The United States has an average elevation of roughly 2,500 feet (763m) above sea level, however there is a stark contrast in elevations across the country. Highest states Colorado is the highest state in the United States, with an average elevation of 6,800 feet (2,074m) above sea level. The 10 states with the highest average elevation are all in the western region of the country, as this is, by far, the most mountainous region in the country. The largest mountain ranges in the contiguous western states are the Rocky Mountains, Sierra Nevada, and Cascade Range, while the Appalachian Mountains is the longest range in the east - however, the highest point in the U.S. is Denali (Mount McKinley), found in Alaska. Lowest states At just 60 feet above sea level, Delaware is the state with the lowest elevation. Delaware is the second smallest state, behind Rhode Island, and is located on the east coast. Larger states with relatively low elevations are found in the southern region of the country - both Florida and Louisiana have an average elevation of just 100 feet (31m) above sea level, and large sections of these states are extremely vulnerable to flooding and rising sea levels, as well as intermittent tropical storms.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The water-budget components geodatabase contains selected data from maps in the, "Selected Approaches to Estimate Water-Budget Components of the High Plains, 1940 through 1949 and 2000 through 2009" report (Stanton and others, 2011).Data were collected and synthesized from existing climate models including the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) (Daly and others, 1994), and the Snow accumulation and ablation model (SNOW-17) (Anderson, 2006), and used in soil-water balance models to compute various components of a water budget. The methodologies used to compute the averages and volumes for the data in this geodatabase are slightly different for different components and models.
NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated bathymetric-topographic DEMs are used to support tsunami forecasting and modeling efforts at the NOAA Center for Tsunami Research, Pacific Marine Environmental Laboratory (PMEL). The DEMs are part of the tsunami forecast system SIFT (Short-term Inundation Forecasting for Tsunamis) currently being developed by PMEL for the NOAA Tsunami Warning Centers, and are used in the MOST (Method of Splitting Tsunami) model developed by PMEL to simulate tsunami generation, propagation, and inundation. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datum of Mean High Water (MHW) and horizontal datum of World Geodetic System 1984 (WGS84). Grid spacings for the DEM ranges from 1/3 arc-second (~10 meters) to 3 arc-seconds (~90 meters).
Bathymetry for Matagorda Bay was derived from twenty-three surveys containing 250,396 soundings. Six overlapping, older, less accurate surveys were omitted, and the overlap from six older surveys was also omitted. The average distance between surveys was 67 meters. The twenty-three surveys used dated from 1934 to 1992. Seven surveys from 1934 and 1935 cover the northeast, northwest, and southern extremes of Matagorda Bay. Sixteen surveys from 1991 and 1992 cover the central and eastern portions of the bay. The range of soundings for the 23 surveys used was 0.2 meters to -26.6 meters at mean low water. Mean high water values between 0.1 and 0.3 meters were assigned to the shoreline. Twenty-nine points were found that were not consistent with the surrounding points; twenty-eight of these were from the same survey. All of these were removed prior to tinning. DEM grid values outside the shoreline (on land) were assigned null values (-32676). Matagorda Bay has twenty-one 7.5 minute DEMs and two one degree DEMs. The 1 degree DEMs were generated from the higher resolution 7.5 minute DEMs which covered the estuary. A Digital Elevation Model (DEM) contains a series of elevations ordered from south to north with the order of the columns from west to east. The DEM is formatted as one ASCII header record (A- record), followed by a series of profile records (B- records) each of which include a short B-record header followed by a series of ASCII integer elevations (typically in units of 1 centimeter) per each profile. The last physical record of the DEM is an accuracy record (C-record). The 7.5-minute DEM (30- by 30-m data spacing) is cast on the Universal Transverse Mercator (UTM) projection. It provides coverage in 7.5- by 7.5-minute blocks. Each product provides the same coverage as a standard USGS 7.5-minute quadrangle but the DEM contains over edge data. Coverage is available for many estuaries of the contiguous United States but is not complete.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The sea level rise (SLR) coastal inundation layers were created using existing federal products: the (1) NOAA Coastal Digital Elevation Models (DEMs) and (2) 2022 Interagency Sea Level Rise Technical Report Data Files. The DEMs for the Continental United States (CONUS) are provided in North American Vertical Datum 1988 (NAVD 88) and were converted to Mean Higher High Water (MHHW) using the NOAA VDatum conversion surfaces; the elevation values are in meters (m). The NOAA Scenarios of Future Mean Sea Level are provided in centimeters (cm). The MHHW DEMs for CONUS were merged and converted to cm and Scenarios of Future Mean Sea Level were subtracted from the merged DEM. Values below 0 represent areas that are below sea level and are “remapped” to 1, all values above 0 are remapped to “No Data”, creating a map that shows only areas impacted by SLR. Areas protected by levees in Louisiana and Texas were then masked or removed from the results.Scenario: For each of the 5 GMSL scenarios (identified by the rise amounts in meters by 2100--0.3 m , 0.5 m. 1.0 m, 1.5 m and 2.0 m), there is a low, medium (med) and high value, corresponding to the 17th, 50th, and 83rd percentiles. Scenarios (15 total): 0.3 - MED, 0.3 - LOW, 0.3 - HIGH, 0.5 - MED, 0.5 - LOW, 0.5 - HIGH, 1.0 - MED, 1.0 - LOW, 1.0 - HIGH, 1.5 - MED, 1.5 - LOW, 1.5 - HIGH, 2.0 - MED, 2.0 - LOW, and 2.0 - HIGH Years (15 total): 2005, 2020, 2030, 2040, 2050, 2060, 2070, 2080, 2090, 2100, 2110, 2120, 2130, 2140, and 2150Report Website: https://oceanservice.noaa.gov/hazards/sealevelrise/sealevelrise-tech-report.htmlGeneral DisclaimerThe data and maps in this tool illustrate the scale of potential flooding, not the exact location, and do not account for erosion, subsidence, or future construction. Water levels are relative to Mean Higher High Water (MHHW) (excludes wind driven tides). The data, maps, and information provided should be used only as a screening-level tool for management decisions. As with all remotely sensed data, all features should be verified with a site visit. Hydroconnectivity was not considered in the mapping process. The data and maps in this tool are provided “as is,” without warranty to their performance, merchantable state, or fitness for any particular purpose. The entire risk associated with the results and performance of these data is assumed by the user. This tool should be used strictly as a planning reference tool and not for navigation, permitting, or other legal purposes.SLR data are not available for Hawaii, Alaska, or U.S. territories at this time.Levees DisclaimerEnclosed levee areas are displayed as gray areas on the maps.Major federal leveed areas were assumed high enough and strong enough to protect against inundation depicted in this viewer, and therefore no inundation was mapped in these regions. Major federal leveed areas were taken from the National Levee Database.Minor (nonfederal) leveed areas were mapped using the best available elevation data that capture leveed features. In some cases, however, breaks in elevation occur along leveed areas because of flood control features being removed from elevation data, limitations of the horizontal and vertical resolution of the elevation data, the occurrence of levee drainage features, and so forth. Flooding behind levees is only depicted if breaks in elevation data occur or if the levee elevations are overtopped by the water surface. At some flood levels, alternate pathways around—not through—levees, walls, dams, and flood gates may exist that allow water to flow into areas protected at lower levels. In general, imperfect levee and elevation data make assessing protection difficult, and small data errors can have large consequences.Citations2022 Sea Level Rise Technical Report - Sweet, W.V., B.D. Hamlington, R.E. Kopp, C.P. Weaver, P.L. Barnard, D. Bekaert, W. Brooks, M. Craghan, G. Dusek, T. Frederikse, G. Garner, A.S. Genz, J.P. Krasting, E. Larour, D. Marcy, J.J. Marra, J. Obeysekera, M. Osler, M. Pendleton, D. Roman, L. Schmied, W. Veatch, K.D. White, and C. Zuzak, 2022: Global and Regional Sea Level Rise Scenarios for the United States: Updated Mean Projections and Extreme Water Level Probabilities Along U.S. Coastlines. NOAA Technical Report NOS 01. National Oceanic and Atmospheric Administration, National Ocean Service, Silver Spring, MD, 111 pp. https://oceanservice.noaa.gov/hazards/sealevelrise/noaa-nostechrpt01-global-regional-SLR-scenarios-US.pdf
NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated bathymetric-topographic DEMs are used to support tsunami forecasting and modeling efforts at the NOAA Center for Tsunami Research, Pacific Marine Environmental Laboratory (PMEL). The DEMs are part of the tsunami forecast system SIFT (Short-term Inundation Forecasting for Tsunamis) currently being developed by PMEL for the NOAA Tsunami Warning Centers, and are used in the MOST (Method of Splitting Tsunami) model developed by PMEL to simulate tsunami generation, propagation, and inundation. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the Canadian Hydrographic Service (CHS), the Puget Sound Lidar Consortium (PSLC), the Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX), Canadian Digital Elevation Data (CDED) and other international, federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datums of Mean High Water (MHW) and North American Vertical Datum of 1988 (NAVD 88) and horizontal datum of World Geodetic System 1984 (WGS 84). Grid spacings for the DEMs range from 1/3 arc-second (~10 meters) to 3 arc-seconds (~30 meters).The DEM Global Mosaic is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), along with the global GEBCO_2014 grid: http://www.gebco.net/data_and_products/gridded_bathymetry_data. NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service is a general-purpose global, seamless bathymetry/topography mosaic. It combines DEMs from a variety of near sea-level vertical datums, such as mean high water (MHW), mean sea level (MSL), and North American Vertical Datum of 1988 (NAVD88). Elevation values have been rounded to the nearest meter, with DEM cell sizes going down to 1 arc-second. Higher-resolution DEMs, with greater elevation precision, are available in the companion NAVD88: http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042 and MHW: http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799 mosaics. By default, the DEMs are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Please see NCEI's corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. In this visualization, the elevations/depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png.A map service showing the location and coverage of land and seafloor digital elevation models (DEMs) available from NOAA's National Centers for Environmental Information (NCEI). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. Layers available in the map service: Layers 1-4: DEMs by Category (includes various DEMs, both hosted at NCEI, and elsewhere on the web); Layers 6-11: NCEI DEM Projects (DEMs hosted at NCEI, color-coded by project); Layer 12: All NCEI Bathymetry DEMs (All bathymetry or bathy-topo DEMs hosted at NCEI).This is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), with vertical units referenced to mean high water (MHW). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service provides data from many individual DEMs combined together as a mosaic. By default, the rasters are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Alternatively, a single DEM or group of DEMs can be isolated using a filter/definition query or using the 'Lock Raster 'mosaic method in ArcMap. This is one of three services displaying collections of DEMs that are referenced to common vertical datums: North American Vertical Datum of 1988 (NAVD88): http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042, Mean High Water (MHW): http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799, and Mean Higher High Water: http://noaa.maps.arcgis.com/home/item.html?id=9471f8d4f43e48109de6275522856696. In addition, the DEM Global Mosaic is a general-purpose global, seamless bathymetry/topography mosaic containing all the DEMs together. Two services are available: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff Elevation Values: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff and Color Shaded Relief: http://noaa.maps.arcgis.com/home/item.html?id=feb3c625dc094112bb5281c17679c769. Please see the corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. This service has several server-side functions available. These can be selected in the ArcGIS Online layer using 'Image Display ', or in ArcMap under 'Processing Templates '. None: The default. Provides elevation/depth values in meters relative to the NAVD88 vertical datum. ColorHillshade: An elevation-tinted hillshade visualization. The depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png. GrayscaleHillshade: A simple grayscale hillshade visualization. SlopeMapRGB: Slope in degrees, visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/SlopeMapLegend_V7b.png. SlopeNumericValues: Slope in degrees, returning the actual numeric values. AspectMapRGB: Orientation of the terrain (0-360 degrees), visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/AspectMapLegendPie_V7b.png. AspectNumericValues: Aspect in degrees, returning the actual numeric values.
NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated bathymetric-topographic DEMs are used to support tsunami forecasting and modeling efforts at the NOAA Center for Tsunami Research, Pacific Marine Environmental Laboratory (PMEL). The DEMs are part of the tsunami forecast system SIFT (Short-term Inundation Forecasting for Tsunamis) currently being developed by PMEL for the NOAA Tsunami Warning Centers, and are used in the MOST (Method of Splitting Tsunami) model developed by PMEL to simulate tsunami generation, propagation, and inundation. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datum of Mean High Water (MHW) and horizontal datum of World Geodetic System 1984 (WGS84). Grid spacings for the DEMs range from 1/3 arc-second (~10 meters) to 3 arc-seconds (~90 meters).The DEM Global Mosaic is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), along with the global GEBCO_2014 grid: http://www.gebco.net/data_and_products/gridded_bathymetry_data. NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service is a general-purpose global, seamless bathymetry/topography mosaic. It combines DEMs from a variety of near sea-level vertical datums, such as mean high water (MHW), mean sea level (MSL), and North American Vertical Datum of 1988 (NAVD88). Elevation values have been rounded to the nearest meter, with DEM cell sizes going down to 1 arc-second. Higher-resolution DEMs, with greater elevation precision, are available in the companion NAVD88: http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042 and MHW: http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799 mosaics. By default, the DEMs are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Please see NCEI's corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. In this visualization, the elevations/depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png.A map service showing the location and coverage of land and seafloor digital elevation models (DEMs) available from NOAA's National Centers for Environmental Information (NCEI). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. Layers available in the map service: Layers 1-4: DEMs by Category (includes various DEMs, both hosted at NCEI, and elsewhere on the web); Layers 6-11: NCEI DEM Projects (DEMs hosted at NCEI, color-coded by project); Layer 12: All NCEI Bathymetry DEMs (All bathymetry or bathy-topo DEMs hosted at NCEI).This is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), with vertical units referenced to mean high water (MHW). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service provides data from many individual DEMs combined together as a mosaic. By default, the rasters are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Alternatively, a single DEM or group of DEMs can be isolated using a filter/definition query or using the 'Lock Raster 'mosaic method in ArcMap. This is one of three services displaying collections of DEMs that are referenced to common vertical datums: North American Vertical Datum of 1988 (NAVD88): http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042, Mean High Water (MHW): http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799, and Mean Higher High Water: http://noaa.maps.arcgis.com/home/item.html?id=9471f8d4f43e48109de6275522856696. In addition, the DEM Global Mosaic is a general-purpose global, seamless bathymetry/topography mosaic containing all the DEMs together. Two services are available: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff Elevation Values: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff and Color Shaded Relief: http://noaa.maps.arcgis.com/home/item.html?id=feb3c625dc094112bb5281c17679c769. Please see the corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. This service has several server-side functions available. These can be selected in the ArcGIS Online layer using 'Image Display ', or in ArcMap under 'Processing Templates '. None: The default. Provides elevation/depth values in meters relative to the NAVD88 vertical datum. ColorHillshade: An elevation-tinted hillshade visualization. The depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png. GrayscaleHillshade: A simple grayscale hillshade visualization. SlopeMapRGB: Slope in degrees, visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/SlopeMapLegend_V7b.png. SlopeNumericValues: Slope in degrees, returning the actual numeric values. AspectMapRGB: Orientation of the terrain (0-360 degrees), visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/AspectMapLegendPie_V7b.png. AspectNumericValues: Aspect in degrees, returning the actual numeric values.
Bathymetry for San Antonio Bay was derived from five surveys containing 32,829 soundings. Two older, overlapping, less accurate surveys were deleted before tinning. The average separation between soundings was 134 meters. The five surveys used dated from 1934 and 1935. The range of soundings was 0.2 meters to -12.2 meters at mean low water. Mean high water values between 0.2 and 0.4 meters were assigned to the shoreline. No points were edited out of the data set. DEM grid values outside the shoreline (on land) were assigned null values (-32676). San Antonio Bay has twelve 7.5 minute DEMs and a single one degree DEM. The 1 degree DEMs were generated from the higher resolution 7.5 minute DEMs which covered the estuary. A Digital Elevation Model (DEM) contains a series of elevations ordered from south to north with the order of the columns from west to east. The DEM is formatted as one ASCII header record (A- record), followed by a series of profile records (B- records) each of which include a short B-record header followed by a series of ASCII integer elevations (typically in units of 1 centimeter) per each profile. The last physical record of the DEM is an accuracy record (C-record). The 7.5-minute DEM (30- by 30-m data spacing) is cast on the Universal Transverse Mercator (UTM) projection. It provides coverage in 7.5- by 7.5-minute blocks. Each product provides the same coverage as a standard USGS 7.5-minute quadrangle but the DEM contains over edge data. Coverage is available for many estuaries of the contiguous United States but is not complete.
description: A bare-earth topography Digital Elevation Model (DEM) mosaic for the Lower Neches River Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 19, 21, 23, 25, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point density of 1.4 points per square meter. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.; abstract: A bare-earth topography Digital Elevation Model (DEM) mosaic for the Lower Neches River Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 19, 21, 23, 25, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point density of 1.4 points per square meter. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.
description: A first-surface topography Digital Surface Model (DSM) mosaic for the Lower Neches River Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 19, 21, 23, 25, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point density of 1.4 points per square meter. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.; abstract: A first-surface topography Digital Surface Model (DSM) mosaic for the Lower Neches River Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 19, 21, 23, 25, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point density of 1.4 points per square meter. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.
Bathymetry for Galveston Bay was derived from thirty-three surveyscontaining 209,359 soundings. Twelve overlapping, older, lessaccurate surveys were omitted, and overlap from eight older, lessaccurate surveys was omitted. The average separation between soundingswas 84 meters. The thirty-three surveys used dated from 1931 to 1983with the oldest surveys in the northern and southernmost portionsof the bay. The majority of the surveys were from the early 1960 s. Thesoundings ranged from 1.2 meters to -16.5 meters at mean low water. Meanhigh water values of 0.3 or 0.4 meters were assigned to the shoreline.Twelve points were found that were not consistent with the surrounding points.These were removed prior to tinning. DEM grid values outside theshoreline (on land) were assigned null values (-32676).Galveston Bay has twenty-nine 7.5 minute DEMs and two one degreeDEMs. The 1 degree DEMs were generated from the higher resolution 7.5minute DEMs which covered the estuary. A Digital Elevation Model(DEM) contains a series of elevations ordered from south to northwith the order of the columns from west to east. The DEM isformatted as one ASCII header record (A- record), followed by aseries of profile records (B- records) each of which include a shortB-record header followed by a series of ASCII integer elevations(typically in units of 1 centimeter) per each profile. The lastphysical record of the DEM is an accuracy record (C-record).The 7.5-minute DEM (30- by 30-m data spacing) is cast on theUniversal Transverse Mercator (UTM) projection. It provides coveragein 7.5- by 7.5-minute blocks. Each product provides the samecoverage as a standard USGS 7.5-minute quadrangle but the DEMcontains over edge data. Coverage is available for many estuaries ofthe contiguous United States but is not complete.
description: A bare-earth topography Digital Elevation Model (DEM) mosaic for the Beaumont and Lower Neches River Units of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5-1.6 meters. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.; abstract: A bare-earth topography Digital Elevation Model (DEM) mosaic for the Beaumont and Lower Neches River Units of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5-1.6 meters. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Increased frequency and intensity of storms, saltwater intrusion, sea level rise, and warming temperatures are affecting forests along the mid-Atlantic, Southeastern, and Gulf coasts of the US. However, we still lack a clear understanding of how the structure of coastal forests is being altered by climate change drivers. Here, we used data from the Forest Inventory and Analyses program of the United States Forest Service to examine structure and biomass change in forests along the mid-Atlantic, Southeastern, and Gulf coasts of the US. We selected plots that have been resampled at low (5 m) and mid (30-50 m) elevations in coastal areas of states from Texas to New Jersey, allowing us to determine change in live trees, standing dead wood, and downed dead wood biomass (and carbon) stocks across a decade. We estimated forest attributes at the county level for each elevational class. Forest area increased by 1.9% in low elevation counties and by 0.3% in mid elevation counties. Live tree biomass density increased by 13% in low elevation counties, and by 16% in mid elevation counties. Standing dead biomass decreased in low elevation counties by 9.2% and by 2.8% in mid elevation counties. On average, downed dead wood increased by 22% in low elevation counties and decreased by 50% in mid elevation counties. Changes in the stock of C in standing and downed dead wood (0.45 to 9.1 Tg C) are similar to soil marsh C loss (9.54 Tg C). Annualized growth and harvest were both higher (16% and 58% respectively) in mid elevation counties than low elevation counties, while annualized mortality was 25% higher in low elevation counties. Annualized growth in low elevation counties was negatively correlated to sea level rise rates, and positively correlated to number of storms, illustrating tradeoffs associated with different climate change drivers. Overall, our results illustrate the vulnerability of US southeastern coastal low and mid elevation forests to climate change and sea level rise with indications that the complexity and rate of change in associated ecosystem functions (e.g., growth, mortality, and carbon storage) within the greater social environment (e.g., agricultural abandonment) may increase. Methods We used data from the National Forest Inventory and Analysis (FIA) program which, administered by the USDA Forest Service, provides a comprehensive statistical inventory and associated database of forests across the United States. The program applies standardized techniques to measure forest characteristics across a national plot sampling network of approximately one plot per 2,428 ha, with plot locations determined using a hexagonal sampling framework designed to be as spatially balanced as possible. The plot location within each 2,428 ha hexagon was visited by field crews if remotely sensed data indicated it was in forest land use (having ≥ 10% tree canopy cover, or evidence of such cover) that was at least 0.4 ha in area and 37 m wide. We focused on data for the mid-Atlantic and Southeast coast of the US, from Texas to New Jersey. We selected information from forested plots located in low (~5m) and mid elevation (30-50 m) areas with slopes less than 15%, and had either hydric conditions, or were near a water feature, which are indicative of forested wetlands. We used the FIA methodologies to estimate forest resources attributes from plot level to the county level. We looked at changes in live trees (biomass and C), standing dead wood (SD, biomass and C), and downed dead wood (biomass and C, DD). The systematic FIA sample design further allowed for statistical population-level estimates of various forest attributes, such as the area of a low-elevation forest in a county, using an “expansion factor” assigned to each plot condition. Using a design-based approach to population inference, expansion factors can be summed across plots in a population to provide an estimate of the total area within that population. Similarly, the FIA sample design allows individual trees inventoried on plots to be scaled via an expansion factor to estimate the total C of trees within an area. In this case, we calculated the area and biomass (from standing live, standing dead, and downed dead) of low-elevation and mid-elevation forests in low-elevation and mid-elevation counties, respectively, and within each state. Field crews collected a wide variety of data using standardized protocols from each FIA plot, which covered 0.067 hectares within four 7.31-m radius subplots arranged at the vertices and center of a triangle. This included the diameter, height, and species for every live and dead tree with a diameter at breast height (DBH) ≥ 12.7 cm. All trees with DBH ≥ 2.54 cm but < 12.7 cm were measured in a single 2.07-m-radius microplot within each of the plot’s four subplots. Using the component ratio method, the FIA program estimates the aboveground dry biomass of each tree with DBH ≥ 2.54 cm in pounds. Biomass and C densities were calculated by scaling plot-level data to per hectare estimates for the counties. We estimated change in the stocks of different pools by subtracting time 2 from time 1. We also looked at changes in different size classes and decay classes (for dead wood). We used data from the two latest survey evaluation periods, spanning a decade of change (Table 1). We estimated forest biomass standing stocks and change among key structural components using data from 1700 plots in low elevation counties and 3200 plots in mid elevation counties. We estimated population level values for 126 low elevation counties and 179 mid elevation counties (Fig 1). We excluded counties for which there were less than three plots in any survey year. To examine potential climate change drivers of forest dynamics we used publicly available datasets. We obtained sea level rise rates for 43 of the National Oceanic and Atmospheric Administration (NOAA) tide gauges from the Permanent Service for Mean Sea Level (PSMSL, Supplementary Table 1). We used the website to estimate rates of sea level rise from 2010-2020 to match the FIA dataset, given reports of accelerating rates of sea level rise in the Southeastern US. We calculated mean annual temperature and mean annual precipitation from the GridMet dataset (4 km2 spatial resolution), accessed through the Climate Engine portal (https://app.climateengine.org/climateEngine) for the period 2010-2020, to roughly match the FIA measurements. We also estimated change in temperature and precipitation by estimating the sen slope of each factor over the same time period using the Climate Engine portal. We used the NOAA National Hurricane Center Atlantic Hurricane Catalog (HURDAT2), accessed through Google Earth Engine, to count the number of tropical cyclones that passed through a 100 km radius buffer of the NOAA tide gauges for the same period. On average, low elevation counties were located 22.4 ± 2.6 km, while mid elevation counties were 108 ± 5.9 km from the NOAA tide gauges.
As sea levels rise, wetlands can adapt to changing conditions through vertical development (that is, soil surface elevation gains via biophysical feedbacks) and horizontal migration into upslope areas. Elevation-based models of wetland transformation from sea-level rise are often hampered from a variety of sources of uncertainty, including contemporary elevation and water levels and future water levels from sea-level rise. This data release includes geospatial data products that utilize Monte Carlo simulations to address these sources of uncertainty and highlight potential wetland transformations under various relative sea-level rise scenarios along Texas' middle and upper coast. This data release includes the current extent of coastal wetlands and decadal maps of coastal wetland transformation from 2030–2100 for three relative sea-level rise scenarios — Intermediate-low, Intermediate, and Intermediate-high — from an interagency sea-level rise report published in 2022 (Sweet and others, 2022). Datasets in this release include the following classes: 1) Upslope (that is, areas that are above the National Oceanographic and Atmospheric Administration’s (NOAA) moderate high tide flooding threshold; Sweet and others, 2022); 2) Irregularly oceanic-flooded wetlands (that is, wetlands that are flooded by oceanic water less frequently than daily [that is, below the NOAA moderate high tide flooding threshold and above the mean high water datum]); 3) Regularly oceanic-flooded wetlands (that is, wetlands that are flooded by oceanic water daily [that is, below the mean high water datum and above the mean lower low water datum] and generally fell in the upper two-thirds of this wetland zone based on elevation); 4) Converting to open water (that is, wetlands that are flooded by oceanic water daily [that is, below the mean high water datum and above the mean lower low water datum] and generally fell in the lower third of this wetland zone based on elevation; 5) Converted to open water (that is, areas where the decade of initiation for coastal wetland drowning has passed and have been in the “converting to open water” class for at least 50 years); 6) Low-lying, developed (that is, areas that fall in elevation ranges for wetland classes [that is, regularly oceanic-flooded wetlands, regularly oceanic-flooded wetlands, and converting to open water], but are located within developed areas); 7) Low-lying, leveed (that is, areas that fall in elevation ranges for wetland classes [that is, regularly oceanic-flooded wetlands, regularly oceanic-flooded wetlands, and converting to open water], but are located within levees); and 8) Low-lying, developed and leveed (that is, areas that fall in elevation ranges for wetland classes [that is, regularly oceanic-flooded wetlands, regularly oceanic-flooded wetlands, and converting to open water], but are located within levees or developed areas). Incorporating soil elevation change processes into wetland transformation models can be complex because soil elevation change processes can vary over space and time. In the past decade, there has been growing consensus regarding critical sea-level rise rate thresholds for the onset of wetland drowning (Morris and others, 2016, Horton and others, 2018, Saintilan and others, 2020, Törnqvist and others, 2020, Buffington and others, 2021, Saintilan and others, 2022, Saintilan and others, 2023). Here, our products utilize information from an analysis of when and where sea-level rise rates could cross thresholds for initiating coastal wetland drowning across the conterminous United States. The thresholds included are 4 mm/year, 7 mm/year, and 10 mm/year (see discussion in Osland and others, 2024). For this approach, we determined the relative sea-level rise rate by decade for watersheds within the study area. The decade that these rates exceeded one of these thresholds (that is, 4 mm/year, 7 mm/year, and 10 mm/year) marked the initiation of coastal wetland drowning. In other words, the 4 mm/year threshold indicates that wetland drowning would be initiated when the decadal sea-level rise rate exceeds 4 mm/year. Because wetland conversion to open water is not immediate once crossing this threshold, we left areas in that fell within “Converting to open water” class until 50 years after the threshold was surpassed. For example, if the decade the 4 mm/year threshold was crossed was 2020, then no wetlands would be moved to the “Converted to open water” class until 2070. For the 2070 map, areas in the “Converted to open water” class would include areas that were in the “Converting to open water” class in current wetland map (i.e., 50 years after the threshold was crossed). Similarly, for this threshold, areas in the “Converted to open water” class would be those that were “Converting to open water” class on and before 2030 (that is, 2030 and the current wetland map). For more information on the decades for when watershed-level drowning thresholds were passed, see the shapefile titled “Wetland_Drown_Years.shp.” Natural resource managers can utilize this information to explore potential scenarios related to the ability of current wetlands to adapt to sea-level rise via in situ vertical adjustment. For our study area, there was a high level of redundancy when the watershed-level drowning thresholds were passed, especially between maps for 4 mm/yr and 7 mm/yr. If users are interested in seeing where/when redundancy may occur, see the shapefile titled “Wetland_Drown_Years.shp.” This metadata file is for the datasets for the wetland current condition and wetland transformation by decade for sea-level rise scenario and coastal wetland drowning threshold.
description: A first-surface topography digital elevation model (DEM) mosaic for the Big Sandy Creek Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5-1.6 meters. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.; abstract: A first-surface topography digital elevation model (DEM) mosaic for the Big Sandy Creek Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 19, 21, 22, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar, a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5-1.6 meters. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.
description: ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over a portion of the Texas coastline, post-Hurricane Rita (September 2005 hurricane), using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 60 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by the National Aeronautics and Space Administration (NASA) at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 3 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.; abstract: ASCII XYZ point cloud data were produced from remotely sensed, geographically referenced elevation measurements by the U.S. Geological Survey (USGS). Elevation measurements were collected over a portion of the Texas coastline, post-Hurricane Rita (September 2005 hurricane), using the Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 60 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 2-3 meters. The EAARL, developed originally by the National Aeronautics and Space Administration (NASA) at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 3 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.
Bathymetry for Baffin Bay was derived from two surveys containing 14,924 soundings. No surveys were omitted and no points were deleted. The average separation between soundings was 129 meters. Both surveys dated from 1968. The range of soundings was 0.2 meters to -4.9 meters at mean low water. Mean high water values between 0.1 and 0.3 meters were assigned to the shoreline. DEM grid values outside the shoreline (on land) were assigned null values (-32676). Baffin Bay has nine 7.5 minute DEMs and a single one degree DEM. The 1 degree DEMs were generated from the higher resolution 7.5 minute DEMs which covered the estuary. A Digital Elevation Model (DEM) contains a series of elevations ordered from south to north with the order of the columns from west to east. The DEM is formatted as one ASCII header record (A- record), followed by a series of profile records (B- records) each of which include a short B-record header followed by a series of ASCII integer elevations (typically in units of 1 centimeter) per each profile. The last physical record of the DEM is an accuracy record (C-record). The 7.5-minute DEM (30- by 30-m data spacing) is cast on the Universal Transverse Mercator (UTM) projection. It provides coverage in 7.5- by 7.5-minute blocks. Each product provides the same coverage as a standard USGS 7.5-minute quadrangle but the DEM contains over edge data. Coverage is available for many estuaries of the contiguous United States but is not complete.
description: A bare-earth topography Digital Elevation Model (DEM) mosaic for the Lance Rosier Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 15, 21, 22, 25, 26, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5-1.6 meters. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.; abstract: A bare-earth topography Digital Elevation Model (DEM) mosaic for the Lance Rosier Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed, geographically referenced elevation measurements collected on January 15, 21, 22, 25, 26, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point spacing of 0.5-1.6 meters. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
The United States has an average elevation of roughly 2,500 feet (763m) above sea level, however there is a stark contrast in elevations across the country. Highest states Colorado is the highest state in the United States, with an average elevation of 6,800 feet (2,074m) above sea level. The 10 states with the highest average elevation are all in the western region of the country, as this is, by far, the most mountainous region in the country. The largest mountain ranges in the contiguous western states are the Rocky Mountains, Sierra Nevada, and Cascade Range, while the Appalachian Mountains is the longest range in the east - however, the highest point in the U.S. is Denali (Mount McKinley), found in Alaska. Lowest states At just 60 feet above sea level, Delaware is the state with the lowest elevation. Delaware is the second smallest state, behind Rhode Island, and is located on the east coast. Larger states with relatively low elevations are found in the southern region of the country - both Florida and Louisiana have an average elevation of just 100 feet (31m) above sea level, and large sections of these states are extremely vulnerable to flooding and rising sea levels, as well as intermittent tropical storms.