29 datasets found
  1. Median age of the population in China 1950-2100

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Median age of the population in China 1950-2100 [Dataset]. https://www.statista.com/statistics/232265/mean-age-of-the-chinese-population/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    China
    Description

    Since 1970, the median age of China’s population has continued to increase from around ** years to around **** years in 2020. According to estimates from the United Nations, the increasing trend will slow down when the median age will reach ** years in the middle of the 21st century and will remain at around ** years up to 2100. China’s aging population Although the median age of China’s population is still lower than in many developed countries, for example in Japan, the consequences of a rapidly aging population have already become a concern for the country’s future. As the most populated country in the world, the large labor force in China contributed to the country’s astonishing economic growth in the last decades. Nowadays however, the aging population is going to become a burden for China’s social welfare system and could change China’s economic situation. Reasons for the aging population Like in many other countries, increasing life expectancy is regarded as the main reason for the aging of the population. As healthcare and living standards have improved, life expectancy in China has also increased. In addition, the one-child policy led to a decreasing fertility rate in China, which further increased the share of older people in the society. Even though the one-child policy has been abolished in 2016, many young people are refraining from having children, largely due to the high costs of raising a child, career pressure and the pursuit of freedom.

  2. World population by age and region 2024

    • statista.com
    Updated Mar 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). World population by age and region 2024 [Dataset]. https://www.statista.com/statistics/265759/world-population-by-age-and-region/
    Explore at:
    Dataset updated
    Mar 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    Globally, about 25 percent of the population is under 15 years of age and 10 percent is over 65 years of age. Africa has the youngest population worldwide. In Sub-Saharan Africa, more than 40 percent of the population is below 15 years, and only three percent are above 65, indicating the low life expectancy in several of the countries. In Europe, on the other hand, a higher share of the population is above 65 years than the population under 15 years. Fertility rates The high share of children and youth in Africa is connected to the high fertility rates on the continent. For instance, South Sudan and Niger have the highest population growth rates globally. However, about 50 percent of the world’s population live in countries with low fertility, where women have less than 2.1 children. Some countries in Europe, like Latvia and Lithuania, have experienced a population decline of one percent, and in the Cook Islands, it is even above two percent. In Europe, the majority of the population was previously working-aged adults with few dependents, but this trend is expected to reverse soon, and it is predicted that by 2050, the older population will outnumber the young in many developed countries. Growing global population As of 2025, there are 8.1 billion people living on the planet, and this is expected to reach more than nine billion before 2040. Moreover, the global population is expected to reach 10 billions around 2060, before slowing and then even falling slightly by 2100. As the population growth rates indicate, a significant share of the population increase will happen in Africa.

  3. d

    IPCC Climate Change Data: CSIRO A1a Model: 2080 Precipitation

    • dataone.org
    • knb.ecoinformatics.org
    Updated Aug 14, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Intergovernmental Panel on Climate Change (IPCC) (2015). IPCC Climate Change Data: CSIRO A1a Model: 2080 Precipitation [Dataset]. http://doi.org/10.5063/AA/dpennington.74.2
    Explore at:
    Dataset updated
    Aug 14, 2015
    Dataset provided by
    Knowledge Network for Biocomplexity
    Authors
    Intergovernmental Panel on Climate Change (IPCC)
    Time period covered
    Jan 1, 2080 - Dec 31, 2080
    Area covered
    Earth
    Description

    From the IPCC website: The A1 Family storyline is a case of rapid and successful economic development, in which regional averages of income per capita converge - current distinctions between poor and rich countries eventually dissolve. In this scenario family, demographic and economic trends are closely linked, as affluence is correlated with long life and small families (low mortality and low fertility). Global population grows to some nine billion by 2050 and declines to about seven billion by 2100. Average age increases, with the needs of retired people met mainly through their accumulated savings in private pension systems. The global economy expands at an average annual rate of about three percent to 2100. This is approximately the same as average global growth since 1850, although the conditions that lead to a global economic in productivity and per capita incomes are unparalleled in history. Income per capita reaches about US$21,000 by 2050. While the high average level of income per capita contributes to a great improvement in the overall health and social conditions of the majority of people, this world is not without its problems. In particular, many communities could face some of the problems of social exclusion encountered by the wealthiest countries in the 20th century and in many places income growth could come with increased pressure on the global commons. Energy and mineral resources are abundant in this scenario family because of rapid technical progress, which both reduce the resources need to produce a given level of output and increases the economically recoverable reserves. Final energy intensity (energy use per unit of GDP) decreases at an average annual rate of 1.3 percent. With the rapid increase in income, dietary patterns shift initially significantly towards increased consumption of meat and dairy products, but may decrease subsequently with increasing emphasis on health of an aging society. High incomes also translate into high car ownership, sprawling suburbanization and dense transport networks, nationally and internationally. Land prices increase faster than income per capita. These factors along with high wages result in a considerable intensification of agriculture. Three scenario groups are considered in A1 scenario family reflecting the uncertainty in development of energy sources and conversion technologies in this rapidly changing world. Near-term investment decisions may introduce long-term irreversibilities into the market, with lock-in to one technological configuration or another. The A1B scenario group is based on a balanced mix of energy sources and has an intermediate level of CO2 emissions, but depending on the energy sources developed, emissions in the variants cover a very wide range. In the fossil-fuel intensive scenario group A1FI, emissions approach those of the A2 scenarios; conversely in scenario group A1T with low labor productivity or of rapid progress in "post-fossil" energy technologies, emissions are intermediate between those of B1 and B2. These scenario variants have been introduced into the A1 storyline because of its "high growth with high tech" nature, where differences in alternative technology developments translate into large differences in future GHG emission levels Ecological resilience is assumed to be high in this storyline. Environmental amenities are viewed in a utilitarian way, based on their influence on the formal economy. The concept of environmental quality might change in this storyline from "conservation" of nature to active "management" - and marketing - of natural and environmental services. Data are available for the following periods: 1961-1990, 2010-2039; 2040-2069; and 2090-2099 Mean monthly and change fields.

  4. Total fertility rate worldwide 1950-2100

    • statista.com
    Updated Mar 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total fertility rate worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805064/fertility-rate-worldwide/
    Explore at:
    Dataset updated
    Mar 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Today, globally, women of childbearing age have an average of approximately 2.2 children over the course of their lifetime. In pre-industrial times, most women could expect to have somewhere between five and ten live births throughout their lifetime; however, the demographic transition then sees fertility rates fall significantly. Looking ahead, it is believed that the global fertility rate will fall below replacement level in the 2050s, which will eventually lead to population decline when life expectancy plateaus. Recent decades Between the 1950s and 1970s, the global fertility rate was roughly five children per woman - this was partly due to the post-WWII baby boom in many countries, on top of already-high rates in less-developed countries. The drop around 1960 can be attributed to China's "Great Leap Forward", where famine and disease in the world's most populous country saw the global fertility rate drop by roughly 0.5 children per woman. Between the 1970s and today, fertility rates fell consistently, although the rate of decline noticeably slowed as the baby boomer generation then began having their own children. Replacement level fertility Replacement level fertility, i.e. the number of children born per woman that a population needs for long-term stability, is approximately 2.1 children per woman. Populations may continue to grow naturally despite below-replacement level fertility, due to reduced mortality and increased life expectancy, however, these will plateau with time and then population decline will occur. It is believed that the global fertility rate will drop below replacement level in the mid-2050s, although improvements in healthcare and living standards will see population growth continue into the 2080s when the global population will then start falling.

  5. d

    IPCC Climate Change Data: CSIRO A1a Model: 2050 Maximum Temperature

    • dataone.org
    Updated Aug 14, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Intergovernmental Panel on Climate Change (IPCC) (2015). IPCC Climate Change Data: CSIRO A1a Model: 2050 Maximum Temperature [Dataset]. http://doi.org/10.5063/AA/dpennington.76.4
    Explore at:
    Dataset updated
    Aug 14, 2015
    Dataset provided by
    Knowledge Network for Biocomplexity
    Authors
    Intergovernmental Panel on Climate Change (IPCC)
    Time period covered
    Jan 1, 2050 - Dec 31, 2050
    Area covered
    Earth
    Description

    The CSIRO Atmospheric Research Mark 2b climate model (Hirst et al., 1996, 1999) has recently been used for a number of more sophisticated climate change simulations. These start from 1880 to avoid the "cold start problem". This version of the CSIRO model includes the Gent-McWilliams mixing scheme in the ocean and shows greatly reduced climate drift relative to earlier versions (e.g. Dix and Hunt, 1998). The drift in global mean surface temperature in the new control run is about -0.02 degrees C/century. Note that the model uses flux correction. The model atmosphere has 9 levels in the vertical and horizontal resolution of spectral R21 (approximately 5.6 by 3.2 degrees). The ocean model has the same horizontal resolution with 21 levels. The equilibrium sensitivity to doubled CO2 of a mixed layer ocean version of the model is 4.3 degrees. This is at the high end of the range of model sensitivities (e.g. IPCC 1995, Table 6.3). In the basic greenhouse gas experiment the model combines the effect of all radiatively active trace gases into an "equivalent" CO2 concentration. Observed concentrations are used from 1880 to 1990 and the IS92a projections into the future. This gives close to a 1%/year compounding increase of equivalent CO2. Another model experiment includes the negative radiative forcing from atmospheric sulphate aerosol. The direct aerosol forcing is included via a perturbation of the surface albedo, similarly to the Hadley Centre experiments described by Mitchell et al (1995) and Mitchell and Johns (1997) . The sulphate concentrations are the same as used in the Hadley Centre experiments. However the chosen aerosol optical properties are different, giving a present day forcing due to anthropogenic sulphate of about -0.4 W/m^2. This can be compared to the 1880-1990 greenhouse gas forcing of about 2 W/m^2. The magnitude of the 20th century warming in the model including aerosol matches the observed reasonably well. However there are a number of forcings missing from the model, including solar variability, sulphate indirect effect and the effect of soot. The climate sensitivity of CSIRO-Mk2 is about 4.3 degrees C (Watterson et al.,1997). From the IPCC website: The A1 Family storyline is a case of rapid and successful economic development, in which regional averages of income per capita converge - current distinctions between poor and rich countries eventually dissolve. In this scenario family, demographic and economic trends are closely linked, as affluence is correlated with long life and small families (low mortality and low fertility). Global population grows to some nine billion by 2050 and declines to about seven billion by 2100. Average age increases, with the needs of retired people met mainly through their accumulated savings in private pension systems. The global economy expands at an average annual rate of about three percent to 2100. This is approximately the same as average global growth since 1850, although the conditions that lead to a global economic in productivity and per capita incomes are unparalleled in history. Income per capita reaches about US$21,000 by 2050. While the high average level of income per capita contributes to a great improvement in the overall health and social conditions of the majority of people, this world is not without its problems. In particular, many communities could face some of the problems of social exclusion encountered by the wealthiest countries in the 20th century and in many places income growth could come with increased pressure on the global commons. Energy and mineral resources are abundant in this scenario family because of rapid technical progress, which both reduce the resources need to produce a given level of output and increases the economically recoverable reserves. Final energy intensity (energy use per unit of GDP) decreases at an average annual rate of 1.3 percent. With the rapid increase in income, dietary patterns shift initially significantly towards increased consumption of meat and dairy products, but may decrease subsequently with increasing emphasis on health of an aging society. High incomes also translate into high car ownership, sprawling suburbanization and dense transport networks, nationally and internationally. Land prices increase faster than income per capita. These factors along with high wages result in a considerable intensification of agriculture. Three scenario groups are considered in A1 scenario family reflecting the uncertainty in development of energy sources and conversion technologies in this rapidly changing world. Near-term investment decisions may introduce long-term irreversibilities into the market, with lock-in to one technological configuration or another. The A1B scenario group is based on a balanced mix of energy sources and has an intermediate level of CO2 emissions, but de... Visit https://dataone.org/datasets/doi%3A10.5063%2FAA%2Fdpennington.76.4 for complete metadata about this dataset.

  6. Median age of the population in Germany 1950-2100

    • statista.com
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Median age of the population in Germany 1950-2100 [Dataset]. https://www.statista.com/statistics/624303/average-age-of-the-population-in-germany/
    Explore at:
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Germany
    Description

    The median age of Germans in 2025 was 45.5 years, meaning that half the German population was younger, half older. Following some fluctuation during the post-WWII baby boom waves, Germany's average age has been on an upwards trajectory since the 1970s, with a sharp rise in the 1990s and 2000s, although it has slowed in recent years. It is projected to peak at over 48 years in the 2040s, before plateauing around the 47 year mark for the remainder of the century. Aging in Germany This shift in the age makeup of Germany is driven by having fewer young people and more old people. While it has increased slightly in the last decade, the German fertility rate remains low. Fewer young people lead to a higher median age, as does rising life expectancy. These trends have significant economic and societal impacts, where workforces shrink and the elderly population places greater demand on healthcare systems and public finances, while families must increasingly care for elderly relatives. Regional and global trends The entire European Union, due to higher levels of development, shows an upward shift in its age distribution. While this shift is occurring globally, the level of Germany’s median age is particularly high. In many other parts of the world, particularly Subsaharan Africa, the proportion of young and old inhabitants is skewed sharply toward the young, pulling the median age lower.

  7. e

    IPCC Climate Change Data: NIES99 A1f Model: 2050 Maximum Temperature

    • knb.ecoinformatics.org
    Updated Jan 6, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Intergovernmental Panel on Climate Change (IPCC) (2015). IPCC Climate Change Data: NIES99 A1f Model: 2050 Maximum Temperature [Dataset]. http://doi.org/10.5063/AA/dpennington.292.1
    Explore at:
    Dataset updated
    Jan 6, 2015
    Dataset provided by
    Knowledge Network for Biocomplexity
    Authors
    Intergovernmental Panel on Climate Change (IPCC)
    Time period covered
    Jan 1, 2050 - Dec 31, 2050
    Area covered
    Earth
    Description

    The model used here is a coupled ocean-atmosphere model that consists of the CCSR/NIES atmospheric GCM, the CCSR ocean GCM, a thermodynamic sea-ice model, and a river routing model (Abe-Ouchi et al., 1996). The spatial resolution is T21 spectral truncation (roughly 5.6 degrees latitude/longitude) and 20 vertical levels for the atmospheric part, and roughly 2.8 degrees horizontal grid and 17 vertical levels for the oceanic part. Flux adjustment for atmosphere-ocean heat and water exchange is applied to prevent a drift of the modelled climate. The atmospheric model adopts a radiation scheme based on the k-distribution, two-stream discrete ordinate method (DOM) (Nakajima and Tanaka, 1986). This scheme can deal with absorption, emission and scattering by gases, clouds and aerosol particles in a consistent manner. In the calculation of sulphate aerosol optical properties, the volumetric mode radius of the sulphate particle in dry environment is assumed to be 0.2 micron. The hygroscopic growth of the sulphate is considered by an empirical fit of d'Almeida et al. (1991). The vertical distribution of the sulphate aerosol is assumed to be constant in the lowest 2 km of the atmosphere. The concentrations of greenhouse gases are represented by equivalent-CO2. Three integrations are made for 200 model years (1890-2090). In the control experiment (CTL), the globally uniform concentration of greenhouse gases is kept constant at 345 ppmv CO2-equivalent and the concentration of sulphate is set to zero. In the experiment GG, the concentration of greenhouse gases is gradually increased, while that of sulphate is set to zero. In the experiments GS, the increase in anthropogenic sulphate as well as that in greenhouse gases is given and the aerosol scattering (the direct effect of aerosol) is explicitly represented in the way described above. The indirect effect of aerosol is not included in any experiment. The scenario of atmospheric concentrations of greenhouse gases and sulphate aerosols is given in accordance with Mitchell and Johns (1997). The increase in greenhouse gases is based on the historical record from 1890 to 1990 and is increased by 1 percent / yr (compound) after 1990. For sulphate aerosols, geographical distributions of sulphate loading for 1986 and 2050, which are estimated by a sulphur cycle model (Langer and Rodhe, 1991), are used as basic patterns. Based on global and annual mean sulphur emission rates, the 1986 pattern is scaled for years before 1990; the 2050 pattern is scaled for years after 2050; and the pattern is interpolated from the two basic ones for intermediate years to give the time series of the distribution. The sulphur emission rate in the future is based on the IPCC IS92a scenario. The sulphate concentration is offset in our run so that it starts from zero at 1890. The seasonal variation of sulphate concentration is ignored. Discussion on the results of the experiments will be found in Emori et al. (1999). Climate sensitivity of the CCSR/NIES model derived by equilibrium runs is estimated to be 3.5 degrees Celsius. Global-Mean Temperature, Precipitation and CO2 Changes (w.r.t. 1961-90) for the CCSR/NIES model. From the IPCC website: The A1 Family storyline is a case of rapid and successful economic development, in which regional averages of income per capita converge - current distinctions between poor and rich countries eventually dissolve. In this scenario family, demographic and economic trends are closely linked, as affluence is correlated with long life and small families (low mortality and low fertility). Global population grows to some nine billion by 2050 and declines to about seven billion by 2100. Average age increases, with the needs of retired people met mainly through their accumulated savings in private pension systems. The global economy expands at an average annual rate of about three percent to 2100. This is approximately the same as average global growth since 1850, although the conditions that lead to a global economic in productivity and per capita incomes are unparalleled in history. Income per capita reaches about US$21,000 by 2050. While the high average level of income per capita contributes to a great improvement in the overall health and social conditions of the majority of people, this world is not without its problems. In particular, many communities could face some of the problems of social exclusion encountered by the wealthiest countries in the 20th century and in many places income growth could come with increased pressure on the global commons. Energy and mineral resources are abundant in this scenario family because of rapid technical progress, which both reduce the resources need to produce a given level of output and increases the economically recoverable reserves. Final energy intensity (energy use per unit of GDP) decreases at an average annual rate of 1.3 percent. With the rapid increase in income, dietary patterns shift initially significantly towards increased consumption of meat and dairy products, but may decrease subsequently with increasing emphasis on health of an aging society. High incomes also translate into high car ownership, sprawling suburbanization and dense transport networks, nationally and internationally. Land prices increase faster than income per capita. These factors along with high wages result in a considerable intensification of agriculture. Three scenario groups are considered in A1 scenario family reflecting the uncertainty in development of energy sources and conversion technologies in this rapidly changing world. Near-term investment decisions may introduce long-term irreversibilities into the market, with lock-in to one technological configuration or another. The A1B scenario group is based on a balanced mix of energy sources and has an intermediate level of CO2 emissions, but depending on the energy sources developed, emissions in the variants cover a very wide range. In the fossil-fuel intensive scenario group A1FI, emissions approach those of the A2 scenarios; conversely in scenario group A1T with low labor productivity or of rapid progress in "post-fossil" energy technologies, emissions are intermediate between those of B1 and B2. These scenario variants have been introduced into the A1 storyline because of its "high growth with high tech" nature, where differences in alternative technology developments translate into large differences in future GHG emission levels Ecological resilience is assumed to be high in this storyline. Environmental amenities are viewed in a utilitarian way, based on their influence on the formal economy. The concept of environmental quality might change in this storyline from "conservation" of nature to active "management" - and marketing - of natural and environmental services. Data are available for the following periods: 1961-1990, 2010-2039; 2040-2069; and 2090-2099 Mean monthly and change fields.

  8. Median age of the population in Brazil 2015

    • statista.com
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Median age of the population in Brazil 2015 [Dataset]. https://www.statista.com/statistics/254361/average-age-of-the-population-in-brazil/
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Brazil
    Description

    This statistic shows the median age of the population in Brazil from 1950 to 2100. The median age is the age that divides a population into two numerically equal groups; that is, half the people are younger than this age and half are older. It is a single index that summarizes the age distribution of a population. In 2020, the median age of the Brazilian population was 32.7 years. Brazil as a developing nation The average age of the Brazil’s population has risen from a low of 16.8 years in 1965 to 32.4 years in 2020, a typical change in developing nations, and other demographic parameters support this trend: As of 2014, the share of children under 14 years of age stood at around 23.5 percent, a great improvement from earlier times. Since 2005, the fertility rate has also dropped significantly, but now it is even lower than the natural replacement rate at 1.78 children per woman. Over the same period of time, life expectancy has also risen to 74.4 years of age - higher than the average for developing nations. These changes typically happen as a result of developing countries becoming more modernized and economically diverse. Brazil’s economy had been getting significantly stronger and per capita GDP peaked in 2011 at a much higher value than the regional average for Latin America and the Caribbean. However, the Brazilian economy has reached a difficult point, and GDP per capita is expected to fall to as low as 7,447 U.S. dollars in 2016. As Brazil’s demographics are now similar to other developing countries, the economy has not been able to maintain a similar path to steady growth.

  9. e

    IPCC Climate Change Data: CSIRO A1a Model: 2020 Wind Speed

    • knb.ecoinformatics.org
    Updated Aug 14, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Intergovernmental Panel on Climate Change (IPCC) (2015). IPCC Climate Change Data: CSIRO A1a Model: 2020 Wind Speed [Dataset]. http://doi.org/10.5063/AA/dpennington.84.1
    Explore at:
    Dataset updated
    Aug 14, 2015
    Dataset provided by
    Knowledge Network for Biocomplexity
    Authors
    Intergovernmental Panel on Climate Change (IPCC)
    Time period covered
    Jan 1, 2020 - Dec 31, 2020
    Area covered
    Earth
    Description

    From the IPCC website: The A1 Family storyline is a case of rapid and successful economic development, in which regional averages of income per capita converge - current distinctions between poor and rich countries eventually dissolve. In this scenario family, demographic and economic trends are closely linked, as affluence is correlated with long life and small families (low mortality and low fertility). Global population grows to some nine billion by 2050 and declines to about seven billion by 2100. Average age increases, with the needs of retired people met mainly through their accumulated savings in private pension systems. The global economy expands at an average annual rate of about three percent to 2100. This is approximately the same as average global growth since 1850, although the conditions that lead to a global economic in productivity and per capita incomes are unparalleled in history. Income per capita reaches about US$21,000 by 2050. While the high average level of income per capita contributes to a great improvement in the overall health and social conditions of the majority of people, this world is not without its problems. In particular, many communities could face some of the problems of social exclusion encountered by the wealthiest countries in the 20th century and in many places income growth could come with increased pressure on the global commons. Energy and mineral resources are abundant in this scenario family because of rapid technical progress, which both reduce the resources need to produce a given level of output and increases the economically recoverable reserves. Final energy intensity (energy use per unit of GDP) decreases at an average annual rate of 1.3 percent. With the rapid increase in income, dietary patterns shift initially significantly towards increased consumption of meat and dairy products, but may decrease subsequently with increasing emphasis on health of an aging society. High incomes also translate into high car ownership, sprawling suburbanization and dense transport networks, nationally and internationally. Land prices increase faster than income per capita. These factors along with high wages result in a considerable intensification of agriculture. Three scenario groups are considered in A1 scenario family reflecting the uncertainty in development of energy sources and conversion technologies in this rapidly changing world. Near-term investment decisions may introduce long-term irreversibilities into the market, with lock-in to one technological configuration or another. The A1B scenario group is based on a balanced mix of energy sources and has an intermediate level of CO2 emissions, but depending on the energy sources developed, emissions in the variants cover a very wide range. In the fossil-fuel intensive scenario group A1FI, emissions approach those of the A2 scenarios; conversely in scenario group A1T with low labor productivity or of rapid progress in "post-fossil" energy technologies, emissions are intermediate between those of B1 and B2. These scenario variants have been introduced into the A1 storyline because of its "high growth with high tech" nature, where differences in alternative technology developments translate into large differences in future GHG emission levels Ecological resilience is assumed to be high in this storyline. Environmental amenities are viewed in a utilitarian way, based on their influence on the formal economy. The concept of environmental quality might change in this storyline from "conservation" of nature to active "management" - and marketing - of natural and environmental services. Data are available for the following periods: 1961-1990, 2010-2039; 2040-2069; and 2090-2099 Mean monthly and change fields.

  10. d

    IPCC Climate Change Data: CSIRO A1a Model: 2080 Precipitation

    • dataone.org
    Updated Aug 14, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Intergovernmental Panel on Climate Change (IPCC) (2015). IPCC Climate Change Data: CSIRO A1a Model: 2080 Precipitation [Dataset]. http://doi.org/10.5063/AA/dpennington.74.4
    Explore at:
    Dataset updated
    Aug 14, 2015
    Dataset provided by
    Knowledge Network for Biocomplexity
    Authors
    Intergovernmental Panel on Climate Change (IPCC)
    Time period covered
    Jan 1, 2080 - Dec 31, 2080
    Area covered
    Earth
    Description

    The CSIRO Atmospheric Research Mark 2b climate model (Hirst et al., 1996, 1999) has recently been used for a number of more sophisticated climate change simulations. These start from 1880 to avoid the "cold start problem". This version of the CSIRO model includes the Gent-McWilliams mixing scheme in the ocean and shows greatly reduced climate drift relative to earlier versions (e.g. Dix and Hunt, 1998). The drift in global mean surface temperature in the new control run is about -0.02 degrees C/century. Note that the model uses flux correction. The model atmosphere has 9 levels in the vertical and horizontal resolution of spectral R21 (approximately 5.6 by 3.2 degrees). The ocean model has the same horizontal resolution with 21 levels. The equilibrium sensitivity to doubled CO2 of a mixed layer ocean version of the model is 4.3 degrees. This is at the high end of the range of model sensitivities (e.g. IPCC 1995, Table 6.3). In the basic greenhouse gas experiment the model combines the effect of all radiatively active trace gases into an "equivalent" CO2 concentration. Observed concentrations are used from 1880 to 1990 and the IS92a projections into the future. This gives close to a 1%/year compounding increase of equivalent CO2. Another model experiment includes the negative radiative forcing from atmospheric sulphate aerosol. The direct aerosol forcing is included via a perturbation of the surface albedo, similarly to the Hadley Centre experiments described by Mitchell et al (1995) and Mitchell and Johns (1997) . The sulphate concentrations are the same as used in the Hadley Centre experiments. However the chosen aerosol optical properties are different, giving a present day forcing due to anthropogenic sulphate of about -0.4 W/m^2. This can be compared to the 1880-1990 greenhouse gas forcing of about 2 W/m^2. The magnitude of the 20th century warming in the model including aerosol matches the observed reasonably well. However there are a number of forcings missing from the model, including solar variability, sulphate indirect effect and the effect of soot. The climate sensitivity of CSIRO-Mk2 is about 4.3 degrees C (Watterson et al.,1997). From the IPCC website: The A1 Family storyline is a case of rapid and successful economic development, in which regional averages of income per capita converge - current distinctions between poor and rich countries eventually dissolve. In this scenario family, demographic and economic trends are closely linked, as affluence is correlated with long life and small families (low mortality and low fertility). Global population grows to some nine billion by 2050 and declines to about seven billion by 2100. Average age increases, with the needs of retired people met mainly through their accumulated savings in private pension systems. The global economy expands at an average annual rate of about three percent to 2100. This is approximately the same as average global growth since 1850, although the conditions that lead to a global economic in productivity and per capita incomes are unparalleled in history. Income per capita reaches about US$21,000 by 2050. While the high average level of income per capita contributes to a great improvement in the overall health and social conditions of the majority of people, this world is not without its problems. In particular, many communities could face some of the problems of social exclusion encountered by the wealthiest countries in the 20th century and in many places income growth could come with increased pressure on the global commons. Energy and mineral resources are abundant in this scenario family because of rapid technical progress, which both reduce the resources need to produce a given level of output and increases the economically recoverable reserves. Final energy intensity (energy use per unit of GDP) decreases at an average annual rate of 1.3 percent. With the rapid increase in income, dietary patterns shift initially significantly towards increased consumption of meat and dairy products, but may decrease subsequently with increasing emphasis on health of an aging society. High incomes also translate into high car ownership, sprawling suburbanization and dense transport networks, nationally and internationally. Land prices increase faster than income per capita. These factors along with high wages result in a considerable intensification of agriculture. Three scenario groups are considered in A1 scenario family reflecting the uncertainty in development of energy sources and conversion technologies in this rapidly changing world. Near-term investment decisions may introduce long-term irreversibilities into the market, with lock-in to one technological configuration or another. The A1B scenario group is based on a balanced mix of energy sources and has an intermediate level of CO2 emissions, but de... Visit https://dataone.org/datasets/doi%3A10.5063%2FAA%2Fdpennington.74.4 for complete metadata about this dataset.

  11. Median age of the population in India 2100

    • statista.com
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Median age of the population in India 2100 [Dataset]. https://www.statista.com/statistics/254469/median-age-of-the-population-in-india/
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    The median age in India was 27 years old in 2020, meaning half the population was older than that, half younger. This figure was lowest in 1970, at 18.1 years, and was projected to increase to 47.8 years old by 2100. Aging in India India has the second largest population in the world, after China. Because of the significant population growth of the past years, the age distribution remains skewed in favor of the younger age bracket. This tells a story of rapid population growth, but also of a lower life expectancy. Economic effects of a young population Many young people means that the Indian economy must support a large number of students, who demand education from the economy but cannot yet work. Educating the future workforce will be important, because the economy is growing as well and is one of the largest in the world. Failing to do this could lead to high youth unemployment and political consequences. However, a productive and young workforce could provide huge economic returns for India.

  12. e

    IPCC Climate Change Data: HADCM3 A1F Model: 2080 Maximum Temperature

    • knb.ecoinformatics.org
    • dataone.org
    Updated Jan 6, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Intergovernmental Panel on Climate Change (IPCC) (2015). IPCC Climate Change Data: HADCM3 A1F Model: 2080 Maximum Temperature [Dataset]. http://doi.org/10.5063/AA/dpennington.189.1
    Explore at:
    Dataset updated
    Jan 6, 2015
    Dataset provided by
    Knowledge Network for Biocomplexity
    Authors
    Intergovernmental Panel on Climate Change (IPCC)
    Time period covered
    Jan 1, 2080 - Dec 31, 2080
    Area covered
    Earth
    Description

    The recent experiments performed at the Hadley Centre have used the new Unified Model (Cullen, 1993). These experiments represent a large step forward in the way climate change is modelled by GCMs and raises new possibilities for scenario construction. This experiment has overcome some of the major difficulties that were associated with the previous generations of equilibrium (circa IPCC 1990) and cold-start transient (circa IPCC 1992) climate change experiments. HadCM2 has a spatial resolution of 2.5 degrees x 3.75 degrees (latitude by longitude) and the representation produces a grid box resolution of 96 x 73 grid cells. This produces a surface spatial resolution of about 417km x 278 km reducing to 295 x 278km at 45 degrees North and South (comparable to a spectral resolution of T42). The equilibrium climate sensitivity (DT2x) of HadCM2, that is the global-mean temperature response to a doubling of effective CO2 concentration, is approximately 2.5 degrees C, although, this quantity varies with the time-scale considered. This is somewhat lower than most other GCMs (IPCC, 1992). In order to undertake a 'warm-start' experiment it is necessary to perturb the model with a forcing from an early historical era, when the radiative forcing was relatively small compared to the present. The Hadley Centre started their experiments performed with HadCM2 with forcing from the middle industrial era, about 1860 Mitchell et al., 1995 and Johns et al., 1995. The greenhouse gas only integrations, HadCM2GG, used the combined forcing of all the greenhouse gases as an equivalent CO2 concentration. A further series of integrations, HadCM2GS, used the combined equivalent CO2 concentration plus the negative forcing from sulphate aerosols. The HadCM2GG integrations simulated the change in forcing of the climate system by greenhouse gases since the early industrial period (taken by HadCM2 to be 1860). The addition of the negative forcing effects of sulphate aerosols represents the direct radiative forcing due to anthropogenic sulphate aerosols by means of an increase in clear-sky surface albedo proportional to the local sulphate loading (refer to Mitchell et al., 1995 for details of this method). The indirect effects of aerosols were not simulated. The modelled control climate shows a negligible long term trend in surface air temperature over the first 400 years. The trend is about +0.04 degrees C per century, which is comparable to other such experiments. HadCM2CON represents an improvement over previous generations of GCMs that have been used at the Hadley Centre (Johns et al., 1995 and Airey et al., 1995). The experiments performed have simulated the observed climate system using estimated forcing perturbations since 1860. Johns et al., (1995) and Mitchell et al., (1995) have established that HadCM2's sensitivity is consistent with the real climate system. The agreement between the observed global-mean temperature record and that produced in these experiments is better for HadCM2GS than for HadCM2GG. This implies that HadCM2Gs has captured the observed signal of global-mean temperature changes better than HadCM2GG for the recent 100-year record. The climate sensitivity of HadCM2 is about 2.5 degrees C From the IPCC website: The A1 Family storyline is a case of rapid and successful economic development, in which regional averages of income per capita converge - current distinctions between poor and rich countries eventually dissolve. In this scenario family, demographic and economic trends are closely linked, as affluence is correlated with long life and small families (low mortality and low fertility). Global population grows to some nine billion by 2050 and declines to about seven billion by 2100. Average age increases, with the needs of retired people met mainly through their accumulated savings in private pension systems. The global economy expands at an average annual rate of about three percent to 2100. This is approximately the same as average global growth since 1850, although the conditions that lead to a global economic in productivity and per capita incomes are unparalleled in history. Income per capita reaches about US$21,000 by 2050. While the high average level of income per capita contributes to a great improvement in the overall health and social conditions of the majority of people, this world is not without its problems. In particular, many communities could face some of the problems of social exclusion encountered by the wealthiest countries in the 20th century and in many places income growth could come with increased pressure on the global commons. Energy and mineral resources are abundant in this scenario family because of rapid technical progress, which both reduce the resources need to produce a given level of output and increases the economically recoverable reserves. Final energy intensity (energy use per unit of GDP) decreases at an average annual rate of 1.3 percent. With the rapid increase in income, dietary patterns shift initially significantly towards increased consumption of meat and dairy products, but may decrease subsequently with increasing emphasis on health of an aging society. High incomes also translate into high car ownership, sprawling suburbanization and dense transport networks, nationally and internationally. Land prices increase faster than income per capita. These factors along with high wages result in a considerable intensification of agriculture. Three scenario groups are considered in A1 scenario family reflecting the uncertainty in development of energy sources and conversion technologies in this rapidly changing world. Near-term investment decisions may introduce long-term irreversibilities into the market, with lock-in to one technological configuration or another. The A1B scenario group is based on a balanced mix of energy sources and has an intermediate level of CO2 emissions, but depending on the energy sources developed, emissions in the variants cover a very wide range. In the fossil-fuel intensive scenario group A1FI, emissions approach those of the A2 scenarios; conversely in scenario group A1T with low labor productivity or of rapid progress in "post-fossil" energy technologies, emissions are intermediate between those of B1 and B2. These scenario variants have been introduced into the A1 storyline because of its "high growth with high tech" nature, where differences in alternative technology developments translate into large differences in future GHG emission levels Ecological resilience is assumed to be high in this storyline. Environmental amenities are viewed in a utilitarian way, based on their influence on the formal economy. The concept of environmental quality might change in this storyline from "conservation" of nature to active "management" - and marketing - of natural and environmental services. Data are available for the following periods: 1961-1990, 2010-2039; 2040-2069; and 2090-2099 Mean monthly and change fields.

  13. e

    IPCC Climate Change Data: NIES99 A1f Model: 2020 Radiation

    • knb.ecoinformatics.org
    Updated Aug 14, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Intergovernmental Panel on Climate Change (IPCC) (2015). IPCC Climate Change Data: NIES99 A1f Model: 2020 Radiation [Dataset]. http://doi.org/10.5063/AA/dpennington.286.1
    Explore at:
    Dataset updated
    Aug 14, 2015
    Dataset provided by
    Knowledge Network for Biocomplexity
    Authors
    Intergovernmental Panel on Climate Change (IPCC)
    Time period covered
    Jan 1, 2020 - Dec 31, 2020
    Area covered
    Earth
    Description

    The model used here is a coupled ocean-atmosphere model that consists of the CCSR/NIES atmospheric GCM, the CCSR ocean GCM, a thermodynamic sea-ice model, and a river routing model (Abe-Ouchi et al., 1996). The spatial resolution is T21 spectral truncation (roughly 5.6 degrees latitude/longitude) and 20 vertical levels for the atmospheric part, and roughly 2.8 degrees horizontal grid and 17 vertical levels for the oceanic part. Flux adjustment for atmosphere-ocean heat and water exchange is applied to prevent a drift of the modelled climate. The atmospheric model adopts a radiation scheme based on the k-distribution, two-stream discrete ordinate method (DOM) (Nakajima and Tanaka, 1986). This scheme can deal with absorption, emission and scattering by gases, clouds and aerosol particles in a consistent manner. In the calculation of sulphate aerosol optical properties, the volumetric mode radius of the sulphate particle in dry environment is assumed to be 0.2 micron. The hygroscopic growth of the sulphate is considered by an empirical fit of d'Almeida et al. (1991). The vertical distribution of the sulphate aerosol is assumed to be constant in the lowest 2 km of the atmosphere. The concentrations of greenhouse gases are represented by equivalent-CO2. Three integrations are made for 200 model years (1890-2090). In the control experiment (CTL), the globally uniform concentration of greenhouse gases is kept constant at 345 ppmv CO2-equivalent and the concentration of sulphate is set to zero. In the experiment GG, the concentration of greenhouse gases is gradually increased, while that of sulphate is set to zero. In the experiments GS, the increase in anthropogenic sulphate as well as that in greenhouse gases is given and the aerosol scattering (the direct effect of aerosol) is explicitly represented in the way described above. The indirect effect of aerosol is not included in any experiment. The scenario of atmospheric concentrations of greenhouse gases and sulphate aerosols is given in accordance with Mitchell and Johns (1997). The increase in greenhouse gases is based on the historical record from 1890 to 1990 and is increased by 1 percent / yr (compound) after 1990. For sulphate aerosols, geographical distributions of sulphate loading for 1986 and 2050, which are estimated by a sulphur cycle model (Langer and Rodhe, 1991), are used as basic patterns. Based on global and annual mean sulphur emission rates, the 1986 pattern is scaled for years before 1990; the 2050 pattern is scaled for years after 2050; and the pattern is interpolated from the two basic ones for intermediate years to give the time series of the distribution. The sulphur emission rate in the future is based on the IPCC IS92a scenario. The sulphate concentration is offset in our run so that it starts from zero at 1890. The seasonal variation of sulphate concentration is ignored. Discussion on the results of the experiments will be found in Emori et al. (1999). Climate sensitivity of the CCSR/NIES model derived by equilibrium runs is estimated to be 3.5 degrees Celsius. Global-Mean Temperature, Precipitation and CO2 Changes (w.r.t. 1961-90) for the CCSR/NIES model. From the IPCC website: The A1 Family storyline is a case of rapid and successful economic development, in which regional averages of income per capita converge - current distinctions between poor and rich countries eventually dissolve. In this scenario family, demographic and economic trends are closely linked, as affluence is correlated with long life and small families (low mortality and low fertility). Global population grows to some nine billion by 2050 and declines to about seven billion by 2100. Average age increases, with the needs of retired people met mainly through their accumulated savings in private pension systems. The global economy expands at an average annual rate of about three percent to 2100. This is approximately the same as average global growth since 1850, although the conditions that lead to a global economic in productivity and per capita incomes are unparalleled in history. Income per capita reaches about US$21,000 by 2050. While the high average level of income per capita contributes to a great improvement in the overall health and social conditions of the majority of people, this world is not without its problems. In particular, many communities could face some of the problems of social exclusion encountered by the wealthiest countries in the 20th century and in many places income growth could come with increased pressure on the global commons. Energy and mineral resources are abundant in this scenario family because of rapid technical progress, which both reduce the resources need to produce a given level of output and increases the economically recoverable reserves. Final energy intensity (energy use per unit of GDP) decreases at an average annual rate of 1.3 percent. With the rapid increase in income, dietary patterns shift initially significantly towards increased consumption of meat and dairy products, but may decrease subsequently with increasing emphasis on health of an aging society. High incomes also translate into high car ownership, sprawling suburbanization and dense transport networks, nationally and internationally. Land prices increase faster than income per capita. These factors along with high wages result in a considerable intensification of agriculture. Three scenario groups are considered in A1 scenario family reflecting the uncertainty in development of energy sources and conversion technologies in this rapidly changing world. Near-term investment decisions may introduce long-term irreversibilities into the market, with lock-in to one technological configuration or another. The A1B scenario group is based on a balanced mix of energy sources and has an intermediate level of CO2 emissions, but depending on the energy sources developed, emissions in the variants cover a very wide range. In the fossil-fuel intensive scenario group A1FI, emissions approach those of the A2 scenarios; conversely in scenario group A1T with low labor productivity or of rapid progress in "post-fossil" energy technologies, emissions are intermediate between those of B1 and B2. These scenario variants have been introduced into the A1 storyline because of its "high growth with high tech" nature, where differences in alternative technology developments translate into large differences in future GHG emission levels Ecological resilience is assumed to be high in this storyline. Environmental amenities are viewed in a utilitarian way, based on their influence on the formal economy. The concept of environmental quality might change in this storyline from "conservation" of nature to active "management" - and marketing - of natural and environmental services. Data are available for the following periods: 1961-1990, 2010-2039; 2040-2069; and 2090-2099 Mean monthly and change fields.

  14. Child, old-age, and total dependency ratio in China 1950-2100

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Child, old-age, and total dependency ratio in China 1950-2100 [Dataset]. https://www.statista.com/statistics/251535/child-and-old-age-dependency-ratio-in-china/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    China
    Description

    In 2020, the child and old-age dependency ratios in China ranged at around **** and **** percent respectively, summing up to a total dependency ratio of **** percent. While the child dependency ratio is expected to drop slightly and then remain stable, the old-age dependency ratio will rise steadily in coming decades. Age demographics in China With a populace of 1.4 billion people by the end of 2023, China stands the country with the second largest population in the world. Since its foundation in 1949, the PRC has experienced high population growth. With the beginning of the reform period in the end of the 1970s, population growth decreased steadily. Finally, China's population size peaked in 2021 and entered a declining path. Falling birth rates in combination with higher life expectancy led to a continuously increasing median age of the population in China over the past five decades. The median age of the Chinese population is expected to rise further and to reach 50 years by the middle of the century. Development of the dependency ratio China has enjoyed a continuously growing work force since the late 1970s. Simultaneously, the total dependency ratio in China decreased from ** percent in 1970 to about ** percent in 2010. However, an important turning point was reached in 2011, as the total dependency ratio was set to increase again after 30 years of population bonus. As can be seen from the above graph, until 2100, child-dependency is estimated to remain steady around ** to ** percent. Old-age dependency on the other hand is expected to grow from about ** percent in 2010 to ** percent in 2060, implying a growing number of senior citizens that need support from the working population. The shift of age demographics in the near future in China is bound to have ineligible economical and social impacts. To learn more about age demographics in China, take a look at our dossier aging population in China.

  15. Median age of the population in Japan 2020

    • statista.com
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Median age of the population in Japan 2020 [Dataset]. https://www.statista.com/statistics/604424/median-age-of-the-population-in-japan/
    Explore at:
    Dataset updated
    Apr 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Japan
    Description

    The median age of the population in Japan has steadily been increasing since 1950 and is projected to be around 47.7 years old in 2020. As of 2021, the median age of Japan is the second highest in the world, behind the Principality of Monaco. The elderly in Japan An improved quality of life and regular health checks are just two reasons why Japan has one of the highest life expectancies in the world. The life expectancy from birth in Japan improved significantly after World War II, rising 20 years in the decade between 1945 and 1955. As life expectancy continues to increase, Japan expects difficulties caring for the older generation in the future. Shortages in the service sector are already a major concern, with demand for nurses and care workers increasing. Fertility and birth rates The fertility rate among Japan’s population has been around 1.4 children per woman since 2010. Apart from a small baby boom in the early seventies, the crude birth rate of Japan has been declining since 1950 and is expected to be as low as 7.5 births per thousand people in 2020. With falling birth rates and such a large share of its inhabitants reaching their later years, Japan’s total population is expected to continue declining.

  16. Countries with the highest population growth rate 2024

    • statista.com
    Updated Apr 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the highest population growth rate 2024 [Dataset]. https://www.statista.com/statistics/264687/countries-with-the-highest-population-growth-rate/
    Explore at:
    Dataset updated
    Apr 16, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    This statistic shows the 20 countries with the highest population growth rate in 2024. In SouthSudan, the population grew by about 4.65 percent compared to the previous year, making it the country with the highest population growth rate in 2024. The global population Today, the global population amounts to around 7 billion people, i.e. the total number of living humans on Earth. More than half of the global population is living in Asia, while one quarter of the global population resides in Africa. High fertility rates in Africa and Asia, a decline in the mortality rates and an increase in the median age of the world population all contribute to the global population growth. Statistics show that the global population is subject to increase by almost 4 billion people by 2100. The global population growth is a direct result of people living longer because of better living conditions and a healthier nutrition. Three out of five of the most populous countries in the world are located in Asia. Ultimately the highest population growth rate is also found there, the country with the highest population growth rate is Syria. This could be due to a low infant mortality rate in Syria or the ever -expanding tourism sector.

  17. Median age of the population in South Korea 2024

    • statista.com
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Median age of the population in South Korea 2024 [Dataset]. https://www.statista.com/statistics/604689/median-age-of-the-population-in-south-korea/
    Explore at:
    Dataset updated
    Apr 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    South Korea
    Description

    Demographic development in South Korea in the final decades of the 21st century saw rapid change across its society. In South Korea, the average age of the population rose from below 20 years in the late-70s to around 45 years today, and it is projected to rise to over 62 years in 2074. With one of the lowest fertility rates in the world, population aging is one of the largest challenges facing South Korea today. If these projections come true, then South Korea is on course to soon have a smaller working-age population than its combined child and elderly populations. Recent years have shown population aging to be a compounding issue that exacerbates itself - young people often become responsible for providing care for elderly relatives, straining time and financial resources and dissuading many from having their own children. The state must also invest much more money into elderly care and healthcare, often redistributing resources that were previously invested in childcare and education. Although the state (and even some private companies) are now offering financial incentives for couples to have children, it remains to be seen whether these measures will be enough to reverse years of rapid population aging and declining fertility rates.

  18. World: annual birth rate, death rate, and rate of natural population change...

    • statista.com
    Updated Jul 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). World: annual birth rate, death rate, and rate of natural population change 1950-2100 [Dataset]. https://www.statista.com/statistics/805069/death-rate-worldwide/
    Explore at:
    Dataset updated
    Jul 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The COVID-19 pandemic increased the global death rate, reaching *** in 2021, but had little to no significant impact on birth rates, causing population growth to dip slightly. On a global level, population growth is determined by the difference between the birth and death rates, known as the rate of natural change. On a national or regional level, migration also affects population change. Ongoing trends Since the middle of the 20th century, the global birth rate has been well above the global death rate; however, the gap between these figures has grown closer in recent years. The death rate is projected to overtake the birth rate in the 2080s, which means that the world's population will then go into decline. In the future, death rates will increase due to ageing populations across the world and a plateau in life expectancy. Why does this change? There are many reasons for the decline in death and birth rates in recent decades. Falling death rates have been driven by a reduction in infant and child mortality, as well as increased life expectancy. Falling birth rates were also driven by the reduction in child mortality, whereby mothers would have fewer children as survival rates rose - other factors include the drop in child marriage, improved contraception access and efficacy, and women choosing to have children later in life.

  19. Median age of the population in Indonesia 2020

    • statista.com
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Median age of the population in Indonesia 2020 [Dataset]. https://www.statista.com/statistics/319168/average-age-of-the-population-in-indonesia/
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Indonesia
    Description

    This statistic shows the median age of the population in Indonesia from 1950 to 2100. The median age is the age that divides a population into two numerically equal groups; that is, half the people are younger than this age and half are older. It is a single index that summarizes the age distribution of a population. In 2020, the median age of the Indonesian population was 29.1 years. Life in Indonesia The Republic of Indonesia is a sovereign state archipelago in Southeast Asia. Indonesia is made up of more than 17,000 islands, with the biggest three being Java, Sumatra and Borneo. In 2010, Indonesia reported a total population of around 238 million people, and it is estimated that this figure will increase to around 255 million inhabitants by 2015. The biggest cities in Indonesia are its capital Jakarta, Surabaya, and Bandung. Jakarta alone is home to more than 9.6 million inhabitants. Currently, there are more than 7 billion people in the world and Asia is the continent with the largest population. More than 4 billion people lived in Asia in mid-2014. Indonesia is the second most populous country in Asia, behind China and the fourth most populous nation in the world. As a result of an improving economy and better health and living conditions, life expectancy in Indonesia is steadily increasing - between 2002 and 2012, it increased by almost 3 years . Due of a decreasing fertility rate, Indonesian parents are able to more easily provide for their families and the population is still increasing and living longer. The average age of the population in Indonesia is estimated to be around 28.4 years in 2015.

  20. Median age of the population in Singapore 2020

    • statista.com
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Median age of the population in Singapore 2020 [Dataset]. https://www.statista.com/statistics/378424/average-age-of-the-population-in-singapore/
    Explore at:
    Dataset updated
    Apr 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Singapore
    Description

    The median age of the population of Singapore has been increasing since 1965, and is projected to reach 56 years by 2100. The median age is the age that divides a population into two numerically equal groups, such that half the people are younger than this age and half are older. An aging population As Singapore’s median age increases, its fertility rate has decreased. In 2017, Singapore’s fertility rate was 1.16 children per woman of childbearing age, which is below the amount needed to replace the population. Additionally, Singapore is one of the leading countries and territories with the highest life expectancy at birth; an expectancy of 87.63 years. As such, Singapore is faced with adapting to aging population and a growing ratio of old-age dependency. A trend of population aging Many countries are facing this demographic dilemma: the global median age is projected to grow from 29.6 in 2015 to around 41.6 years through the end of the century. Population aging could be one of the most substantial societal transformations of the twenty-first century, affecting most sectors of society, including healthcare, housing, and pensions.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Median age of the population in China 1950-2100 [Dataset]. https://www.statista.com/statistics/232265/mean-age-of-the-chinese-population/
Organization logo

Median age of the population in China 1950-2100

Explore at:
11 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 23, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
China
Description

Since 1970, the median age of China’s population has continued to increase from around ** years to around **** years in 2020. According to estimates from the United Nations, the increasing trend will slow down when the median age will reach ** years in the middle of the 21st century and will remain at around ** years up to 2100. China’s aging population Although the median age of China’s population is still lower than in many developed countries, for example in Japan, the consequences of a rapidly aging population have already become a concern for the country’s future. As the most populated country in the world, the large labor force in China contributed to the country’s astonishing economic growth in the last decades. Nowadays however, the aging population is going to become a burden for China’s social welfare system and could change China’s economic situation. Reasons for the aging population Like in many other countries, increasing life expectancy is regarded as the main reason for the aging of the population. As healthcare and living standards have improved, life expectancy in China has also increased. In addition, the one-child policy led to a decreasing fertility rate in China, which further increased the share of older people in the society. Even though the one-child policy has been abolished in 2016, many young people are refraining from having children, largely due to the high costs of raising a child, career pressure and the pursuit of freedom.

Search
Clear search
Close search
Google apps
Main menu