior work has not been able to examine these issues because the younger children in the MTO experiment are only now old enough to be entering the adult labor market. For older children (those between ages 13-18), we find that moving to a lower-poverty neighborhood has a statistically insignificant or slightly negative effect. More generally, the gains from moving to lower-poverty areas decline steadily with the age of the child at the time of the move. We do not find any clear evidence of a “critical age” below which children must move to benefit from a better neighborhood. Rather, every extra year of childhood spent in a low-poverty environment appears to be beneficial, consistent with the findings of Chetty and Hendren (2015). The MTO treatments also had little or no impact on adults’ economic outcomes, consistent with previous results. Together, these studies show that childhood exposure plays a critical role in neighborhoods’ effects on economic outcomes. The experimental voucher increased the earnings of children who moved at young ages in all five experimental sites, for Whites, Blacks, and Hispanics, and for boys and girls. Perhaps most notably, we find robust evidence that the experimental voucher improved long-term outcomes for young boys, a subgroup where prior studies have found little evidence of gains. Our estimates imply that moving a child out of public housing to a low-poverty area when young (at age 8 on average) using a subsidized voucher like the MTO experimental voucher will increase the child’s total lifetime earnings by about $302,000. This is equivalent to a gain of $99,000 per child moved in present value at age 8, discounting future earnings at a 3% interest rate. The additional tax revenue generated from these earnings increases would itself offset the incremental cost of the subsidized voucher relative to providing public housing. We conclude that offering low-income families housing vouchers and assistance in moving to lowerpoverty neighborhoods has substantial benefits for the families themselves and for taxpayers. It appears important to target such housing vouchers to families with young children – perhaps even at birth – to maximize the benefits. Our results provide less support for policies that seek to improve the economic outcomes of adults through residential relocation. More broadly, our findings suggest that efforts to integrate disadvantaged families into mixed-income communities are likely to reduce the persistence of poverty across generations. The opinions expressed in this paper are those of the authors alone and do not necessarily reflect the views of the Internal Revenue Service or the U.S. Treasury Department. This work is a component of a larger project examining the effects of tax expenditures on the budget deficit and economic activity. All results based on tax data in this paper are constructed using statistics originally reported in the SOI Working Paper “The Economic Impacts of Tax Expenditures: Evidence from Spatial Variation across the U.S.,” approved under IRS contract TIRNO-12-P-00374 and presented at the Office of Tax Analysis on November 3, 2014. MTO participant data are highly confidential. HUD allowed the authors special access to the experimental data under Data License DL14MA001, approved March 28, 2014.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..This table provides geographical mobility for persons relative to their previous place of residence. The characteristics crossed by geographical mobility reflect the current survey year. The estimates do not include people who moved to Puerto Rico, other U.S. Island Areas, or Foreign Countries..The number of people moving out of Alaska to a different state has been overestimated in previous years due to collection issues. See .Errata Notes.. for details..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the .Technical Documentation.. section......Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the .Methodology.. section..Source: U.S. Census Bureau, 2018 American Community Survey 1-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see .ACS Technical Documentation..). The effect of nonsampling error is not represented in these tables..Tables for Geographical Mobility by Residence 1 Year Ago in the United States are only available for States; Counties; Places; County Subdivisions in selected states (CT, ME, MA, MI, MN, NH, NJ, NY, PA, RI, VT, WI); Combined Statistical Areas; Metropolitan and Micropolitan Statistical Areas, and their associated Metropolitan Divisions and Principal Cities; Combined New England City and Town Areas; New England City and Town Areas, and their associated Divisions and Principal Cities..While the 2018 American Community Survey (ACS) data generally reflect the July 2015 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas, in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineations due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:..An "**" entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate..An "-" entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution, or the margin of error associated with a median was larger than the median itself..An "-" following a median estimate means the median falls in the lowest interval of an open-ended distribution..An "+" following a median estimate means the median falls in the upper interval of an open-ended distribution..An "***" entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate..An "*****" entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. .An "N" entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small..An "(X)" means that the estimate is not applicable or not available....
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..This table provides geographical mobility for persons relative to their residence at the time they were surveyed. The characteristics crossed by geographical mobility reflect the current survey year..The number of people moving out of Alaska to a different state has been overestimated in previous years due to collection issues. See .Errata Notes.. for details..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the .Technical Documentation.. section......Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the .Methodology.. section..Source: U.S. Census Bureau, 2018 American Community Survey 1-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see .ACS Technical Documentation..). The effect of nonsampling error is not represented in these tables..While the 2018 American Community Survey (ACS) data generally reflect the July 2015 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas, in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineations due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:..An "**" entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate..An "-" entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution, or the margin of error associated with a median was larger than the median itself..An "-" following a median estimate means the median falls in the lowest interval of an open-ended distribution..An "+" following a median estimate means the median falls in the upper interval of an open-ended distribution..An "***" entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate..An "*****" entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. .An "N" entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small..An "(X)" means that the estimate is not applicable or not available....
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..This table provides geographical mobility for persons relative to their residence at the time they were surveyed. The characteristics crossed by geographical mobility reflect the current survey year..The number of people moving out of Alaska to a different state has been overestimated in previous years due to collection issues. See Errata Notes for details..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019 American Community Survey 1-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..The 2019 American Community Survey (ACS) data generally reflect the September 2018 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineations due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:An "**" entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.An "-" entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution, or the margin of error associated with a median was larger than the median itself.An "-" following a median estimate means the median falls in the lowest interval of an open-ended distribution.An "+" following a median estimate means the median falls in the upper interval of an open-ended distribution.An "***" entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate.An "*****" entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. An "N" entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small.An "(X)" means that the estimate is not applicable or not available.
The Drake Passage (DP) is the major geographic constriction for the Antarctic Circumpolar Current (ACC) and exerts a strong control on the exchange of physical, chemical, and biological properties between the Atlantic, Pacific, and Indian Ocean basins. Resolving changes in the flow of circumpolar water masses through this gateway is, therefore, crucial for advancing our understanding of the Southern Ocean's role in global ocean and climate variability. Here, we reconstruct changes in DP throughflow dynamics over the past 65,000 y based on grain size and geochemical properties of sediment records from the southernmost continental margin of South America. Combined with published sediment records from the Scotia Sea, we argue for a considerable total reduction of DP transport and reveal an up to ~40% decrease in flow speed along the northernmost ACC pathway entering the DP during glacial times. Superimposed on this long-term decrease are high-amplitude, millennial-scale variations, which parallel Southern Ocean and Antarctic temperature patterns. The glacial intervals of strong weakening of the ACC entering the DP imply an enhanced export of northern ACC surface and intermediate waters into the South Pacific Gyre and reduced Pacific-Atlantic exchange through the DP ("cold water route"). We conclude that changes in DP throughflow play a critical role for the global meridional overturning circulation and interbasin exchange in the Southern Ocean, most likely regulated by variations in the westerly wind field and changes in Antarctic sea ice extent.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section...Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..The number of people moving out of Alaska to a different state has been overestimated in previous years due to collection issues. See Errata Notes for details..This table provides geographical mobility for persons relative to their residence at the time they were surveyed. The characteristics crossed by geographical mobility reflect the current survey year..Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau''s Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Explanation of Symbols:An ''**'' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate..An ''-'' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution..An ''-'' following a median estimate means the median falls in the lowest interval of an open-ended distribution..An ''+'' following a median estimate means the median falls in the upper interval of an open-ended distribution..An ''***'' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate..An ''*****'' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. .An ''N'' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small..An ''(X)'' means that the estimate is not applicable or not available..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..While the 2017 American Community Survey (ACS) data generally reflect the July 2015 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas, in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineations due to differences in the effective dates of the geographic entities..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables..Source: U.S. Census Bureau, 2017 American Community Survey 1-Year Estimates
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Peru Average Monthly Income: 3 Months Moving Average: Lima Metropolitan: Age 25 to 44 data was reported at 1,761.900 PEN in Oct 2018. This records an increase from the previous number of 1,742.200 PEN for Sep 2018. Peru Average Monthly Income: 3 Months Moving Average: Lima Metropolitan: Age 25 to 44 data is updated monthly, averaging 1,458.900 PEN from Jun 2007 (Median) to Oct 2018, with 137 observations. The data reached an all-time high of 1,904.100 PEN in Nov 2016 and a record low of 918.100 PEN in Sep 2007. Peru Average Monthly Income: 3 Months Moving Average: Lima Metropolitan: Age 25 to 44 data remains active status in CEIC and is reported by National Institute of Statistics and Information Science. The data is categorized under Global Database’s Peru – Table PE.G008: Monthly Income .
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, for 2020, the 2020 Census provides the official counts of the population and housing units for the nation, states, counties, cities, and towns. For 2016 to 2019, the Population Estimates Program provides estimates of the population for the nation, states, counties, cities, and towns and intercensal housing unit estimates for the nation, states, and counties..This table provides geographical mobility for persons relative to their residence at the time they were surveyed. The characteristics crossed by geographical mobility reflect the current survey year..The number of people moving out of Alaska to a different state has been overestimated in previous years due to collection issues. See Errata Notes for details..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2016-2020 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..The 2016-2020 American Community Survey (ACS) data generally reflect the September 2018 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Median Wage Growth: 3-Mo Mov Avg: Age 25-54 data was reported at 4.300 % in Jan 2025. This records a decrease from the previous number of 4.500 % for Dec 2024. United States Median Wage Growth: 3-Mo Mov Avg: Age 25-54 data is updated monthly, averaging 3.800 % from Mar 1997 (Median) to Jan 2025, with 335 observations. The data reached an all-time high of 7.200 % in Jun 2022 and a record low of 1.700 % in Dec 2010. United States Median Wage Growth: 3-Mo Mov Avg: Age 25-54 data remains active status in CEIC and is reported by Federal Reserve Bank of Atlanta. The data is categorized under Global Database’s United States – Table US.G108: Atlanta Fed Wage Growth Tracker: 3-Month Moving Average.
Number of persons in the labour force (employment and unemployment) and not in the labour force, unemployment rate, participation rate, and employment rate, by gender, age group and immigrant status, three-month moving average, unadjusted for seasonality.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Number of persons in the labour force (employment and unemployment) and not in the labour force, unemployment rate, participation rate, and employment rate, by census metropolitan area, gender and age group, three-month-moving average, unadjusted for seasonality.
Among Central and Eastern European countries, young Croatians were the latest to leave their family home in 2023 at nearly 32 years old. Estonians and Lithuanians moved out of their parent's homes at an average age of 23 and 24, respectively.