100+ datasets found
  1. Average annual temperature in the United States 1895-2024

    • statista.com
    • ai-chatbox.pro
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average annual temperature in the United States 1895-2024 [Dataset]. https://www.statista.com/statistics/500472/annual-average-temperature-in-the-us/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The average temperature in the contiguous United States reached 55.5 degrees Fahrenheit (13 degrees Celsius) in 2024, approximately 3.5 degrees Fahrenheit higher than the 20th-century average. These levels represented a record since measurements started in ****. Monthly average temperatures in the U.S. were also indicative of this trend. Temperatures and emissions are on the rise The rise in temperatures since 1975 is similar to the increase in carbon dioxide emissions in the U.S. Although CO₂ emissions in recent years were lower than when they peaked in 2007, they were still generally higher than levels recorded before 1990. Carbon dioxide is a greenhouse gas and is the main driver of climate change. Extreme weather Scientists worldwide have found links between the rise in temperatures and changing weather patterns. Extreme weather in the U.S. has resulted in natural disasters such as hurricanes and extreme heat waves becoming more likely. Economic damage caused by extreme temperatures in the U.S. has amounted to hundreds of billions of U.S. dollars over the past few decades.

  2. Monthly average temperature in the United States 2020-2024

    • statista.com
    • ai-chatbox.pro
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Monthly average temperature in the United States 2020-2024 [Dataset]. https://www.statista.com/statistics/513628/monthly-average-temperature-in-the-us-fahrenheit/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2020 - Dec 2024
    Area covered
    United States
    Description

    The average temperature in December 2024 was 38.25 degrees Fahrenheit in the United States, the fourth-largest country in the world. The country has extremely diverse climates across its expansive landmass. Temperatures in the United States On the continental U.S., the southern regions face warm to extremely hot temperatures all year round, the Pacific Northwest tends to deal with rainy weather, the Mid-Atlantic sees all four seasons, and New England experiences the coldest winters in the country. The North American country has experienced an increase in the daily minimum temperatures since 1970. Consequently, the average annual temperature in the United States has seen a spike in recent years. Climate Change The entire world has seen changes in its average temperature as a result of climate change. Climate change occurs due to increased levels of greenhouse gases which act to trap heat in the atmosphere, preventing it from leaving the Earth. Greenhouse gases are emitted from various sectors but most prominently from burning fossil fuels. Climate change has significantly affected the average temperature across countries worldwide. In the United States, an increasing number of people have stated that they have personally experienced the effects of climate change. Not only are there environmental consequences due to climate change, but also economic ones. In 2022, for instance, extreme temperatures in the United States caused over 5.5 million U.S. dollars in economic damage. These economic ramifications occur for several reasons, which include higher temperatures, changes in regional precipitation, and rising sea levels.

  3. c

    Historical changes of annual temperature and precipitation indices at...

    • kilthub.cmu.edu
    txt
    Updated Aug 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yuchuan Lai; David Dzombak (2024). Historical changes of annual temperature and precipitation indices at selected 210 U.S. cities [Dataset]. http://doi.org/10.1184/R1/7961012.v6
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 22, 2024
    Dataset provided by
    Carnegie Mellon University
    Authors
    Yuchuan Lai; David Dzombak
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Historical changes of annual temperature and precipitation indices at selected 210 U.S. cities

    This dataset provide:

    Annual average temperature, total precipitation, and temperature and precipitation extremes calculations for 210 U.S. cities.

    Historical rates of changes in annual temperature, precipitation, and the selected temperature and precipitation extreme indices in the 210 U.S. cities.

    Estimated thresholds (reference levels) for the calculations of annual extreme indices including warm and cold days, warm and cold nights, and precipitation amount from very wet days in the 210 cities.

    Annual average of daily mean temperature, Tmax, and Tmin are included for annual average temperature calculations. Calculations were based on the compiled daily temperature and precipitation records at individual cities.

    Temperature and precipitation extreme indices include: warmest daily Tmax and Tmin, coldest daily Tmax and Tmin , warm days and nights, cold days and nights, maximum 1-day precipitation, maximum consecutive 5-day precipitation, precipitation amounts from very wet days.

    Number of missing daily Tmax, Tmin, and precipitation values are included for each city.

    Rates of change were calculated using linear regression, with some climate indices applied with the Box-Cox transformation prior to the linear regression.

    The historical observations from ACIS belong to Global Historical Climatological Network - daily (GHCN-D) datasets. The included stations were based on NRCC’s “ThreadEx” project, which combined daily temperature and precipitation extremes at 255 NOAA Local Climatological Locations, representing all large and medium size cities in U.S. (See Owen et al. (2006) Accessing NOAA Daily Temperature and Precipitation Extremes Based on Combined/Threaded Station Records).

    Resources:

    See included README file for more information.

    Additional technical details and analyses can be found in: Lai, Y., & Dzombak, D. A. (2019). Use of historical data to assess regional climate change. Journal of climate, 32(14), 4299-4320. https://doi.org/10.1175/JCLI-D-18-0630.1

    Other datasets from the same project can be accessed at: https://kilthub.cmu.edu/projects/Use_of_historical_data_to_assess_regional_climate_change/61538

    ACIS database for historical observations: http://scacis.rcc-acis.org/

    GHCN-D datasets can also be accessed at: https://www.ncei.noaa.gov/data/global-historical-climatology-network-daily/

    Station information for each city can be accessed at: http://threadex.rcc-acis.org/

    • 2024 August updated -

      Annual calculations for 2022 and 2023 were added.

      Linear regression results and thresholds for extremes were updated because of the addition of 2022 and 2023 data.

      Note that future updates may be infrequent.

    • 2022 January updated -

      Annual calculations for 2021 were added.

      Linear regression results and thresholds for extremes were updated because of the addition of 2021 data.

    • 2021 January updated -

      Annual calculations for 2020 were added.

      Linear regression results and thresholds for extremes were updated because of the addition of 2020 data.

    • 2020 January updated -

      Annual calculations for 2019 were added.

      Linear regression results and thresholds for extremes were updated because of the addition of 2019 data.

      Thresholds for all 210 cities were combined into one single file – Thresholds.csv.

    • 2019 June updated -

      Baltimore was updated with the 2018 data (previously version shows NA for 2018) and new ID to reflect the GCHN ID of Baltimore-Washington International AP. city_info file was updated accordingly.

      README file was updated to reflect the use of "wet days" index in this study. The 95% thresholds for calculation of wet days utilized all daily precipitation data from the reference period and can be different from the same index from some other studies, where only days with at least 1 mm of precipitation were utilized to calculate the thresholds. Thus the thresholds in this study can be lower than the ones that would've be calculated from the 95% percentiles from wet days (i.e., with at least 1 mm of precipitation).

  4. d

    Temperature - Historic Daily Time Series

    • catalog.data.gov
    • data.oregon.gov
    • +1more
    Updated Jan 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Oregon (2025). Temperature - Historic Daily Time Series [Dataset]. https://catalog.data.gov/dataset/temperature-historic-daily-time-series
    Explore at:
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    State of Oregon
    Description

    Annual dataset covering the conterminous U.S., from 1981 to now. Contains spatially gridded annual average daily mean temperature at 4km grid cell resolution. Distribution of the point measurements to the spatial grid was accomplished using the PRISM model, developed and applied by Dr. Christopher Daly of the PRISM Climate Group at Oregon State University.

  5. Monthly average daily temperatures in the United Kingdom 2015-2024

    • statista.com
    Updated Dec 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Monthly average daily temperatures in the United Kingdom 2015-2024 [Dataset]. https://www.statista.com/statistics/322658/monthly-average-daily-temperatures-in-the-united-kingdom-uk/
    Explore at:
    Dataset updated
    Dec 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2015 - Nov 2024
    Area covered
    United Kingdom
    Description

    The highest average temperature recorded in 2024 until November was in August, at 16.8 degrees Celsius. Since 2015, the highest average daily temperature in the UK was registered in July 2018, at 18.7 degrees Celsius. The summer of 2018 was the joint hottest since institutions began recording temperatures in 1910. One noticeable anomaly during this period was in December 2015, when the average daily temperature reached 9.5 degrees Celsius. This month also experienced the highest monthly rainfall in the UK since before 2014, with England, Wales, and Scotland suffering widespread flooding. Daily hours of sunshine Unsurprisingly, the heat wave that spread across the British Isles in 2018 was the result of particularly sunny weather. July 2018 saw an average of 8.7 daily sun hours in the United Kingdom. This was more hours of sun than was recorded in July 2024, which only saw 5.8 hours of sun. Temperatures are on the rise Since the 1960s, there has been an increase in regional temperatures across the UK. Between 1961 and 1990, temperatures in England averaged nine degrees Celsius, and from 2013 to 2022, average temperatures in the country had increased to 10.3 degrees Celsius. Due to its relatively southern location, England continues to rank as the warmest country in the UK.

  6. Detroit Daily Temperatures with Artificial Warming

    • kaggle.com
    zip
    Updated Sep 7, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rodrigo Hjort (2019). Detroit Daily Temperatures with Artificial Warming [Dataset]. https://www.kaggle.com/datasets/agajorte/detroit-daily-temperatures-with-artificial-warming/code
    Explore at:
    zip(21251 bytes)Available download formats
    Dataset updated
    Sep 7, 2019
    Authors
    Rodrigo Hjort
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    Detroit
    Description

    Context

    Who among us doesn't talk a little about the weather now and then? Will it rain tomorrow and get so cold to shake your chin or will it make that cracking sun? Does global warming exist?

    With this dataset, you can apply machine learning tools to predict the average temperature of Detroit city based on historical data collected over 5 years.

    Content

    The given data set was produced from the Historical Hourly Weather Data [https://www.kaggle.com/selfishgene/historical-hourly-weather-data], which consists of about 5 years of hourly measurements of various weather attributes (eg. temperature, humidity, air pressure) from 30 US and Canadian cities.

    From this rich database, a cutout was made by selecting only the city of Detroit (USA), highlighting only the temperature, converting it to Celsius degrees and keeping only one value for each date (corresponding to the average daytime temperature - from 9am to 5pm).

    In addition, temperature values ​​were artificially and gradually increased by a few Celsius degrees over the available period. This will simulate a small global warming (or is it local?)...

    In summary, the available dataset contains the average daily temperatures (collected during the day), artificially increased by a certain value, for the city of Detroit from October 2012 to November 2017.

    The purpose of this dataset is to apply forecasting models in order to predict the value of the artificially warmed average daily temperature of Detroit.

    See graph in the following image: black dots refer to the actual data and the blue line represents the predictive model (including a confidence area).

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F3089313%2Faf9614514242dfb6164a08c013bf6e35%2Fplot-ts2.png?generation=1567827710930876&alt=media" alt="">

    Acknowledgements

    This dataset wouldn't be possible without the previous work in Historical Hourly Weather Data.

    Inspiration

    What are the best forecasting models to address this particular problem? TBATS, ARIMA, Prophet? You tell me!

  7. Climate.gov Data Snapshots: Temperature - US Monthly, Difference from...

    • datalumos.org
    Updated Jun 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Oceanic and Atmospheric Administration (2025). Climate.gov Data Snapshots: Temperature - US Monthly, Difference from Average [Dataset]. http://doi.org/10.3886/E233741V1
    Explore at:
    Dataset updated
    Jun 21, 2025
    Dataset authored and provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Q: Was the month cooler or warmer than usual? A: Colors show where and by how much the monthly average temperature differed from the month’s long-term average temperature from 1991-2020. Red areas were warmer than the 30-year average for the month, and blue areas were cooler. White and very light areas had temperatures close to the long-term average. Q: Where do these measurements come from? A: Daily temperature readings come from weather stations in the Global Historical Climatology Network (GHCN-D). Volunteer observers or automated instruments collect the highest and lowest temperature of the day at each station over the entire month, and submit them to the National Centers for Environmental Information (NCEI). After scientists check the quality of the data to omit any systematic errors, they calculate each station’s monthly average of daily mean temperatures, then plot it on a 5x5 km gridded map. To fill in the grid at locations without stations, a computer program interpolates (or estimates) values, accounting for the distribution of stations and various physical relationships, such as the way temperature changes with elevation. The resulting product is the NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid). To calculate the difference-from-average temperatures shown on these maps—also called temperature anomalies—NCEI scientists take the average temperature in each 5x5 km grid box for a single month and year, and subtract its 1991-2020 average for the same month. If the result is a positive number, the region was warmer than average. A negative result means the region was cooler than usual. Q: What do the colors mean? A: Shades of blue show places where average monthly temperatures were below their long-term average for the month. Areas shown in shades of pink to red had average temperatures that were warmer than usual. The darker the shade of red or blue, the larger the difference from the long-term average temperature. White and very light areas show where average monthly temperature was the same as or very close to the long-term average. Q: Why do these data matter? A: Comparing an area’s recent temperature to its long-term average can tell how warm or how cool the area is compared to usual. Temperature anomalies also give us a frame of reference to better compare locations. For example, two areas might have each had recent temperatures near 70°F, but 70°F could be above average for one location while below average for another. Knowing an area is much warmer or much cooler than usual can encourage people to pay close attention to on-the-ground conditions that affect daily life and decisions. People check maps like this to judge crop progress, estimate energy use, consider snow and lake ice melt; and to understand impacts on wildfire regimes. Q: How did you produce these snapshots? A: Data Snapshots are derivatives of existing data products: to meet the needs of a broad audience, we present the source data in a simplified visual style. This set of snapshots is based on NClimGrid climate data produced by and available from the National Centers for Environmental Information (NCEI). To produce our images, we invoke a set of scripts that access the source data and represent them according to our selected color ramps on our base maps. Q: Data Format Description A: NetCDF (Version: 4) Additional information The data used in these snapshots can be downloaded from different places and in different formats. We used these specific data sources: NClimGrid Average Temperature NClimGrid Temperature Normals References NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid) NOAA Monthly U.S. Climate Divisional Database (NClimDiv) Improved Historical Temperature and Precipitation Time Series for U.S. Climate Divisions NCEI Monthly National Analysis Cl

  8. Climate.gov Data Snapshots: Temperature - US Monthly Average

    • datalumos.org
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Oceanic and Atmospheric Administration (2025). Climate.gov Data Snapshots: Temperature - US Monthly Average [Dataset]. http://doi.org/10.3886/E233201V1
    Explore at:
    Dataset updated
    Jun 17, 2025
    Dataset authored and provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Q: What was the average temperature for the month? A: Colors show the average monthly temperature across the contiguous United States. White and very light areas had average temperatures near 50°F. Blue areas on the map were cooler than 50°F; the darker the blue, the cooler the average temperature. Orange to red areas were warmer than 50°F; the darker the shade, the warmer the monthly average temperature. Q: Where do these measurements come from? A: Daily temperature readings come from weather stations in the Global Historical Climatology Network (GHCN-D). Volunteer observers or automated instruments collect the highest and lowest temperature of the day at each station over the entire month, and submit them to the National Centers for Environmental Information (NCEI). After scientists check the quality of the data to omit any systematic errors, they calculate each station’s monthly average of daily mean temperatures, then plot it on a 5x5 km gridded map. To fill in the grid at locations without stations, a computer program interpolates (or estimates) values, accounting for the distribution of stations and various physical relationships, such as the way temperature changes with elevation. The resulting product is the NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid). Q: What do the colors mean? A: Shades of blue show areas that had monthly average temperatures below 50°F. The darker the shade of blue, the lower the average temperature. Areas shown in shades of orange and red had average temperatures above 50°F. The darker the shade of orange or red, the higher the average temperature. White or very light colors show areas where the average temperature was near 50°F. Q: Why do these data matter? A: The 5x5km NClimGrid data allow scientists to report on recent temperature conditions and track long-term trends at a variety of spatial scales. The gridded cells are used to create statewide, regional and national snapshots of climate conditions. Energy companies use this information to estimate demand for heating and air conditioning. Agricultural businesses also use these data to optimize timing of planting, harvesting, and putting livestock to pasture. Q: How did you produce these snapshots? A: Data Snapshots are derivatives of existing data products; to meet the needs of a broad audience, we present the source data in a simplified visual style. This set of snapshots is based on NClimGrid climate data produced by and available from the National Centers for Environmental Information (NCEI). To produce our images, we invoke a set of scripts that access the source data and represent them according to our selected color ramps on our base maps. Additional information The data used in these snapshots can be downloaded from different places and in different formats. We used these specific data sources: NClimGrid Average Temperature References NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid) NOAA Monthly U.S. Climate Divisional Database (NClimDiv) Improved Historical Temperature and Precipitation Time Series for U.S. Climate Divisions) NCEI Monthly National Analysis) Climate at a Glance - Data Information) NCEI Climate Monitoring - All Products Source: https://www.climate.gov/maps-data/data-snapshots/data-source/temperature-us-monthly-averageThis upload includes two additional files:* Temperature - US Monthly Average _NOAA Climate.gov.pdf is a screenshot of the main Climate.gov site for these snapshots.* Cimate_gov_ Data Snapshots.pdf is a screenshot of the data download page for the full-resolution files.

  9. MIDAS Open: UK daily temperature data, v202407

    • catalogue.ceda.ac.uk
    • data-search.nerc.ac.uk
    Updated Aug 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Met Office (2024). MIDAS Open: UK daily temperature data, v202407 [Dataset]. https://catalogue.ceda.ac.uk/uuid/b7c6295b72c54fa9bcd8308fea2727e7
    Explore at:
    Dataset updated
    Aug 6, 2024
    Dataset provided by
    Centre for Environmental Data Analysishttp://www.ceda.ac.uk/
    Authors
    Met Office
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Time period covered
    Jan 1, 1853 - Dec 31, 2023
    Area covered
    Description

    The UK daily temperature data contain maximum and minimum temperatures (air, grass and concrete slab) measured over a period of up to 24 hours. The measurements were recorded by observation stations operated by the Met Office across the UK and transmitted within NCM, DLY3208 or AWSDLY messages. The data span from 1853 to 2023. For details on measurement techniques, including calibration information and changes in measurements, see section 5.2 of the MIDAS User Guide linked to from this record. Soil temperature data may be found in the UK soil temperature datasets linked from this record.

    This version supersedes the previous version of this dataset and a change log is available in the archive, and in the linked documentation for this record, detailing the differences between this version and the previous version. The change logs detail new, replaced and removed data. These include the addition of data for calendar year 2023.

    This dataset is part of the Midas-open dataset collection made available by the Met Office under the UK Open Government Licence, containing only UK mainland land surface observations owned or operated by the Met Office. It is a subset of the fuller, restricted Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations dataset, also available through the Centre for Environmental Data Analysis - see the related dataset section on this record. Currently this represents approximately 95% of available daily temperature observations within the full MIDAS collection.

  10. Daily Temperature of Major Cities

    • kaggle.com
    Updated Jun 5, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SRK (2020). Daily Temperature of Major Cities [Dataset]. https://www.kaggle.com/sudalairajkumar/daily-temperature-of-major-cities/notebooks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 5, 2020
    Dataset provided by
    Kaggle
    Authors
    SRK
    Description

    Context

    Global warming is the ongoing rise of the average temperature of the Earth's climate system and has been demonstrated by direct temperature measurements and by measurements of various effects of the warming - Wikipedia

    So a dataset on the temperature of major cities of the world will help analyze the same. Also weather information is helpful for a lot of data science tasks like sales forecasting, logistics etc.

    Thanks to University of Dayton, the dataset is available as separate txt files for each city here. The data is available for research and non-commercial purposes only.. Please refer to this page for license.

    Content

    Daily level average temperature values is present in city_temperature.csv file

    Acknowledgements

    University of Dayton for making this dataset available in the first place!

    Photo credits: James Day on Unsplash

    Inspiration

    Some ideas are: 1. How is the average temperature of the world changing over time? 2. Is the temperature information helpful for other forecasting tasks?

  11. T

    TEMPERATURE by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Oct 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). TEMPERATURE by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/temperature
    Explore at:
    xml, csv, json, excelAvailable download formats
    Dataset updated
    Oct 27, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for TEMPERATURE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  12. Daily temperature, 1909 - 2019

    • data.mfe.govt.nz
    csv, dbf (dbase iii) +4
    Updated Oct 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry for the Environment (2020). Daily temperature, 1909 - 2019 [Dataset]. https://data.mfe.govt.nz/table/105056-daily-temperature-1909-2019/
    Explore at:
    mapinfo tab, csv, mapinfo mif, geodatabase, geopackage / sqlite, dbf (dbase iii)Available download formats
    Dataset updated
    Oct 14, 2020
    Dataset provided by
    Ministry For The Environmenthttps://environment.govt.nz/
    Authors
    Ministry for the Environment
    License

    https://data.mfe.govt.nz/license/attribution-4-0-international/https://data.mfe.govt.nz/license/attribution-4-0-international/

    Description

    DATA SOURCE: National Institute for Water and Atmospheric Research (NIWA) [Technical report available at https://www.mfe.govt.nz/publications/environmental-reporting/ministry-environment-atmosphere-and-climate-report-2020-updated]

    Adapted by Ministry for the Environment and Statistics New Zealand to provide for environmental reporting transparency

    This lowest aggregation dataset, was used to develop three ‘Our Atmosphere and Climate’ indicators. See Statistics New Zealand indicator links for specific methodologies and state/trend datasets (see ‘Shiny App’ downloads). 1) Temperature (https://www.stats.govt.nz/ndicators/temperature) 2) First and last frost days (https://www.stats.govt.nz/ndicators/frost-and-warm-days) 3) Growing degree days (https://www.stats.govt.nz/ndicators/growing-degree-days)

    IMPORTANT INFORMATION Due to the size of this dataset (111 MB), a 32-bit version of Microsoft Excel will only display/download ~ 1 million rows. A DBMS, statistical or GIS application is needed to view the entire dataset.

    This dataset shows two measures of temperature change in New Zealand: New Zealand’s national temperature from NIWA’s ‘seven-station’ temperature series from 1909 to 2019, and temperature at 30 sites around the country from at least 1972 to 2019. For national temperature, we report daily average, minimum and maximum temperatures. We also present New Zealand national and global temperature anomalies.

    More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.

  13. r

    Average Daily Minimum Temperature

    • jkan.riskdatalibrary.org
    json
    Updated Mar 30, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Average Daily Minimum Temperature [Dataset]. https://jkan.riskdatalibrary.org/datasets/south-africa-average-daily-minimum-temperature/
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Mar 30, 2022
    Description

    Average daily minimum temperature. The baseline is calculated for 2001–2020, with projections for 2021–2040 and 2041–2060 under two climate scenarios: RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions).

  14. r

    Average Daily Maximum Temperature

    • jkan.riskdatalibrary.org
    json
    Updated Mar 30, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Average Daily Maximum Temperature [Dataset]. https://jkan.riskdatalibrary.org/datasets/south-africa-average-daily-maximum-temperature/
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Mar 30, 2022
    Description

    Average daily maximum temperature. The baseline is calculated for 2001–2020, with projections for 2021–2040 and 2041–2060 under two climate scenarios: RCP 4.5 (moderate emissions) and RCP 8.5 (high emissions).

  15. d

    U.S. Daily Gridded Precipitation and Temperature Climate Normals for...

    • catalog.data.gov
    Updated Jul 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (Point of Contact) (2025). U.S. Daily Gridded Precipitation and Temperature Climate Normals for 1991-2020 (NCEI Accession 0259962) [Dataset]. https://catalog.data.gov/dataset/u-s-daily-gridded-precipitation-and-temperature-climate-normals-for-1991-2020-ncei-accession-02
    Explore at:
    Dataset updated
    Jul 1, 2025
    Dataset provided by
    (Point of Contact)
    Area covered
    United States
    Description

    The U.S. Daily Gridded Climate Normals Datasets are derived from the nClimGrid-Daily Dataset newly produced by the NOAA National Centers for Environmental Information (NOAA NCEI). Climatologically aided interpolation was used to transform an extensive set of station temperature and precipitation values into grids at a high spatial resolution of 1/24° latitude/longitude, or approximately 5 km. The values for each individual grid cell change smoothly from day-to-day through the application of the same methods used to generate daily normals for observation stations. The averages of all daily gridded temperature normals are constrained by a harmonic fit to equal the monthly gridded. A moving window averaging technique is used to generate smooth daily gridded precipitation normals which are then also adjusted by month so that the sum of the days would equal the monthly gridded normals. Daily gridded climate normals are calculated for total precipitation, and maximum, minimum and average temperature for the conterminous U.S

  16. c

    Average Daily Temperature (NOAA)

    • conservation.gov
    • datalibrary-lnr.hub.arcgis.com
    • +1more
    Updated Jun 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    atlas_data (2023). Average Daily Temperature (NOAA) [Dataset]. https://www.conservation.gov/maps/37ac224dab1e42ad876cd0b75871d4cb
    Explore at:
    Dataset updated
    Jun 6, 2023
    Dataset authored and provided by
    atlas_data
    Area covered
    Description

    This data set is used for verification by NOAA/CPC. The data is global GTS data and is gridded using the Shepard Algorithm. The values are the max/min for 6Z-6Z.These data have been made publicly available from an authoritative source other than this Atlas and data should be obtained directly from that source for any re-use. See the original metadata from the authoritative source for more information about these data and use limitations. The authoritative source of these data can be found at the following location: NOAA Physical Sciences Laboratory CPC Global Unified Temperature

  17. U.S. Daily Climate Normals (1981-2010)

    • catalog.data.gov
    • datadiscoverystudio.org
    • +3more
    Updated Sep 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (Point of Contact) (2023). U.S. Daily Climate Normals (1981-2010) [Dataset]. https://catalog.data.gov/dataset/u-s-daily-climate-normals-1981-20101
    Explore at:
    Dataset updated
    Sep 19, 2023
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    Area covered
    United States
    Description

    The U.S. Daily Climate Normals for 1981 to 2010 are 30-year averages of meteorological parameters for thousands of U.S. stations located across the 50 states, as well as U.S. territories, commonwealths, the Compact of Free Association nations, and one station in Canada. NOAA Climate Normals are a large suite of data products that provide users with many tools to understand typical climate conditions for thousands of locations across the United States. As many NWS stations as possible are used, including those from the NWS Cooperative Observer Program (COOP) Network as well as some additional stations that have a Weather Bureau Army-Navy (WBAN) station identification number, including stations from the Climate Reference Network (CRN). The comprehensive U.S. Climate Normals dataset includes various derived products including daily air temperature normals (including maximum and minimum temperature normal, heating and cooling degree day normal, and others), precipitation normals (including snowfall and snow depth, percentiles, frequencies and other), and hourly normals (all normal derived from hourly data including temperature, dew point, heat index, wind chill, wind, cloudiness, heating and cooling degree hours, pressure normals). Users can access the data either by product or by station. Included in the dataset is extensive documentation to describe station metadata, filename descriptions, and methodology of producing the data. All data utilized in the computation of the 1981-2010 Climate Normals were taken from the ISD Lite (a subset of derived Integrated Surface Data), the Global Historical Climatology Network-Daily dataset, and standardized monthly temperature data (COOP). These source datasets (including intermediate datasets used in the computation of products) are also archived at the NOAA NCDC.

  18. Turkish Cities Daily Weather Dataset

    • kaggle.com
    Updated Jun 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bahadır Bör (2025). Turkish Cities Daily Weather Dataset [Dataset]. https://www.kaggle.com/datasets/bahadirbor/turkish-cities-daily-weather-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 2, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Bahadır Bör
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    Türkiye
    Description

    Overview This comprehensive weather dataset contains daily meteorological observations for 5 major Turkish cities spanning from 2020 to 2025. The data has been systematically collected from official meteorological stations and processed into analysis-ready format, making it ideal for climate analysis, machine learning projects, and research applications.

    Data Collection & Processing The dataset was created using a custom Python pipeline that:

    • Extracts hourly weather data from Meteostat API
    • Aggregates hourly observations into meaningful daily statistics
    • Applies statistical functions (mean, max, min, sum, mode) to derive insights
    • Ensures data quality through systematic cleaning and validation

    Cities Covered

    • Istanbul (Station ID: 17060) - Turkey's largest city and economic hub
    • Ankara (Station ID: LTAB0) - Capital city with continental climate
    • Izmir (Station ID: 17218) - Major Aegean coastal city
    • Bursa (Station ID: 17116) - Industrial city in northwestern Turkey
    • Adana (Station ID: 17352) - Mediterranean region's major city

    Data Sources Primary data sourced from official meteorological stations via Meteostat API, ensuring reliability and accuracy of observations. Station selection based on data availability, geographic coverage, and measurement quality.

    Dataset Columns

    The generated CSV files contain the following columns:

    • date: Date
    • daily_avg_temp: Daily average temperature (°C)
    • daily_max_temp: Daily maximum temperature (°C)
    • daily_min_temp: Daily minimum temperature (°C)
    • daily_avg_wind_speed: Daily average wind speed
    • daily_max_wind_speed: Daily maximum wind speed
    • daily_min_wind_speed: Daily minimum wind speed
    • wind_direction: Dominant wind direction
    • avg_relative_humidity: Average relative humidity (%)
    • avg_dew_point: Average dew point (°C)
    • avg_pressure: Average pressure (hPa)
    • precipitation_sum: Total precipitation amount (mm)
    • rainy_hour_sum: Number of rainy hours
  19. G

    Mean Temperature Difference From Normal

    • open.canada.ca
    • catalogue.arctic-sdi.org
    esri rest, geotif +3
    Updated Sep 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agriculture and Agri-Food Canada (2024). Mean Temperature Difference From Normal [Dataset]. https://open.canada.ca/data/en/dataset/da88316e-ec63-4b8b-a1fc-1f06545a8500
    Explore at:
    wms, html, pdf, esri rest, geotifAvailable download formats
    Dataset updated
    Sep 10, 2024
    Dataset provided by
    Agriculture and Agri-Food Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Mean Temperature Difference From Normal values are computed by subtracting the normal monthly average temperature from the average monthly temperature of the month. The average monthly temperature is computed by obtaining the mean value of average daily temperatures for a month. If the month was colder than normal the value computed will be negative and if it was warmer the value will be positive.

  20. Average daily temperatures in the United Kingdom 2001-2024

    • statista.com
    Updated Mar 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average daily temperatures in the United Kingdom 2001-2024 [Dataset]. https://www.statista.com/statistics/322616/daily-average-temperatures-in-the-united-kingdom-uk/
    Explore at:
    Dataset updated
    Mar 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United Kingdom
    Description

    The daily average temperature in the United Kingdom (UK) has remained relatively stable since 2001, with temperatures rarely straying below 10 degrees Celsius. In 2024, the UK had an average daily temperature of 11.9 degrees Celsius. This was the highest average daily temperature recorded since the turn of the century. British summertime Britain is not known for its blisteringly hot summer months, with the average temperatures in this season varying greatly since 1990. In 1993, the average summer temperature was as low as 13.39 degrees Celsius, whilst 2018 saw a peak of 15.8 degrees Celsius. In that same year, the highest mean temperature occurred in July at 17.2 degrees Celsius. Variable weather Due to its location and the fact that it is an island, the United Kingdom experiences a diverse range of weather, sometimes in the same day. It is in an area where five air masses meet, creating a weather front. Each brings different weather conditions, such as hot, dry air from North Africa and wet and cold air from the Arctic. Temperatures across the UK tend to be warmest in England.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Average annual temperature in the United States 1895-2024 [Dataset]. https://www.statista.com/statistics/500472/annual-average-temperature-in-the-us/
Organization logo

Average annual temperature in the United States 1895-2024

Explore at:
5 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 10, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

The average temperature in the contiguous United States reached 55.5 degrees Fahrenheit (13 degrees Celsius) in 2024, approximately 3.5 degrees Fahrenheit higher than the 20th-century average. These levels represented a record since measurements started in ****. Monthly average temperatures in the U.S. were also indicative of this trend. Temperatures and emissions are on the rise The rise in temperatures since 1975 is similar to the increase in carbon dioxide emissions in the U.S. Although CO₂ emissions in recent years were lower than when they peaked in 2007, they were still generally higher than levels recorded before 1990. Carbon dioxide is a greenhouse gas and is the main driver of climate change. Extreme weather Scientists worldwide have found links between the rise in temperatures and changing weather patterns. Extreme weather in the U.S. has resulted in natural disasters such as hurricanes and extreme heat waves becoming more likely. Economic damage caused by extreme temperatures in the U.S. has amounted to hundreds of billions of U.S. dollars over the past few decades.

Search
Clear search
Close search
Google apps
Main menu