2 datasets found
  1. Viewshed

    • rwanda.africageoportal.com
    • africageoportal.com
    • +3more
    Updated Jul 4, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2013). Viewshed [Dataset]. https://rwanda.africageoportal.com/content/1ff463dbeac14b619b9edbd7a9437037
    Explore at:
    Dataset updated
    Jul 4, 2013
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Viewshed analysis layer is used to identify visible areas. You specify the places you are interested in, either from a file or interactively, and the Viewshed service combines this with Esri-curated elevation data to create output polygons of visible areas. Some questions you can answer with the Viewshed task include:What areas can I see from this location? What areas can see me?Can I see the proposed wind farm?What areas can be seen from the proposed fire tower?The maximum number of input features is 1000.Viewshed has the following optional parameters:Maximum Distance: The maximum distance to calculate the viewshed.Maximum Distance Units: The units for the Maximum Distance parameter. The default is meters.DEM Resolution: The source elevation data; the default is 90m resolution SRTM. Other options include 30m, 24m, 10m, and Finest.Observer Height: The height above the surface of the observer. The default value of 1.75 meters is an average height of a person. If you are looking from an elevation location such as an observation tower or a tall building, use that height instead.Observer Height Units: The units for the Observer Height parameter. The default is meters.Surface Offset: The height above the surface of the object you are trying to see. The default value is 0. If you are trying to see buildings or wind turbines add their height here.Surface Offset Units: The units for the Surface Offset parameter. The default is meters.Generalize Viewshed Polygons: Determine if the viewshed polygons are to be generalized or not. The viewshed calculation is based upon a raster elevation model which creates a result with stair-stepped edges. To create a more pleasing appearance, and improve performance, the default behavior is to generalize the polygons. This generalization will not change the accuracy of the result for any location more than one half of the DEM's resolution.By default, this tool currently works worldwide between 60 degrees north and 56 degrees south based on the 3 arc-second (approximately 90 meter) resolution SRTM dataset. Depending upon the DEM resolution pick by the user, different data sources will be used by the tool. For 24m, tool will use global dataset WorldDEM4Ortho (excluding the counties of Azerbaijan, DR Congo and Ukraine) 0.8 arc-second (approximately 24 meter) from Airbus Defence and Space GmbH. For 30m, tool will use 1 arc-second resolution data in North America (Canada, United States, and Mexico) from the USGS National Elevation Dataset (NED), SRTM DEM-S dataset from Geoscience Australia in Australia and SRTM data between 60 degrees north and 56 degrees south in the remaining parts of the world (Africa, South America, most of Europe and continental Asia, the East Indies, New Zealand, and islands of the western Pacific). For 10m, tool will use 1/3 arc-second resolution data in the continental United States from USGS National Elevation Dataset (NED) and approximately 10 meter data covering Netherlands, Norway, Finland, Denmark, Austria, Spain, Japan Estonia, Latvia, Lithuania, Slovakia, Italy, Northern Ireland, Switzerland and Liechtenstein from various authoritative sources.To learn more, read the developer documentation for Viewshed or follow the Learn ArcGIS exercise called I Can See for Miles and Miles. To use this Geoprocessing service in ArcGIS Desktop 10.2.1 and higher, you can either connect to the Ready-to-Use Services, or create an ArcGIS Server connection. Connect to the Ready-to-Use Services by first signing in to your ArcGIS Online Organizational Account:Once you are signed in, the Ready-to-Use Services will appear in the Ready-to-Use Services folder or the Catalog window:If you would like to add a direct connection to the Elevation ArcGIS Server in ArcGIS for Desktop or ArcGIS Pro, use this URL to connect: https://elevation.arcgis.com/arcgis/services. You will also need to provide your account credentials. ArcGIS for Desktop:ArcGIS Pro:The ArcGIS help has additional information about how to do this:Learn how to make a ArcGIS Server Connection in ArcGIS Desktop. Learn more about using geoprocessing services in ArcGIS Desktop.This tool is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.

  2. n

    Tall, heterogenous forests improve prey capture, delivery to nestlings, and...

    • data.niaid.nih.gov
    • datadryad.org
    • +1more
    zip
    Updated Dec 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zachary Wilkinson; H. Anu Kramer; Gavin Jones; Ceeanna Zulla; Kate McGinn; Josh Barry; Sarah Sawyer; Richard Tanner; R. J. Gutiérrez; John Keane; M. Zachariah Peery (2022). Tall, heterogenous forests improve prey capture, delivery to nestlings, and reproductive success for Spotted Owls in southern California [Dataset]. http://doi.org/10.5061/dryad.h70rxwdnq
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 12, 2022
    Dataset provided by
    University of Wisconsin–Madison
    US Forest Service
    Tanner environmental services
    Rocky Mountain Research Station
    University of Minnesota
    Authors
    Zachary Wilkinson; H. Anu Kramer; Gavin Jones; Ceeanna Zulla; Kate McGinn; Josh Barry; Sarah Sawyer; Richard Tanner; R. J. Gutiérrez; John Keane; M. Zachariah Peery
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    California, Southern California
    Description

    Predator-prey interactions can be profoundly influenced by vegetation conditions, particularly when predator and prey prefer different habitats. Although such interactions have proven challenging to study for small and cryptic predators, recent methodological advances substantially improve opportunities for understanding how vegetation influences prey acquisition and strengthen conservation planning for this group. The California Spotted Owl (Strix occidentalis occidentalis) is well-known as an old-forest species of conservation concern, but whose primary prey in many regions – woodrats (Neotoma spp.) – occurs in a broad range of vegetation conditions. Here, we used high-resolution GPS tracking coupled with nest video monitoring to test the hypothesis that prey capture rates vary as a function of vegetation structure and heterogeneity, with emergent, reproductive consequences for Spotted Owls in Southern California. Foraging owls were more successful capturing prey, including woodrats, in taller multilayered forests, in areas with higher heterogeneity in vegetation types, and near forest-chaparral edges. Consistent with these findings, Spotted Owls delivered prey items more frequently to nests in territories with greater heterogeneity in vegetation types and delivered prey biomass at a higher rate in territories with more forest-chaparral edge. Spotted Owls had higher reproductive success in territories with higher mean canopy cover, taller trees, and more shrubby vegetation. Collectively, our results provide additional and compelling evidence that a mosaic of large tree forests with complex canopy and shrubby vegetation increases access to prey with potential reproductive benefits to Spotted Owls in landscapes where woodrats are a primary prey item. We suggest that forest management activities that enhance forest structure and vegetation heterogeneity could help curb declining Spotted Owl populations while promoting resilient ecosystems in some regions. Methods See README DOCUMENT Naming conventions *RSF or prey refers to prey capture analysis *delivery in a file name refers to delivery rate analysis *repro in a filename means that file is for the delivery rate analysis

    Setup *files with vegetation data should work with minimal alteration(will need to specify working directory) with associated R code for each analysis *Shapefiles were made in ArcGIS pro but they can be opened with any GIS software such as QGIS.

    Locational data files

    NOTE LOCATIONAL DATA IS SHIFTED AND ROTATED FROM THE ORIGINAL -due to the sensitive nature of this species. The locational_data includes: * All_2021_owls_shifted * Point file showing all GPS tag locations for prey capture analysis * Attributes include: * TERRITORY ID: Numerical identifier for each bird * Year: year GPS tag was recorded * Month: month GPS tag was recorded * Day: Day GPS tag was recorded * Hour: Hour GPS tag was recorded * Minute: minute GPS tag was recorded * All_linked_polygons_shifted * Polygon file showing capture polygons for prey capture analysis * Attributes include * Territory ID: numerical identifier for each bird * Polygon id: numerical identifier for each capture polygon for each bird * Shape area: area of each polygon * SBNF_camera_nests_shifted * Point file showing spotted owl nests for prey capture analysis * Attributes include * Territory id: numerical identifier for each bird * C95_KDE_2021_socal_shifted * Polygon file of owls 95% kernel density estimate for prey delivery rate analysis * Attributes include * Id: numerical identifier for each territory(bird) * Area: area of each polygon * San_bernardino_territory_centers * Point file showing Territory centers for historical SBNF territories – shifted for repro success analysis * Attributes include * Repro Territory id: unique identifier for each territory in broader set of territories

    Besides the sifted locational data we have included - For the Resource selection function vegetation data, for the delivery analysis we have included an overview of prey deliveries by territory and vegetation data used, and for the reproductive analysis we have again included vegetation data as well as an overview of reproductive success. these are labled as follows:

    Files for the prey capture analysis

    Socal_RSF_data.txt

    *description: Text file with vegetation data paired with capture locations both buffered polygons used in prey capture analysis and the unbuffered ones which were not used.(Pair with Socal_rsf_code R script) *format: .txt *Dimensions: 2641 X 35

    *Variables: *ORIG_fid: completely unique identifier for each row *unique_id: unique identifier for each capture polygon(shared between a buffered capture location and its unbuffered pair) *territory_id: unique numerical idenifier of territory *Polygon_id: within territory unique prey capture polygon id *buff: bianary buffered or unbuffered (1=buffered, 0=unbuffered) *used: bianary used=1 available=0 *prey_type: prey species associated with polygon unkn:unknown, flsq:flying squirel, wora:woodrat, umou:mouse, pogo:pocketgopher, grsq: grey squirel, ubrd: unknown bird, umol:unknown mole, uvol, unknown vole. *area_sqm: area of polygon in square meters *CanCov_2020_buff: average canopy cover in polygon *CanHeight_2020_buff: average canopy height in polygon *Canlayer_2020_buff: average number of canopy layers in polygon *Understory_density_2020_buff: average brushy vegetation density in polygon *pix_COUNT: count of pixels in polygon (not needed for analysis) *p_chaparral: percent of polygon comprised of chaparral habitat
    *p_conifer: percent of polygon comprised of conifer habitat *p_hardwood: percent of polygon comprised of hardwood habitat *p_other: percent of polygon comprised of other habitat types *Calveg_cap_CHt_gt10_CC_30to70_intersect_buff: percent of polygon comprised of trees taller than 10m with 30-70percent canopy cover (used to check data) *Calveg_cap_CHt_gt10_CCgt70_intersect_buff: percent of polygon comprised of trees taller than 10m with greater than 70percent canopy cover (used to check data) *Calveg_cap_CHt_lt10_intersect_buff:percent of polygon comprised of trees less than 10m (used to check data)
    *p_sm_conifer: percent of polygon comprised of conifer trees less than 10m (used to calculate diversity)
    *p_lrg_conifer_sc: percent of polygon comprised of conifer forests >10m tall with sparse canopy(used to calculate diversity) *p_large_conifer_dc: percent of polygon comprised of conifer forests greater than 10m tall with dense canopy (used to calculate diversity) *p_sm_hard: percent of polygon comprised of hardwood trees less than 10m (used to calculate diversity) *p_lrg_hard_sc: percent of polygon comprised of hardwood forests greater than 10m with sparse canopy(used to calculate diversity)
    *p_lrg_hard_dc: percent of polygon comprised of hardwood forests greater than 10m dense canopy (used to calculate diversity) *p_forests_gt10_verysparse_CC: percent of polygon comprised of trees less than 10m with very sparse canopies (used to calculate diversity) *primary_edge: total distance in meters of primary edge in a polygon
    *normalized_by_area_primary_edge: total distance in m of primary edge in a polygon divided by the area of the polygon
    *secondary_edge: total distance in meters of secondary edge in a polygon *normalized_by_area_secondary_edge:total distance in m of secondary edge in a polygon divided by the area of the polygon *coarse_diversity: shannon diversity in each polygon (see methods below) *fine_diversity: shannon diversity in each polygon (see methods below) *nest_distance: distance from polygon center to nest for each polygon in meters

    For the Delivery analysis

    note: For information on determining average prey biomass see methods as well as zulla et al 2022 for flying squirels and woodrat masses Zulla CJ, Jones GM, Kramer HA, Keane JJ, Roberts KN, Dotters BP, Sawyer SC, Whitmore SA, Berigan WJ, Kelly KG, Gutiérrez RJ, Peery MZ. Forest heterogeneity outweighs movement costs by enhancing hunting success and fitness in spotted owls. doi:10.21203/rs.3.rs-1370884/v1. PPR:PPR470028.

    prey_deliveries_byterritory.csv *Description: overview file of prey delivered to each nest *format: .csv *dimensions:332 x 8

    *Variables: *SITE: Unique numerical identifier for each territory *DATE: date prey was delivered (in UTC) *CAMERA TIME: time in UTC prey was delivered *VIDEO TIME: time on video prey was delivered - unrelated to real time just original file
    *PREY ITEM: prey species delivered to nest unkn:unknown, uncr: unknown if delivery(removed from eventual analysis due to

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri (2013). Viewshed [Dataset]. https://rwanda.africageoportal.com/content/1ff463dbeac14b619b9edbd7a9437037
Organization logo

Viewshed

Explore at:
Dataset updated
Jul 4, 2013
Dataset authored and provided by
Esrihttp://esri.com/
Area covered
Description

The Viewshed analysis layer is used to identify visible areas. You specify the places you are interested in, either from a file or interactively, and the Viewshed service combines this with Esri-curated elevation data to create output polygons of visible areas. Some questions you can answer with the Viewshed task include:What areas can I see from this location? What areas can see me?Can I see the proposed wind farm?What areas can be seen from the proposed fire tower?The maximum number of input features is 1000.Viewshed has the following optional parameters:Maximum Distance: The maximum distance to calculate the viewshed.Maximum Distance Units: The units for the Maximum Distance parameter. The default is meters.DEM Resolution: The source elevation data; the default is 90m resolution SRTM. Other options include 30m, 24m, 10m, and Finest.Observer Height: The height above the surface of the observer. The default value of 1.75 meters is an average height of a person. If you are looking from an elevation location such as an observation tower or a tall building, use that height instead.Observer Height Units: The units for the Observer Height parameter. The default is meters.Surface Offset: The height above the surface of the object you are trying to see. The default value is 0. If you are trying to see buildings or wind turbines add their height here.Surface Offset Units: The units for the Surface Offset parameter. The default is meters.Generalize Viewshed Polygons: Determine if the viewshed polygons are to be generalized or not. The viewshed calculation is based upon a raster elevation model which creates a result with stair-stepped edges. To create a more pleasing appearance, and improve performance, the default behavior is to generalize the polygons. This generalization will not change the accuracy of the result for any location more than one half of the DEM's resolution.By default, this tool currently works worldwide between 60 degrees north and 56 degrees south based on the 3 arc-second (approximately 90 meter) resolution SRTM dataset. Depending upon the DEM resolution pick by the user, different data sources will be used by the tool. For 24m, tool will use global dataset WorldDEM4Ortho (excluding the counties of Azerbaijan, DR Congo and Ukraine) 0.8 arc-second (approximately 24 meter) from Airbus Defence and Space GmbH. For 30m, tool will use 1 arc-second resolution data in North America (Canada, United States, and Mexico) from the USGS National Elevation Dataset (NED), SRTM DEM-S dataset from Geoscience Australia in Australia and SRTM data between 60 degrees north and 56 degrees south in the remaining parts of the world (Africa, South America, most of Europe and continental Asia, the East Indies, New Zealand, and islands of the western Pacific). For 10m, tool will use 1/3 arc-second resolution data in the continental United States from USGS National Elevation Dataset (NED) and approximately 10 meter data covering Netherlands, Norway, Finland, Denmark, Austria, Spain, Japan Estonia, Latvia, Lithuania, Slovakia, Italy, Northern Ireland, Switzerland and Liechtenstein from various authoritative sources.To learn more, read the developer documentation for Viewshed or follow the Learn ArcGIS exercise called I Can See for Miles and Miles. To use this Geoprocessing service in ArcGIS Desktop 10.2.1 and higher, you can either connect to the Ready-to-Use Services, or create an ArcGIS Server connection. Connect to the Ready-to-Use Services by first signing in to your ArcGIS Online Organizational Account:Once you are signed in, the Ready-to-Use Services will appear in the Ready-to-Use Services folder or the Catalog window:If you would like to add a direct connection to the Elevation ArcGIS Server in ArcGIS for Desktop or ArcGIS Pro, use this URL to connect: https://elevation.arcgis.com/arcgis/services. You will also need to provide your account credentials. ArcGIS for Desktop:ArcGIS Pro:The ArcGIS help has additional information about how to do this:Learn how to make a ArcGIS Server Connection in ArcGIS Desktop. Learn more about using geoprocessing services in ArcGIS Desktop.This tool is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.

Search
Clear search
Close search
Google apps
Main menu