12 datasets found
  1. United States: average elevation in each state or territory as of 2005

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). United States: average elevation in each state or territory as of 2005 [Dataset]. https://www.statista.com/statistics/1325529/lowest-points-united-states-state/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2005
    Area covered
    United States
    Description

    The United States has an average elevation of roughly 2,500 feet (763m) above sea level, however there is a stark contrast in elevations across the country. Highest states Colorado is the highest state in the United States, with an average elevation of 6,800 feet (2,074m) above sea level. The 10 states with the highest average elevation are all in the western region of the country, as this is, by far, the most mountainous region in the country. The largest mountain ranges in the contiguous western states are the Rocky Mountains, Sierra Nevada, and Cascade Range, while the Appalachian Mountains is the longest range in the east - however, the highest point in the U.S. is Denali (Mount McKinley), found in Alaska. Lowest states At just 60 feet above sea level, Delaware is the state with the lowest elevation. Delaware is the second smallest state, behind Rhode Island, and is located on the east coast. Larger states with relatively low elevations are found in the southern region of the country - both Florida and Louisiana have an average elevation of just 100 feet (31m) above sea level, and large sections of these states are extremely vulnerable to flooding and rising sea levels, as well as intermittent tropical storms.

  2. a

    Surging Seas: Risk Zone Map

    • amerigeo.org
    • data.amerigeoss.org
    Updated Feb 18, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2019). Surging Seas: Risk Zone Map [Dataset]. https://www.amerigeo.org/datasets/surging-seas-risk-zone-map
    Explore at:
    Dataset updated
    Feb 18, 2019
    Dataset authored and provided by
    AmeriGEOSS
    Description

    IntroductionClimate Central’s Surging Seas: Risk Zone map shows areas vulnerable to near-term flooding from different combinations of sea level rise, storm surge, tides, and tsunamis, or to permanent submersion by long-term sea level rise. Within the U.S., it incorporates the latest, high-resolution, high-accuracy lidar elevation data supplied by NOAA (exceptions: see Sources), displays points of interest, and contains layers displaying social vulnerability, population density, and property value. Outside the U.S., it utilizes satellite-based elevation data from NASA in some locations, and Climate Central’s more accurate CoastalDEM in others (see Methods and Qualifiers). It provides the ability to search by location name or postal code.The accompanying Risk Finder is an interactive data toolkit available for some countries that provides local projections and assessments of exposure to sea level rise and coastal flooding tabulated for many sub-national districts, down to cities and postal codes in the U.S. Exposure assessments always include land and population, and in the U.S. extend to over 100 demographic, economic, infrastructure and environmental variables using data drawn mainly from federal sources, including NOAA, USGS, FEMA, DOT, DOE, DOI, EPA, FCC and the Census.This web tool was highlighted at the launch of The White House's Climate Data Initiative in March 2014. Climate Central's original Surging Seas was featured on NBC, CBS, and PBS U.S. national news, the cover of The New York Times, in hundreds of other stories, and in testimony for the U.S. Senate. The Atlantic Cities named it the most important map of 2012. Both the Risk Zone map and the Risk Finder are grounded in peer-reviewed science.Back to topMethods and QualifiersThis map is based on analysis of digital elevation models mosaicked together for near-total coverage of the global coast. Details and sources for U.S. and international data are below. Elevations are transformed so they are expressed relative to local high tide lines (Mean Higher High Water, or MHHW). A simple elevation threshold-based “bathtub method” is then applied to determine areas below different water levels, relative to MHHW. Within the U.S., areas below the selected water level but apparently not connected to the ocean at that level are shown in a stippled green (as opposed to solid blue) on the map. Outside the U.S., due to data quality issues and data limitations, all areas below the selected level are shown as solid blue, unless separated from the ocean by a ridge at least 20 meters (66 feet) above MHHW, in which case they are shown as not affected (no blue).Areas using lidar-based elevation data: U.S. coastal states except AlaskaElevation data used for parts of this map within the U.S. come almost entirely from ~5-meter horizontal resolution digital elevation models curated and distributed by NOAA in its Coastal Lidar collection, derived from high-accuracy laser-rangefinding measurements. The same data are used in NOAA’s Sea Level Rise Viewer. (High-resolution elevation data for Louisiana, southeast Virginia, and limited other areas comes from the U.S. Geological Survey (USGS)). Areas using CoastalDEM™ elevation data: Antigua and Barbuda, Barbados, Corn Island (Nicaragua), Dominica, Dominican Republic, Grenada, Guyana, Haiti, Jamaica, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, San Blas (Panama), Suriname, The Bahamas, Trinidad and Tobago. CoastalDEM™ is a proprietary high-accuracy bare earth elevation dataset developed especially for low-lying coastal areas by Climate Central. Use our contact form to request more information.Warning for areas using other elevation data (all other areas)Areas of this map not listed above use elevation data on a roughly 90-meter horizontal resolution grid derived from NASA’s Shuttle Radar Topography Mission (SRTM). SRTM provides surface elevations, not bare earth elevations, causing it to commonly overestimate elevations, especially in areas with dense and tall buildings or vegetation. Therefore, the map under-portrays areas that could be submerged at each water level, and exposure is greater than shown (Kulp and Strauss, 2016). However, SRTM includes error in both directions, so some areas showing exposure may not be at risk.SRTM data do not cover latitudes farther north than 60 degrees or farther south than 56 degrees, meaning that sparsely populated parts of Arctic Circle nations are not mapped here, and may show visual artifacts.Areas of this map in Alaska use elevation data on a roughly 60-meter horizontal resolution grid supplied by the U.S. Geological Survey (USGS). This data is referenced to a vertical reference frame from 1929, based on historic sea levels, and with no established conversion to modern reference frames. The data also do not take into account subsequent land uplift and subsidence, widespread in the state. As a consequence, low confidence should be placed in Alaska map portions.Flood control structures (U.S.)Levees, walls, dams or other features may protect some areas, especially at lower elevations. Levees and other flood control structures are included in this map within but not outside of the U.S., due to poor and missing data. Within the U.S., data limitations, such as an incomplete inventory of levees, and a lack of levee height data, still make assessing protection difficult. For this map, levees are assumed high and strong enough for flood protection. However, it is important to note that only 8% of monitored levees in the U.S. are rated in “Acceptable” condition (ASCE). Also note that the map implicitly includes unmapped levees and their heights, if broad enough to be effectively captured directly by the elevation data.For more information on how Surging Seas incorporates levees and elevation data in Louisiana, view our Louisiana levees and DEMs methods PDF. For more information on how Surging Seas incorporates dams in Massachusetts, view the Surging Seas column of the web tools comparison matrix for Massachusetts.ErrorErrors or omissions in elevation or levee data may lead to areas being misclassified. Furthermore, this analysis does not account for future erosion, marsh migration, or construction. As is general best practice, local detail should be verified with a site visit. Sites located in zones below a given water level may or may not be subject to flooding at that level, and sites shown as isolated may or may not be be so. Areas may be connected to water via porous bedrock geology, and also may also be connected via channels, holes, or passages for drainage that the elevation data fails to or cannot pick up. In addition, sea level rise may cause problems even in isolated low zones during rainstorms by inhibiting drainage.ConnectivityAt any water height, there will be isolated, low-lying areas whose elevation falls below the water level, but are protected from coastal flooding by either man-made flood control structures (such as levees), or the natural topography of the surrounding land. In areas using lidar-based elevation data or CoastalDEM (see above), elevation data is accurate enough that non-connected areas can be clearly identified and treated separately in analysis (these areas are colored green on the map). In the U.S., levee data are complete enough to factor levees into determining connectivity as well.However, in other areas, elevation data is much less accurate, and noisy error often produces “speckled” artifacts in the flood maps, commonly in areas that should show complete inundation. Removing non-connected areas in these places could greatly underestimate the potential for flood exposure. For this reason, in these regions, the only areas removed from the map and excluded from analysis are separated from the ocean by a ridge of at least 20 meters (66 feet) above the local high tide line, according to the data, so coastal flooding would almost certainly be impossible (e.g., the Caspian Sea region).Back to topData LayersWater Level | Projections | Legend | Social Vulnerability | Population | Ethnicity | Income | Property | LandmarksWater LevelWater level means feet or meters above the local high tide line (“Mean Higher High Water”) instead of standard elevation. Methods described above explain how each map is generated based on a selected water level. Water can reach different levels in different time frames through combinations of sea level rise, tide and storm surge. Tide gauges shown on the map show related projections (see just below).The highest water levels on this map (10, 20 and 30 meters) provide reference points for possible flood risk from tsunamis, in regions prone to them.

  3. d

    Elevation per SASAP region and Hydrologic Unit (HUC8) boundary for Alaskan...

    • dataone.org
    • knb.ecoinformatics.org
    • +1more
    Updated May 23, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jared Kibele; Rachel Carlson; Marie Johnson (2019). Elevation per SASAP region and Hydrologic Unit (HUC8) boundary for Alaskan watersheds [Dataset]. http://doi.org/10.5063/F1D798QQ
    Explore at:
    Dataset updated
    May 23, 2019
    Dataset provided by
    Knowledge Network for Biocomplexity
    Authors
    Jared Kibele; Rachel Carlson; Marie Johnson
    Time period covered
    Jan 1, 2017
    Area covered
    Variables measured
    name, region, source, region_id, id_numeric, id_original, max_elevation, min_elevation, std_elevation, mean_elevation, and 3 more
    Description

    This dataset was created to assess regions and watersheds of Alaska for mean elevation, minimum elevation, maximum elevation, median elevation, standard deviation of elevation, range of elevation and coefficient of variation of elevation in each SASAP region and each HUC8 watershed of Alaska. Three DEM's were mosaicked to make an Alaska-wide tiff. These include separate files for Alaska, the Yukon, and British Columbia. They were combined with the "sasap_regions.zip" shapefile (Jared Kibele and Jeanette Clark. 2018. State of Alaska's Salmon and People Regional Boundaries. Knowledge Network for Biocomplexity. doi:10.5063/F1125QWP) to create the shapefile, "regions_elevation_shp.zip" and with the "sasap_watersheds_gapfix.zip" shapefile (Jared Kibele. 2018. Hydrologic Unit (HUC8) Boundaries for Alaskan Watersheds. Knowledge Network for Biocomplexity. doi:10.5063/F1Q52MV3.) to create the shapefile "watersheds_elevation_shp.zip". CSV versions of the resulting shapefiles are also archived. The included jupyter notebook which was used to merge the data, outlines the process in more detail. The included RMarkdown document is used to generate region and statewide figures for elevation, utilizing a set of functions written to map data for the SASAP project (Jeanette Clark, Rachel Carlson, and Jared Kibele. General mapping functions for data associated with the State of Alaska's Salmon and People (SASAP) project, 2019. Knowledge Network for Biocomplexity. doi:10.5063/F1Z31WXD).

  4. Sitka, Alaska 3 arc-second MHW Coastal Digital Elevation Model

    • datadiscoverystudio.org
    • ncei.noaa.gov
    • +2more
    netcdf v.4 classic
    Updated Jul 26, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce (2011). Sitka, Alaska 3 arc-second MHW Coastal Digital Elevation Model [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/a99290046b274d798222a0124cac5df6/html
    Explore at:
    netcdf v.4 classicAvailable download formats
    Dataset updated
    Jul 26, 2011
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    United States Department of Commercehttp://www.commerce.gov/
    National Environmental Satellite, Data, and Information Service
    Authors
    DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce
    Area covered
    Description

    NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated bathymetric-topographic DEMs are used to support tsunami forecasting and modeling efforts at the NOAA Center for Tsunami Research, Pacific Marine Environmental Laboratory (PMEL). The DEMs are part of the tsunami forecast system SIFT (Short-term Inundation Forecasting for Tsunamis) currently being developed by PMEL for the NOAA Tsunami Warning Centers, and are used in the MOST (Method of Splitting Tsunami) model developed by PMEL to simulate tsunami generation, propagation, and inundation. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datum of Mean High Water (MHW) and horizontal datum of World Geodetic System 1984 (WGS84). Grid spacings for the DEMs range from 1/3 arc-second (~10 meters) to 3 arc-seconds (~90 meters).The DEM Global Mosaic is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), along with the global GEBCO_2014 grid: http://www.gebco.net/data_and_products/gridded_bathymetry_data. NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service is a general-purpose global, seamless bathymetry/topography mosaic. It combines DEMs from a variety of near sea-level vertical datums, such as mean high water (MHW), mean sea level (MSL), and North American Vertical Datum of 1988 (NAVD88). Elevation values have been rounded to the nearest meter, with DEM cell sizes going down to 1 arc-second. Higher-resolution DEMs, with greater elevation precision, are available in the companion NAVD88: http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042 and MHW: http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799 mosaics. By default, the DEMs are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Please see NCEI's corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. In this visualization, the elevations/depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png.A map service showing the location and coverage of land and seafloor digital elevation models (DEMs) available from NOAA's National Centers for Environmental Information (NCEI). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. Layers available in the map service: Layers 1-4: DEMs by Category (includes various DEMs, both hosted at NCEI, and elsewhere on the web); Layers 6-11: NCEI DEM Projects (DEMs hosted at NCEI, color-coded by project); Layer 12: All NCEI Bathymetry DEMs (All bathymetry or bathy-topo DEMs hosted at NCEI).This is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), with vertical units referenced to mean high water (MHW). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service provides data from many individual DEMs combined together as a mosaic. By default, the rasters are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Alternatively, a single DEM or group of DEMs can be isolated using a filter/definition query or using the 'Lock Raster 'mosaic method in ArcMap. This is one of three services displaying collections of DEMs that are referenced to common vertical datums: North American Vertical Datum of 1988 (NAVD88): http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042, Mean High Water (MHW): http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799, and Mean Higher High Water: http://noaa.maps.arcgis.com/home/item.html?id=9471f8d4f43e48109de6275522856696. In addition, the DEM Global Mosaic is a general-purpose global, seamless bathymetry/topography mosaic containing all the DEMs together. Two services are available: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff Elevation Values: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff and Color Shaded Relief: http://noaa.maps.arcgis.com/home/item.html?id=feb3c625dc094112bb5281c17679c769. Please see the corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. This service has several server-side functions available. These can be selected in the ArcGIS Online layer using 'Image Display ', or in ArcMap under 'Processing Templates '. None: The default. Provides elevation/depth values in meters relative to the NAVD88 vertical datum. ColorHillshade: An elevation-tinted hillshade visualization. The depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png. GrayscaleHillshade: A simple grayscale hillshade visualization. SlopeMapRGB: Slope in degrees, visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/SlopeMapLegend_V7b.png. SlopeNumericValues: Slope in degrees, returning the actual numeric values. AspectMapRGB: Orientation of the terrain (0-360 degrees), visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/AspectMapLegendPie_V7b.png. AspectNumericValues: Aspect in degrees, returning the actual numeric values.

  5. Atka, Alaska 1 arc-second Coastal Digital Elevation Model

    • datadiscoverystudio.org
    • s.cnmilf.com
    • +2more
    netcdf v.4 classic
    Updated Mar 31, 2010
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce (2010). Atka, Alaska 1 arc-second Coastal Digital Elevation Model [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/4c6df9c1510d49ddbc46dcf7cded4951/html
    Explore at:
    netcdf v.4 classicAvailable download formats
    Dataset updated
    Mar 31, 2010
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    United States Department of Commercehttp://www.commerce.gov/
    National Environmental Satellite, Data, and Information Service
    Authors
    DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce
    Area covered
    Description

    NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated bathymetric-topographic DEMs are used to support tsunami forecasting and modeling efforts at the NOAA Center for Tsunami Research, Pacific Marine Environmental Laboratory (PMEL). The DEMs are part of the tsunami forecast system SIFT (Short-term Inundation Forecasting for Tsunamis) currently being developed by PMEL for the NOAA Tsunami Warning Centers, and are used in the MOST (Method of Splitting Tsunami) model developed by PMEL to simulate tsunami generation, propagation, and inundation. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datum of Mean High Water (MHW) and horizontal datum of World Geodetic System 1984 (WGS 84). Grid spacings for the DEMs range from 1/3 arc-second (~10 meters) to 3 arc-seconds (~90 meters).The DEM Global Mosaic is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), along with the global GEBCO_2014 grid: http://www.gebco.net/data_and_products/gridded_bathymetry_data. NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service is a general-purpose global, seamless bathymetry/topography mosaic. It combines DEMs from a variety of near sea-level vertical datums, such as mean high water (MHW), mean sea level (MSL), and North American Vertical Datum of 1988 (NAVD88). Elevation values have been rounded to the nearest meter, with DEM cell sizes going down to 1 arc-second. Higher-resolution DEMs, with greater elevation precision, are available in the companion NAVD88: http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042 and MHW: http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799 mosaics. By default, the DEMs are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Please see NCEI's corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. In this visualization, the elevations/depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png.A map service showing the location and coverage of land and seafloor digital elevation models (DEMs) available from NOAA's National Centers for Environmental Information (NCEI). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. Layers available in the map service: Layers 1-4: DEMs by Category (includes various DEMs, both hosted at NCEI, and elsewhere on the web); Layers 6-11: NCEI DEM Projects (DEMs hosted at NCEI, color-coded by project); Layer 12: All NCEI Bathymetry DEMs (All bathymetry or bathy-topo DEMs hosted at NCEI).This is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), with vertical units referenced to mean high water (MHW). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service provides data from many individual DEMs combined together as a mosaic. By default, the rasters are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Alternatively, a single DEM or group of DEMs can be isolated using a filter/definition query or using the 'Lock Raster 'mosaic method in ArcMap. This is one of three services displaying collections of DEMs that are referenced to common vertical datums: North American Vertical Datum of 1988 (NAVD88): http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042, Mean High Water (MHW): http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799, and Mean Higher High Water: http://noaa.maps.arcgis.com/home/item.html?id=9471f8d4f43e48109de6275522856696. In addition, the DEM Global Mosaic is a general-purpose global, seamless bathymetry/topography mosaic containing all the DEMs together. Two services are available: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff Elevation Values: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff and Color Shaded Relief: http://noaa.maps.arcgis.com/home/item.html?id=feb3c625dc094112bb5281c17679c769. Please see the corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. This service has several server-side functions available. These can be selected in the ArcGIS Online layer using 'Image Display ', or in ArcMap under 'Processing Templates '. None: The default. Provides elevation/depth values in meters relative to the NAVD88 vertical datum. ColorHillshade: An elevation-tinted hillshade visualization. The depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png. GrayscaleHillshade: A simple grayscale hillshade visualization. SlopeMapRGB: Slope in degrees, visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/SlopeMapLegend_V7b.png. SlopeNumericValues: Slope in degrees, returning the actual numeric values. AspectMapRGB: Orientation of the terrain (0-360 degrees), visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/AspectMapLegendPie_V7b.png. AspectNumericValues: Aspect in degrees, returning the actual numeric values.

  6. AmeriFlux AmeriFlux US-ICs Imnavait Creek Watershed Wet Sedge Tundra

    • osti.gov
    Updated Dec 31, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marine Biological Laboratory (2015). AmeriFlux AmeriFlux US-ICs Imnavait Creek Watershed Wet Sedge Tundra [Dataset]. http://doi.org/10.17190/AMF/1246130
    Explore at:
    Dataset updated
    Dec 31, 2015
    Dataset provided by
    National Science Foundationhttp://www.nsf.gov/
    University of Alaska Fairbanks
    AmeriFlux
    Marine Biological Laboratory
    Description

    This is the AmeriFlux version of the carbon flux data for the site US-ICs Imnavait Creek Watershed Wet Sedge Tundra. Site Description - The Imnavait Creek Watershed Wet Sedge Tundra (Fen Station) is located near Imnavait Creek in Alaska, north of the Brooks Range in the Kuparuk basin near Lake Toolik and the Toolik Field Station. The Kuparuk River has its headwaters in the Brooks Range and drains through northern Alaska into the Arctic Ocean. Within these headwaters lies the Imnavait basin at an average elevation of 930 m. Water tracks run down the hill in parallel zones with a spacing of approximately 10 m. The Fen Station was deployed at the end of Summer 2007.

  7. d

    Elevation per SASAP region and Hydrolic Unit (HUC8) boundary for Alaskan...

    • search.dataone.org
    • knb.ecoinformatics.org
    • +1more
    Updated Dec 4, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jared Kibele; Rachel Carlson; Marie Johnson (2018). Elevation per SASAP region and Hydrolic Unit (HUC8) boundary for Alaskan watersheds [Dataset]. http://doi.org/10.5063/F1Z60M87
    Explore at:
    Dataset updated
    Dec 4, 2018
    Dataset provided by
    Knowledge Network for Biocomplexity
    Authors
    Jared Kibele; Rachel Carlson; Marie Johnson
    Time period covered
    Jan 1, 2017
    Area covered
    Variables measured
    name, region, source, region_id, id_numeric, id_original, max_elevation, min_elevation, std_elevation, mean_elevation, and 3 more
    Description

    This dataset was created to assess regions and watersheds of Alaska for mean elevation, minimum elevation, maximum elevation, median elevation, standard deviation of elevation, range of elevation and coefficient of variation of elevation in each SASAP region and each HUC8 watershed of Alaska.

     Three DEM's were mosaicked to make an Alaska-wide tiff. These include separate files for Alaska, the Yukon, and British Columbia.
    
     They were combined with the "sasap_regions.zip" shapefile (located here: https://knb.ecoinformatics.org/#view/urn:uuid:2c1c26fc-bfb9-4b6a-8d4a-0be8e61c4deb) to create
    
     the shapefile, "regions_elevation_shp.zip"
    
     and with the "sasap_watersheds_gapfix.zip" shapefile (located here: https://knb.ecoinformatics.org/#view/urn:uuid:2b5ab57e-38ec-4bc9-8290-f080ec0befb4) 
    
     to create the shapefile "watersheds_elevation_shp.zip". 
    
     CSV versions of the resulting shapefiles are also archived. 
    
     The included python script, which was used to merge the data, outlines the process in more detail.
    
  8. a

    Data from: Summer temperature regimes in southcentral Alaska streams:...

    • catalog.epscor.alaska.edu
    Updated Dec 17, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Summer temperature regimes in southcentral Alaska streams: watershed drivers of variation and potential implications for Pacific salmon [Dataset]. https://catalog.epscor.alaska.edu/dataset/summer-temperature-regimes-in-southcentral-alaska-streams-watershed-drivers-of-variation-and-potenti
    Explore at:
    Dataset updated
    Dec 17, 2019
    Area covered
    Alaska
    Description

    Climate is changing fastest in high latitude regions, focusing our research on understanding rates and drivers of changing temperature regimes in southcentral Alaska streams and implications for salmon populations. We collected continuous water and air temperature data during open-water periods from 2008 to 2012 in 48 non-glacial salmon streams across the Cook Inlet basin spanning a range of watershed characteristics. The most important predictors of maximum temperatures, expressed as mean July temperature, maximum weekly average temperature, and maximum weekly maximum temperature (MWMT), were mean elevation and wetland cover, while thermal sensitivity (slope of the stream-air temperature relationship) was best explained by mean elevation and area. Although maximum stream temperatures varied widely (8.4 to 23.7 °C) between years and across sites, MWMT at most sites exceeded established criterion for spawning and incubation (13 °C), above which chronic and sub-lethal effects become likely, every year of the study, which suggests salmon are already experiencing thermal stress. Projections of MWMT over the next ~50 years suggest these criteria will be exceeded at more sites and by increasing margins.

  9. o

    AmeriFlux FLUXNET-1F US-ICs Imnavait Creek Watershed Wet Sedge Tundra

    • osti.gov
    Updated Jan 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). AmeriFlux (2022). AmeriFlux FLUXNET-1F US-ICs Imnavait Creek Watershed Wet Sedge Tundra [Dataset]. http://doi.org/10.17190/AMF/1871138
    Explore at:
    Dataset updated
    Jan 1, 2022
    Dataset provided by
    Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). AmeriFlux
    National Science Foundation (NSF)
    Univ. of Alaska, Fairbanks, AK (United States)
    Marine Biological Laboratory
    Area covered
    United States
    Description

    This is the AmeriFlux Management Project (AMP) created FLUXNET-1F version of the carbon flux data for the site US-ICs Imnavait Creek Watershed Wet Sedge Tundra. This is the FLUXNET version of the carbon flux data for the site US-ICs Imnavait Creek Watershed Wet Sedge Tundra produced by applying the standard ONEFlux (1F) software. Site Description - The Imnavait Creek Watershed Wet Sedge Tundra (Fen Station) is located near Imnavait Creek in Alaska, north of the Brooks Range in the Kuparuk basin near Lake Toolik and the Toolik Field Station. The Kuparuk River has its headwaters in the Brooks Range and drains through northern Alaska into the Arctic Ocean. Within these headwaters lies the Imnavait basin at an average elevation of 930 m. Water tracks run down the hill in parallel zones with a spacing of approximately 10 m. The Fen Station was deployed at the end of Summer 2007.

  10. o

    AmeriFlux AmeriFlux US-ICt Imnavait Creek Watershed Tussock Tundra

    • osti.gov
    Updated Jan 1, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Univ. of Alaska, Fairbanks, AK (United States) (2016). AmeriFlux AmeriFlux US-ICt Imnavait Creek Watershed Tussock Tundra [Dataset]. http://doi.org/10.17190/AMF/1246131
    Explore at:
    Dataset updated
    Jan 1, 2016
    Dataset provided by
    National Science Foundation (NSF)
    Univ. of Alaska, Fairbanks, AK (United States)
    Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). AmeriFlux
    Marine Biological Laboratory
    Description

    This is the AmeriFlux version of the carbon flux data for the site US-ICt Imnavait Creek Watershed Tussock Tundra. Site Description - The Imnavait Creek Watershed Tussock Tundra (Biocomplexity Station) is located near Imnavait Creek in Alaska, north of the Brooks Range in the Kuparuk basin near Lake Toolik and the Toolik Field Station. The Kuparuk River has its headwaters in the Brooks Range and drains through northern Alaska into the Arctic Ocean. Within these headwaters lies the Imnavait basin at an average elevation of 930 m. Water tracks run down the hill in parallel zones with a spacing of approximately 10 m. The Biocomplexity Station was deployed in 2004, and it has been in operation during the melt seasons ever since.

  11. n

    A 30-Year Record of Surface Mass Balance (1966-95) and Motion and Surface...

    • cmr.earthdata.nasa.gov
    Updated Apr 24, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). A 30-Year Record of Surface Mass Balance (1966-95) and Motion and Surface Altitude (1975-95) at Wolverine Glacier, Alaska [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C2231554448-CEOS_EXTRA.html
    Explore at:
    Dataset updated
    Apr 24, 2017
    Time period covered
    Apr 1, 1966 - Dec 31, 1995
    Area covered
    Description

    Scientific measurements at Wolverine Glacier, on the Kenai Peninsula in south-central Alaska, began in April 1966. At three long-term sites in the research basin, the measurements included snow depth, snow density, heights of the glacier surface and stratigraphic summer surfaces on stakes, and identification of the surface materials. Calculations of the mass balance of the surface strata-snow, new firn, superimposed ice, and old firn and ice mass at each site were based on these measurements. Calculations of fixed-date annual mass balances for each hydrologic year (October 1 to September 30), as well as net balances and the dates of minimum net balance measured between time-transgressive summer surfaces on the glacier, were made on the basis of the strata balances augmented by air temperature and precipitation recorded in the basin. From 1966 through 1995, the average annual balance at site A (590 meters altitude) was -4.06 meters water equivalent; at site B (1,070 meters altitude), was -0.90 meters water equivalent; and at site C (1,290 meters altitude), was +1.45 meters water equivalent.

    Geodetic determination of displacements of the mass balance stake, and glacier surface altitudes was added to the data set in 1975 to detect the glacier motion responses to variable climate and mass balance conditions. The average surface speed from 1975 to 1996 was 50.0 meters per year at site A, 83.7 meters per year at site B, and 37.2 meters per year at site C. The average surface altitudes were 594 meters at site A, 1,069 meters at site B, and 1,293 meters at site C; the glacier surface altitudes rose and fell over a range of 19.4 meters at site A, 14.1 meters at site B, and 13.2 meters at site C.

    [Summary provided by the USGS.]

  12. d

    Data from: Photogrammetric Digital Elevation Model (1979-1989) Associated...

    • datadiscoverystudio.org
    Updated May 21, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Photogrammetric Digital Elevation Model (1979-1989) Associated With Eastern Denali Fault Surface Trace Map, Eastern Alaska and Adjacent Canada. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/4c0c8e14a5894fb3b923f1e0c406c5c4/html
    Explore at:
    Dataset updated
    May 21, 2018
    Description

    description: This data set provides a photogrammetry-based digital elevation model (DEM) that covers ~90% of the surface trace of the Eastern Denali Fault between the Alaska-Yukon international border and the village of Haines Junction, Yukon, Canada. The DEM has an average resolution of 4 m/pixel.; abstract: This data set provides a photogrammetry-based digital elevation model (DEM) that covers ~90% of the surface trace of the Eastern Denali Fault between the Alaska-Yukon international border and the village of Haines Junction, Yukon, Canada. The DEM has an average resolution of 4 m/pixel.

  13. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). United States: average elevation in each state or territory as of 2005 [Dataset]. https://www.statista.com/statistics/1325529/lowest-points-united-states-state/
Organization logo

United States: average elevation in each state or territory as of 2005

Explore at:
Dataset updated
Aug 9, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2005
Area covered
United States
Description

The United States has an average elevation of roughly 2,500 feet (763m) above sea level, however there is a stark contrast in elevations across the country. Highest states Colorado is the highest state in the United States, with an average elevation of 6,800 feet (2,074m) above sea level. The 10 states with the highest average elevation are all in the western region of the country, as this is, by far, the most mountainous region in the country. The largest mountain ranges in the contiguous western states are the Rocky Mountains, Sierra Nevada, and Cascade Range, while the Appalachian Mountains is the longest range in the east - however, the highest point in the U.S. is Denali (Mount McKinley), found in Alaska. Lowest states At just 60 feet above sea level, Delaware is the state with the lowest elevation. Delaware is the second smallest state, behind Rhode Island, and is located on the east coast. Larger states with relatively low elevations are found in the southern region of the country - both Florida and Louisiana have an average elevation of just 100 feet (31m) above sea level, and large sections of these states are extremely vulnerable to flooding and rising sea levels, as well as intermittent tropical storms.

Search
Clear search
Close search
Google apps
Main menu