44 datasets found
  1. Monthly average temperature in the United States 2020-2024

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Monthly average temperature in the United States 2020-2024 [Dataset]. https://www.statista.com/statistics/513628/monthly-average-temperature-in-the-us-fahrenheit/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2020 - Dec 2024
    Area covered
    United States
    Description

    The average temperature in December 2024 was 38.25 degrees Fahrenheit in the United States, the fourth-largest country in the world. The country has extremely diverse climates across its expansive landmass. Temperatures in the United States On the continental U.S., the southern regions face warm to extremely hot temperatures all year round, the Pacific Northwest tends to deal with rainy weather, the Mid-Atlantic sees all four seasons, and New England experiences the coldest winters in the country. The North American country has experienced an increase in the daily minimum temperatures since 1970. Consequently, the average annual temperature in the United States has seen a spike in recent years. Climate Change The entire world has seen changes in its average temperature as a result of climate change. Climate change occurs due to increased levels of greenhouse gases which act to trap heat in the atmosphere, preventing it from leaving the Earth. Greenhouse gases are emitted from various sectors but most prominently from burning fossil fuels. Climate change has significantly affected the average temperature across countries worldwide. In the United States, an increasing number of people have stated that they have personally experienced the effects of climate change. Not only are there environmental consequences due to climate change, but also economic ones. In 2022, for instance, extreme temperatures in the United States caused over 5.5 million U.S. dollars in economic damage. These economic ramifications occur for several reasons, which include higher temperatures, changes in regional precipitation, and rising sea levels.

  2. Average annual temperature in the United States 1895-2024

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average annual temperature in the United States 1895-2024 [Dataset]. https://www.statista.com/statistics/500472/annual-average-temperature-in-the-us/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The average temperature in the contiguous United States reached 55.5 degrees Fahrenheit (13 degrees Celsius) in 2024, approximately 3.5 degrees Fahrenheit higher than the 20th-century average. These levels represented a record since measurements started in ****. Monthly average temperatures in the U.S. were also indicative of this trend. Temperatures and emissions are on the rise The rise in temperatures since 1975 is similar to the increase in carbon dioxide emissions in the U.S. Although CO₂ emissions in recent years were lower than when they peaked in 2007, they were still generally higher than levels recorded before 1990. Carbon dioxide is a greenhouse gas and is the main driver of climate change. Extreme weather Scientists worldwide have found links between the rise in temperatures and changing weather patterns. Extreme weather in the U.S. has resulted in natural disasters such as hurricanes and extreme heat waves becoming more likely. Economic damage caused by extreme temperatures in the U.S. has amounted to hundreds of billions of U.S. dollars over the past few decades.

  3. Monthly average temperature in the United States 2020-2025

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Monthly average temperature in the United States 2020-2025 [Dataset]. https://www.statista.com/statistics/513644/monthly-average-temperature-in-the-us-celsius/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2020 - Apr 2025
    Area covered
    United States
    Description

    The monthly average temperature in the United States between 2020 and 2025 shows distinct seasonal variation, following similar patterns. For instance, in April 2025, the average temperature across the North American country stood at 12.02 degrees Celsius. Rising temperatures Globally, 2016, 2019, 2021 and 2024 were some of the warmest years ever recorded since 1880. Overall, there has been a dramatic increase in the annual temperature since 1895. Within the U.S. annual temperatures show a great deal of variation depending on region. For instance, Florida tends to record the highest maximum temperatures across the North American country, while Wyoming recorded the lowest minimum average temperature in recent years. Carbon dioxide emissions Carbon dioxide is a known driver of climate change, which impacts average temperatures. Global historical carbon dioxide emissions from fossil fuels have been on the rise since the industrial revolution. In recent years, carbon dioxide emissions from fossil fuel combustion and industrial processes reached over 37 billion metric tons. Among all countries globally, China was the largest emitter of carbon dioxide in 2023.

  4. Historical summer temperature (Alaska) (Image Service)

    • catalog.data.gov
    • datasets.ai
    • +5more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Historical summer temperature (Alaska) (Image Service) [Dataset]. https://catalog.data.gov/dataset/historical-summer-temperature-alaska-image-service-5a39b
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Area covered
    Alaska
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). Average temperature values were calculated as the mean of monthly minimum and maximum air temperature values (degrees C), averaged over the season of interest (annual, winter, or summer). These datasets have several important differences from the MACAv2-Metdata (https://climate.northwestknowledge.net/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  5. r

    Historical annual temperature (CONUS) (Image Service)

    • opendata.rcmrd.org
    • gimi9.com
    • +6more
    Updated Nov 22, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2017). Historical annual temperature (CONUS) (Image Service) [Dataset]. https://opendata.rcmrd.org/datasets/11446da3eaa04ecc9b086ffcaa1c9818
    Explore at:
    Dataset updated
    Nov 22, 2017
    Dataset authored and provided by
    U.S. Forest Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.

    Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; average temperature values were calculated as the mean of monthly minimum and maximum air temperature values (degrees C), averaged over the season of interest (annual, winter, or summer). Absolute change was then calculated between the historical and future time periods.

    Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  6. Historical winter temperature (CONUS) (Image Service)

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +8more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Historical winter temperature (CONUS) (Image Service) [Dataset]. https://catalog.data.gov/dataset/historical-winter-temperature-conus-image-service-ede0c
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; average temperature values were calculated as the mean of monthly minimum and maximum air temperature values (degrees C), averaged over the season of interest (annual, winter, or summer). Absolute change was then calculated between the historical and future time periods.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  7. Absolute change in summer temperature (Alaska) (Image Service)

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +6more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Absolute change in summer temperature (Alaska) (Image Service) [Dataset]. https://catalog.data.gov/dataset/absolute-change-in-summer-temperature-alaska-image-service-81819
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Area covered
    Alaska
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). Average temperature values were calculated as the mean of monthly minimum and maximum air temperature values (degrees C), averaged over the season of interest (annual, winter, or summer). These datasets have several important differences from the MACAv2-Metdata (https://climate.northwestknowledge.net/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  8. r

    Historical summer temperature (CONUS) (Image Service)

    • opendata.rcmrd.org
    • gimi9.com
    • +6more
    Updated Mar 5, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2019). Historical summer temperature (CONUS) (Image Service) [Dataset]. https://opendata.rcmrd.org/datasets/d2542bb7a86d437f91ab0755d4121891
    Explore at:
    Dataset updated
    Mar 5, 2019
    Dataset authored and provided by
    U.S. Forest Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.

    Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; average temperature values were calculated as the mean of monthly minimum and maximum air temperature values (degrees C), averaged over the season of interest (annual, winter, or summer). Absolute change was then calculated between the historical and future time periods.

    Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  9. Future summer temperature (CONUS) (Image Service)

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +3more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Future summer temperature (CONUS) (Image Service) [Dataset]. https://catalog.data.gov/dataset/future-summer-temperature-conus-image-service-610d1
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.

    Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; average temperature values were calculated as the mean of monthly minimum and maximum air temperature values (degrees C), averaged over the season of interest (annual, winter, or summer). Absolute change was then calculated between the historical and future time periods.

    Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  10. T

    TEMPERATURE by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Oct 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). TEMPERATURE by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/temperature
    Explore at:
    xml, csv, json, excelAvailable download formats
    Dataset updated
    Oct 27, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for TEMPERATURE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  11. U.S. cities with the highest annual temperatures

    • statista.com
    Updated Dec 31, 2010
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2010). U.S. cities with the highest annual temperatures [Dataset]. https://www.statista.com/statistics/226809/us-cities-with-the-highest-annual-temperatures/
    Explore at:
    Dataset updated
    Dec 31, 2010
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1981 - 2010
    Area covered
    United States
    Description

    This statistic shows cities in the United States with the highest average annual temperatures. Data is based on recordings from 1981 to 2010. In San Antonio, Texas the average temperature is 80.7 degrees Fahrenheit. Some cities that have the hottest maximum summer temperatures will not be included in this list due to their extreme temperature variance.

  12. d

    BLM REA COP 2010 Average Summer (Jul-Sep) Temperature (1968-1999) from PRISM...

    • data.doi.gov
    • data.amerigeoss.org
    Updated Mar 17, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Conservation Biology Institute (Point of Contact) (2021). BLM REA COP 2010 Average Summer (Jul-Sep) Temperature (1968-1999) from PRISM (Western US) [Dataset]. https://data.doi.gov/dataset/blm-rea-cop-2010-average-summer-jul-sep-temperature-1968-1999-from-prism-western-us
    Explore at:
    Dataset updated
    Mar 17, 2021
    Dataset provided by
    Conservation Biology Institute (Point of Contact)
    Area covered
    Western United States, United States
    Description

    Climate data (Average Summer Temperature for 1968-1999) were created by PRISM (Parameter-elevation Regressions on Indepenent Slopes Model - prism.oregonstate.edu) on a 2.5 arc-minute lat-lon grid. They are based on historical observations from 1968-1999. We created mean monthly climatologies for that period from the PRISM data, and reprojected the results to the BLM Albers 4km grid. We used these results as a historical baseline climate to de-bias RegCM3 projections. We also compiled annual and seasonal summaries of precipitation and temperature from the PRISM data to allow for simple comparisons with other climatologies. Units are degrees celsius.

  13. Historical and future temperature trends (Map Service)

    • catalog.data.gov
    • gimi9.com
    • +6more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Historical and future temperature trends (Map Service) [Dataset]. https://catalog.data.gov/dataset/historical-and-future-temperature-trends-map-service-e00ae
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.

    Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; average temperature values were calculated as the mean of monthly minimum and maximum air temperature values (degrees C), averaged over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.

    Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). These datasets have several important differences from the MACAv2-Metdata (https://climate.northwestknowledge.net/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.

    Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  14. Maximum annual temperature in the U.S. 2024, by state

    • statista.com
    Updated Feb 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Maximum annual temperature in the U.S. 2024, by state [Dataset]. https://www.statista.com/statistics/1101482/maximum-annual-temp-by-us-state/
    Explore at:
    Dataset updated
    Feb 2, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    United States
    Description

    In 2024, the maximum average temperature in Florida stood at 83 degrees Fahrenheit. The 'sunshine' state is hardly touched by low temperatures and even sees temperatures rise above 100 degrees statewide in the summer. For many of these hot states, maximum temperatures were above normal in 2024.

  15. d

    4KM Original: Average Summer Temperature (1968-1999) from NCEP-driven RegCM3...

    • datadiscoverystudio.org
    Updated Jun 27, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). 4KM Original: Average Summer Temperature (1968-1999) from NCEP-driven RegCM3 climate model (Western US) [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/7916a51bc13349a298990633939a9e31/html
    Explore at:
    Dataset updated
    Jun 27, 2018
    Area covered
    Description

    Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information

  16. A

    Absolute change in summer temperature (CONUS) (Image Service)

    • data.amerigeoss.org
    Updated Jul 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2020). Absolute change in summer temperature (CONUS) (Image Service) [Dataset]. https://data.amerigeoss.org/dataset/absolute-change-in-summer-temperature-conus-image-service-a2da0
    Explore at:
    arcgis geoservices rest api, htmlAvailable download formats
    Dataset updated
    Jul 16, 2020
    Dataset provided by
    United States
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.

    Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; average temperature values were calculated as the mean of monthly minimum and maximum air temperature values (degrees C), averaged over the season of interest (annual, winter, or summer). Absolute change was then calculated between the historical and future time periods.

    Raster data are also available for download from RMRS site (https://www.fs.fed.us/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.fed.us/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

    Legend

  17. A

    BLM REA COP 2010 Average Summer (Jul-Sep) Temperature (2045-2060) Simulated...

    • data.amerigeoss.org
    • datadiscoverystudio.org
    Updated Jul 31, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2019). BLM REA COP 2010 Average Summer (Jul-Sep) Temperature (2045-2060) Simulated by RegCM3 with ECHAM5 Projections as Boundary Conditions (Western US) [Dataset]. https://data.amerigeoss.org/mk/dataset/blm-rea-cop-2010-average-summer-jul-sep-temperature-2045-2060-simulated-by-regcm3-with-echam5-p
    Explore at:
    esri layer package (lpk), lpkAvailable download formats
    Dataset updated
    Jul 31, 2019
    Dataset provided by
    United States
    Area covered
    Western United States, United States
    Description

    Average Summer (Jul-Sep) Temperature (2045-2060) simulated by RegCM3 with ECHAM5 projections as boundary conditions. Units are degrees Celsius. These data were generated by the regional climate model RegCM3 with boundary conditions from a GCM future climate projections. The data were downscaled statistically by calculating differences (anomalies) between the RegCM3 results with GCM-driven boundary conditions for 1968-99 and those for a future period, in this case 2015-2030. The anomalies were added (temperatures) or multiplied (precipitation) to a climate baseline from PRISM (Parameter-elevation Regressions on Indepenent Slopes Model - prism.oregonstate.edu) data based on historical observations. The PRISM baseline was calculated as average monthly climate conditions for 1968-1999 reprojected the results to the BLM Albers 4km grid. PRISM data are provided in a 2.5 arc-minute lat-lon grid. RegCM3 is the third generation of the Regional Climate Model originally developed at the National Center for Atmospheric Research during the late 1980s and early 1990s. Details on current model components and applications of the model can be found in numerous publications (e.g., Giorgi et al, 2004a,b, Pal et al, 2007), the ICTP RegCNET web site (http://users.ictp.it/RegCNET/model.html), and the ICTP RegCM publications web site (http://users.ictp.it/~pubregcm/RegCM3/pubs.htm). The Western North America domain has a horizontal grid spacing of 15 km and 18 vertical levels. RegCM3 requires time-dependent lateral (wind, temperature, and humidity) and surface [surface pressure and sea surface temperature (SST)] boundary conditions that are updated every 6 hours of simulation. Lateral boundary conditions are derived from General Circulation Model (GCM) output or observations (e.g. NCEP). Additional information can be found at: http://regclim.coas.oregonstate.edu/. Global simulations from the Max Planck Institute (Germany) climate model ECHAM5 were part of a suite of model results used in the 4th Climate Model Inter-comparison Project (CMIP4) and the Intergovernmental Panel for Climate Change 4th Assessment Report. Details and documentation of the model can be found on the CMIP website: http://wwwpcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_documentation.php.

  18. d

    Western North American Temperature Atlas (WNATA)

    • dataone.org
    • datadryad.org
    Updated Jan 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Karen King; Edward Cook; Kevin Anchukaitis; Benjamin Cook; Jason Smerdon; Richard Seager; Grant Harley; Benjamin Spei (2024). Western North American Temperature Atlas (WNATA) [Dataset]. http://doi.org/10.5061/dryad.70rxwdc4v
    Explore at:
    Dataset updated
    Jan 26, 2024
    Dataset provided by
    Dryad Digital Repository
    Authors
    Karen King; Edward Cook; Kevin Anchukaitis; Benjamin Cook; Jason Smerdon; Richard Seager; Grant Harley; Benjamin Spei
    Time period covered
    Jan 1, 2023
    Area covered
    Western North Region
    Description

    Across western North America (WNA), 20th-21st century anthropogenic warming has increased the prevalence and severity of concurrent drought and heat events, also termed hot droughts. However, the lack of independent spatial reconstructions of both soil moisture and temperatures limits the potential to identify these events in the past and to place them in a long-term context. Here, we develop the Western North American Temperature Atlas (WNATA), a data-independent 0.5° gridded reconstruction of summer maximum temperatures back to the 16th century. Our evaluation of the WNATA with existing hydroclimate reconstructions reveals an increasing association between maximum temperature and drought severity in recent decades, relative to the past five centuries. The synthesis of these paleo-reconstructions indicates that the amplification of the modern WNA megadrought by increased temperatures, and the frequency and spatial extent of compound hot and dry conditions in the 21st century are likely..., The Western North American Temperature Atlas (WNATA), a 0.5° gridded reconstruction for western North America, was created using a nested, ensemble principal components regression approach, where a network of tree ring density and blue intensity chronologies were used as predictors to reconstruct June–August average maximum surface temperatures. The predicted climate data was CRU TS land 4.06 June–August maximum temperature data.  For the first of three total reconstruction nests, we calibrated and validated each of the 3029 grid point reconstructions over the period 1901-1980 CE (the common period shared between the instrumental temperature data and all tree-ring predictors in the WNATA network). We used a split calibration/verification approach, where we calibrated over the period spanning 1941-1980 CE and verified on the period spanning 1901-1940 CE. We repeated this approach for the remaining two forward nests: 1901-1990 CE and 1901-2000 CE. The verification period remained constant..., , # Western North American Temperature Atlas

    0.5° spatial field reconstruction of summer (June-August) average maximum temperatures for western North America, spanning 1553-2020 CE and based on tree ring density and blue intensity measurements.

    Description of the data and file structure

    The data consists of 3029 grid point reconstructions of summer average maximum temperatures. In the Excel file, rows 1 and 2 are the Latitude/Longitude coordinates for each reconstruction. Rows 3-470 are the annual reconstruction estimates. Estimates are displayed as z-scores, relative to the period 1553-2020 CE.

  19. Average annual temperature in the United States 1895-2024

    • statista.com
    Updated Jul 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average annual temperature in the United States 1895-2024 [Dataset]. https://www.statista.com/statistics/500515/annual-average-temperature-in-the-us-celsius/
    Explore at:
    Dataset updated
    Jul 16, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2024, the average annual temperature in the United States was ***** degrees Celsius, the warmest year recorded in the period in consideration. In 1895, this figure stood at ***** degrees Celsius. Recent years have been some of the warmest years recorded in the country.

  20. d

    4KM Difference: Average Summer Temperature for Jul-Sep (2015-2060) from...

    • datadiscoverystudio.org
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    4KM Difference: Average Summer Temperature for Jul-Sep (2015-2060) from ECHAM5-driven RegCM3 climate model (Western US) [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/5b346d3d8c864519b5da5f8978a2126a/html
    Explore at:
    Area covered
    Description

    Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Monthly average temperature in the United States 2020-2024 [Dataset]. https://www.statista.com/statistics/513628/monthly-average-temperature-in-the-us-fahrenheit/
Organization logo

Monthly average temperature in the United States 2020-2024

Explore at:
Dataset updated
Jul 10, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Jan 2020 - Dec 2024
Area covered
United States
Description

The average temperature in December 2024 was 38.25 degrees Fahrenheit in the United States, the fourth-largest country in the world. The country has extremely diverse climates across its expansive landmass. Temperatures in the United States On the continental U.S., the southern regions face warm to extremely hot temperatures all year round, the Pacific Northwest tends to deal with rainy weather, the Mid-Atlantic sees all four seasons, and New England experiences the coldest winters in the country. The North American country has experienced an increase in the daily minimum temperatures since 1970. Consequently, the average annual temperature in the United States has seen a spike in recent years. Climate Change The entire world has seen changes in its average temperature as a result of climate change. Climate change occurs due to increased levels of greenhouse gases which act to trap heat in the atmosphere, preventing it from leaving the Earth. Greenhouse gases are emitted from various sectors but most prominently from burning fossil fuels. Climate change has significantly affected the average temperature across countries worldwide. In the United States, an increasing number of people have stated that they have personally experienced the effects of climate change. Not only are there environmental consequences due to climate change, but also economic ones. In 2022, for instance, extreme temperatures in the United States caused over 5.5 million U.S. dollars in economic damage. These economic ramifications occur for several reasons, which include higher temperatures, changes in regional precipitation, and rising sea levels.

Search
Clear search
Close search
Google apps
Main menu