100+ datasets found
  1. Stock Market Dataset

    • kaggle.com
    zip
    Updated Jan 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ziya (2025). Stock Market Dataset [Dataset]. https://www.kaggle.com/datasets/ziya07/stock-market-dataset
    Explore at:
    zip(1075471 bytes)Available download formats
    Dataset updated
    Jan 25, 2025
    Authors
    Ziya
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The "Stock Market Dataset for AI-Driven Prediction and Trading Strategy Optimization" is designed to simulate real-world stock market data for training and evaluating machine learning models. This dataset includes a combination of technical indicators, market metrics, sentiment scores, and macroeconomic factors, providing a comprehensive foundation for developing and testing AI models for stock price prediction and trading strategy optimization.

    Key Features Market Metrics:

    Open, High, Low, Close Prices: Daily stock price movement. Volume: Represents the trading activity during the day. Technical Indicators:

    RSI (Relative Strength Index): A momentum oscillator to measure the speed and change of price movements. MACD (Moving Average Convergence Divergence): An indicator to reveal changes in strength, direction, momentum, and duration of a trend. Bollinger Bands: Upper and lower bands around a stock price to measure volatility. Sentiment Analysis:

    Sentiment Score: Simulated sentiment derived from financial news and social media, ranging from -1 (negative) to 1 (positive). Macroeconomic Factors:

    GDP Growth: Indicates the overall health and growth of the economy. Inflation Rate: Reflects changes in purchasing power and economic stability. Target Variable:

    Buy/Sell Signal: Binary classification (1 = Buy, 0 = Sell) based on price movement thresholds, simulating actionable trading decisions. Use Cases AI Model Training: Ideal for building stock prediction models using LSTM, Gradient Boosting, Random Forest, etc. Trading Strategy Optimization: Enables testing of trading algorithms and strategies in a simulated environment. Sentiment Analysis Research: Useful for understanding how sentiment influences stock movements. Feature Engineering and Selection: Provides a diverse set of features for experimentation with advanced techniques like PCA and LDA. Dataset Highlights Synthetic Yet Realistic: Carefully designed to mimic real-world financial data trends and relationships. Comprehensive Coverage: Includes key indicators and metrics used by traders and analysts. Scalable: Suitable for use in both small-scale academic projects and larger AI-driven trading platforms. Accessible for All Levels: The intuitive structure ensures that even beginners can utilize this dataset for financial machine learning applications. File Format The dataset is provided in CSV format, where:

    Rows represent individual trading days. Columns represent features (technical indicators, market metrics, etc.) and the target variable. Acknowledgments This dataset is synthetically generated and is intended for research and educational purposes. It is not based on real market data and should not be used for actual trading.

  2. T

    United States Stock Market Index Data

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Dec 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1928 - Dec 2, 2025
    Area covered
    United States
    Description

    The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.

  3. Google Stock Price Data (2020-2025) | GOOGL

    • kaggle.com
    zip
    Updated Feb 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M. Zohaib Zeeshan (2025). Google Stock Price Data (2020-2025) | GOOGL [Dataset]. https://www.kaggle.com/datasets/mzohaibzeeshan/google-stock-price-data-2020-2025-googl
    Explore at:
    zip(36400 bytes)Available download formats
    Dataset updated
    Feb 16, 2025
    Authors
    M. Zohaib Zeeshan
    Description

    About Dataset:

    This dataset includes the daily historical stock prices for Google (GOOGL) spanning from 2020 to 2025. It features essential financial metrics such as opening and closing prices, daily highs and lows, adjusted close prices, and trading volumes. The information offers valuable insights into the stock's performance over a five-year timeframe.

    Column Descriptions:

    • Price: Date of the stock data (needs cleaning as the first two rows are headers).
    • Adj Close: Adjusted closing price, accounting for events like dividends and splits.
    • Close: Closing price of the stock at the end of the trading day.
    • High: Highest price of the stock during the trading day.
    • Low: Lowest price of the stock during the trading day.
    • Open: Opening price of the stock at the start of the trading day.
    • Volume: Number of shares traded during the day.

    What Can You Achieve and Apply on This Data:

    • Time Series Analysis: Examine trends and patterns over time.
    • Stock Price Prediction: Use machine learning models to forecast future prices.
    • Volatility Analysis: Measure the stock's price fluctuations.
    • Technical Analysis: Calculate indicators like moving averages, RSI, and MACD.
    • Correlation Analysis: Investigate the relationship between volume and price changes.
    • Investment Strategy Backtesting: Test trading strategies like moving average crossovers.

    Note: 1. This data is scraped from Yahoo Finance by me using python code. 2. Some of the About Data is generated from AI, but verified from me.

  4. Monthly development Dow Jones Industrial Average Index 2018-2025

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Monthly development Dow Jones Industrial Average Index 2018-2025 [Dataset]. https://www.statista.com/statistics/261690/monthly-performance-of-djia-index/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2018 - Jun 2025
    Area covered
    United States
    Description

    The value of the DJIA index amounted to ****** at the end of June 2025, up from ********* at the end of March 2020. Global panic about the coronavirus epidemic caused the drop in March 2020, which was the worst drop since the collapse of Lehman Brothers in 2008. Dow Jones Industrial Average index – additional information The Dow Jones Industrial Average index is a price-weighted average of 30 of the largest American publicly traded companies on New York Stock Exchange and NASDAQ, and includes companies like Goldman Sachs, IBM and Walt Disney. This index is considered to be a barometer of the state of the American economy. DJIA index was created in 1986 by Charles Dow. Along with the NASDAQ 100 and S&P 500 indices, it is amongst the most well-known and used stock indexes in the world. The year that the 2018 financial crisis unfolded was one of the worst years of the Dow. It was also in 2008 that some of the largest ever recorded losses of the Dow Jones Index based on single-day points were registered. On September 29, 2008, for instance, the Dow had a loss of ****** points, one of the largest single-day losses of all times. The best years in the history of the index still are 1915, when the index value increased by ***** percent in one year, and 1933, year when the index registered a growth of ***** percent.

  5. Can we predict stock market using machine learning? (FZO Stock Forecast)...

    • kappasignal.com
    Updated Nov 21, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Can we predict stock market using machine learning? (FZO Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/can-we-predict-stock-market-using_20.html
    Explore at:
    Dataset updated
    Nov 21, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Can we predict stock market using machine learning? (FZO Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  6. Meta Stock Price Technical Indicators (10 Years)

    • kaggle.com
    zip
    Updated Feb 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aravind Pillai (2024). Meta Stock Price Technical Indicators (10 Years) [Dataset]. https://www.kaggle.com/datasets/aspillai/meta-stock-price-technical-indicators-10-years
    Explore at:
    zip(334399 bytes)Available download formats
    Dataset updated
    Feb 18, 2024
    Authors
    Aravind Pillai
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Meta stock price for past 10 years. Following technical indicators added.

    1. Date: This column represents the date for which the data is recorded.
    2. Open: The opening price of a stock on a particular trading day.
    3. High: The highest price at which a stock traded during the trading day.
    4. Low: The lowest price at which a stock traded during the trading day.
    5. Close: The closing price of a stock on a particular trading day. This is the final price at which the stock is valued for the day.
    6. Volume: The number of shares or contracts traded in a security or an entire market during a given period, usually one trading day.
    7. RSI_7: 7-day Relative Strength Index. It's a momentum indicator measuring the magnitude of recent price changes to evaluate overbought or oversold conditions in the price of a stock.
    8. RSI_14: 14-day Relative Strength Index. Similar to RSI_7 but calculated over 14 days.
    9. CCI_7: 7-day Commodity Channel Index. It’s a technical indicator that measures the difference between the current price and the historical average price. When calculated over 7 days, it gives short-term trends.
    10. CCI_14: 14-day Commodity Channel Index. Like CCI_7, but over 14 days for more medium-term trends.
    11. SMA_50: 50-day Simple Moving Average. It averages the closing prices of a stock over the past 50 days.
    12. EMA_50: 50-day Exponential Moving Average. Similar to SMA_50, but gives more weight to recent prices, making it more responsive to new information.
    13. SMA_100: 100-day Simple Moving Average. It averages the closing prices over the past 100 days.
    14. EMA_100: 100-day Exponential Moving Average. Like SMA_100, but more responsive to recent price changes.
    15. MACD: Moving Average Convergence Divergence. This indicator shows the relationship between two moving averages of a stock’s price.
    16. Bollinger: Bollinger Bands. A type of price envelope developed by John Bollinger.
    17. TrueRange: Typically used in calculating the Average True Range (ATR), it is a measure of volatility that considers the range between the high, low, and previous close of a stock.
    18. ATR_7: 7-day Average True Range. It measures market volatility by decomposing the entire range of a stock for that period.
    19. ATR_14: 14-day Average True Range. Similar to ATR_7, but calculated over 14 days.

    Target

    Next_Day_Close: Represents the closing price of the stock for the next day. It is useful for predictive models trying to forecast future prices.

  7. Dow Jones: monthly value 1920-1955

    • statista.com
    Updated Jun 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Dow Jones: monthly value 1920-1955 [Dataset]. https://www.statista.com/statistics/1249670/monthly-change-value-dow-jones-depression/
    Explore at:
    Dataset updated
    Jun 27, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1920 - Dec 1955
    Area covered
    United States
    Description

    Throughout the 1920s, prices on the U.S. stock exchange rose exponentially, however, by the end of the decade, uncontrolled growth and a stock market propped up by speculation and borrowed money proved unsustainable, resulting in the Wall Street Crash of October 1929. This set a chain of events in motion that led to economic collapse - banks demanded repayment of debts, the property market crashed, and people stopped spending as unemployment rose. Within a year the country was in the midst of an economic depression, and the economy continued on a downward trend until late-1932.

    It was during this time where Franklin D. Roosevelt (FDR) was elected president, and he assumed office in March 1933 - through a series of economic reforms and New Deal policies, the economy began to recover. Stock prices fluctuated at more sustainable levels over the next decades, and developments were in line with overall economic development, rather than the uncontrolled growth seen in the 1920s. Overall, it took over 25 years for the Dow Jones value to reach its pre-Crash peak.

  8. Data from: Can stock prices be predicted? (Dow Jones Industrial Average...

    • kappasignal.com
    Updated Oct 22, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Can stock prices be predicted? (Dow Jones Industrial Average Index Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/can-stock-prices-be-predicted-dow-jones.html
    Explore at:
    Dataset updated
    Oct 22, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Can stock prices be predicted? (Dow Jones Industrial Average Index Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  9. Huge US 514 Stocks + 1298 columns Market Data 25Gb

    • kaggle.com
    zip
    Updated Jan 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oleg Shpagin (2024). Huge US 514 Stocks + 1298 columns Market Data 25Gb [Dataset]. https://www.kaggle.com/datasets/olegshpagin/extra-us-stocks-market-data
    Explore at:
    zip(8646680017 bytes)Available download formats
    Dataset updated
    Jan 2, 2024
    Authors
    Oleg Shpagin
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    United States
    Description

    Huge US Stocks prices + 1292 columns extra data from Indicators. This Dataset provides historical Open, High, Low, Close, and Volume (OHLCV) prices of stocks traded in the United States financial markets AND calculated 1292 columns of indicators. You can use all this hyge data for stock price predictions.

    Columns with Momentum Indicator values ADX - Average Directional Movement Index ADXR - Average Directional Movement Index Rating APO - Absolute Price Oscillator AROON - Aroon AROONOSC - Aroon Oscillator BOP - Balance Of Power CCI - Commodity Channel Index CMO - Chande Momentum Oscillator DX - Directional Movement Index MACD - Moving Average Convergence/Divergence MACDEXT - MACD with controllable MA type MACDFIX - Moving Average Convergence/Divergence Fix 12/26 MFI - Money Flow Index MINUS_DI - Minus Directional Indicator MINUS_DM - Minus Directional Movement MOM - Momentum PLUS_DI - Plus Directional Indicator PLUS_DM - Plus Directional Movement PPO - Percentage Price Oscillator ROC - Rate of change : ((price/prevPrice)-1)*100 ROCP - Rate of change Percentage: (price-prevPrice)/prevPrice ROCR - Rate of change ratio: (price/prevPrice) ROCR100 - Rate of change ratio 100 scale: (price/prevPrice)*100 RSI - Relative Strength Index STOCH - Stochastic STOCHF - Stochastic Fast STOCHRSI - Stochastic Relative Strength Index TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA ULTOSC - Ultimate Oscillator WILLR - Williams' %R

    Columns with Volatility Indicator values ATR - Average True Range NATR - Normalized Average True Range TRANGE - True Range

    Columns with Volume Indicator values AD - Chaikin A/D Line ADOSC - Chaikin A/D Oscillator OBV - On Balance Volume

    Columns with Overlap Studies values BBANDS - Bollinger Bands DEMA - Double Exponential Moving Average EMA - Exponential Moving Average HT_TRENDLINE - Hilbert Transform - Instantaneous Trendline KAMA - Kaufman Adaptive Moving Average MA - Moving average MAMA - MESA Adaptive Moving Average MAVP - Moving average with variable period MIDPOINT - MidPoint over period MIDPRICE - Midpoint Price over period SAR - Parabolic SAR SAREXT - Parabolic SAR - Extended SMA - Simple Moving Average T3 - Triple Exponential Moving Average (T3) TEMA - Triple Exponential Moving Average TRIMA - Triangular Moving Average WMA - Weighted Moving Average

    Columns with Cycle Indicator values HT_DCPERIOD - Hilbert Transform - Dominant Cycle Period HT_DCPHASE - Hilbert Transform - Dominant Cycle Phase HT_PHASOR - Hilbert Transform - Phasor Components HT_SINE - Hilbert Transform - SineWave HT_TRENDMODE - Hilbert Transform - Trend vs Cycle Mode

    If you want to download actual data - on today for example, then you can use python code from my github. tickers = ['CE.US', 'WELL.US', 'GRMN.US', 'IEX.US', 'CAG.US', 'BEN.US', 'ATO.US', 'WY.US', 'TSCO.US', 'COR.US', 'MOS.US', 'SWKS.US', 'ORCL.US', 'URI.US', 'INCY.US', 'MPC.US', 'HD.US', 'PPG.US', 'NUE.US', 'DDOG.US', 'HSIC.US', 'CAT.US', 'HSY.US', 'MKTX.US', 'CCEP.US', 'GWW.US', 'LEN.US', 'IFF.US', 'GL.US', 'MDB.US', 'SNPS.US', 'KR.US', 'DVN.US', 'SYY.US', 'USB.US', 'DRI.US', 'PARA.US', 'FMC.US', 'UBER.US', 'WRK.US', 'DLR.US', 'SO.US', 'AMGN.US', 'MA.US', 'STT.US', 'BWA.US', 'KVUE.US', 'GFS.US', 'BBY.US', 'BK.US', 'MRVL.US', 'VFC.US', 'EIX.US', 'ADSK.US', 'ZBH.US', 'MU.US', 'HUBB.US', 'PEAK.US', 'CVX.US', 'CPB.US', 'GILD.US', 'BXP.US', 'DD.US', 'MCD.US', 'KDP.US', 'GE.US', 'PKG.US', 'HST.US', 'WTW.US', 'XOM.US', 'ED.US', 'SPG.US', 'PFG.US', 'LVS.US', 'FAST.US', 'ROST.US', 'TTD.US', 'CNC.US', 'PGR.US', 'CMI.US', 'TEAM.US', 'MELI.US', 'BKR.US', 'EBAY.US', 'CPRT.US', 'MSFT.US', 'HOLX.US', 'ABBV.US', 'AMZN.US', 'FE.US', 'WYNN.US', 'KMI.US', 'APA.US', 'CRWD.US', 'DPZ.US', 'EQT.US', 'NOC.US', 'TAP.US', 'ETR.US', 'T.US', 'OMC.US', 'MTCH.US', 'TRMB.US', 'EXPE.US', 'DTE.US', 'PNR.US', 'LH.US', 'ALL.US', 'CTRA.US', 'VMC.US', 'XRAY.US', 'NWS.US', 'GOOGL.US', 'WEC.US', 'BIIB.US', 'LLY.US', 'BMY.US', 'STE.US', 'NI.US', 'MKC.US', 'AMT.US', 'CFG.US', 'LW.US', 'HIG.US', 'ETSY.US', 'AON.US', 'ULTA.US', 'DVA.US', 'LKQ.US', 'MPWR.US', 'TEL.US', 'FICO.US', 'CVS.US', 'CMA.US', 'NVDA.US', 'TDG.US', 'AWK.US', 'PSA.US', 'FOXA.US', 'ON.US', 'ODFL.US', 'NVR.US', 'ROP.US', 'TFX.US', 'HLT.US', 'EXPD.US', 'FOX.US', 'D.US', 'AMAT.US', 'AZO.US', 'DLTR.US', 'TT.US', 'SBUX.US', 'JNJ.US', 'HAS.US', 'DASH.US', 'NRG.US', 'JNPR.US', 'BIO.US', 'AMD.US', 'NFLX.US', 'VLTO.US', 'BRO.US', 'REGN.US', 'WRB.US', 'LRCX.US', 'SYK.US', 'MCO.US', 'CSGP.US', 'TROW.US', 'ETN.US', 'RTX.US', 'CRM.US', 'SIRI.US', 'UPS.US', 'HES.US', 'RSG.US', 'PEP.US', 'MET.US', 'HON.US', 'IQV.US', 'JPM.US', 'DG.US', 'CBRE.US', 'NDSN.US', 'DOW.US', 'SBAC.US', 'TSN.US', 'IT.US', 'WM.US', 'TPR.US', 'IBM.US', 'CHTR.US', 'HAL.US', 'ROL.US', 'FDS.US', 'SHW.US', 'EW.US', 'RJF.US', 'APH.US', 'AIZ.US', 'ZBRA.US', 'SRE.US', 'CTAS.US', 'PXD.US', 'MTD.US', 'NOW.US', 'MAS.US', 'FFIV.US', 'ELV.US', 'SYF.US', 'CSCO.US', 'APTV...

  10. What are the most successful trading algorithms? (NTAP Stock Forecast)...

    • kappasignal.com
    Updated Sep 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). What are the most successful trading algorithms? (NTAP Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/09/what-are-most-successful-trading.html
    Explore at:
    Dataset updated
    Sep 2, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    What are the most successful trading algorithms? (NTAP Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  11. T

    Japan Stock Market Index (JP225) Data

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Japan Stock Market Index (JP225) Data [Dataset]. https://tradingeconomics.com/japan/stock-market
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 5, 1965 - Dec 2, 2025
    Area covered
    Japan
    Description

    Japan's main stock market index, the JP225, rose to 49553 points on December 2, 2025, gaining 0.51% from the previous session. Over the past month, the index has declined 3.78%, though it remains 26.25% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Japan. Japan Stock Market Index (JP225) - values, historical data, forecasts and news - updated on December of 2025.

  12. US Stock Metrics & Performance

    • kaggle.com
    zip
    Updated Dec 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jeremy Larcher (2023). US Stock Metrics & Performance [Dataset]. https://www.kaggle.com/datasets/jeremylarcher/us-stock-metrics-and-performance
    Explore at:
    zip(1188103 bytes)Available download formats
    Dataset updated
    Dec 13, 2023
    Authors
    Jeremy Larcher
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    All data acquired on December 11th 2023

    1) Ticker: Stock symbol identifying the company.

    2) Company: Name of the company.

    3) Sector: Industry category to which the company belongs.

    4) Industry: Specific sector or business category of the company.

    5) Country: Country where the company is based.

    6) Market Cap: Total market value of a company's outstanding shares.

    7) Price: Current stock price.

    8) Change (%): Percentage change in stock price.

    9) Volume: Number of shares traded.

    10) Price to Earnings Ratio: Ratio of stock price to earnings per share.

    11) Price to Earnings: Price-to-earnings ratio based on past earnings.

    12) Forward Price to Earnings: Expected price-to-earnings ratio.

    13) Price/Earnings to Growth: Ratio of P/E to earnings growth.

    14) Price to Sales: Ratio of stock price to annual sales.

    15) Price to Book: Ratio of stock price to book value.

    16) Price to Cash: Ratio of stock price to cash per share.

    17) Price to Free Cash Flow: Ratio of stock price to free cash flow.

    18) Earnings Per Share This Year (%): Percentage change in earnings per share for the current year.

    19) Earnings Per Share Next Year (%): Percentage change in earnings per share for the next year.

    20) Earnings Per Share Past 5 Years (%): Percentage change in earnings per share over the past 5 years.

    21) Earnings Per Share Next 5 Years (%): Estimated percentage change in earnings per share over the next 5 years.

    22) Sales Past 5 Years (%): Percentage change in sales over the past 5 years.

    23) Dividend (%): Dividend yield as a percentage of the stock price.

    24) Return on Assets (%): Percentage return on total assets.

    25) Return on Equity (%): Percentage return on shareholder equity.

    26) Return on Investment (%): Percentage return on total investment.

    27) Current Ratio: Ratio of current assets to current liabilities.

    28) Quick Ratio: Ratio of liquid assets to current liabilities.

    29) Long-Term Debt to Equity: Ratio of long-term debt to shareholder equity.

    30) Debt to Equity: Ratio of total debt to shareholder equity.

    31) Gross Margin (%): Percentage difference between revenue and cost of goods sold.

    32) Operating Margin (%): Percentage of operating income to revenue.

    33) Profit Margin: Percentage of net income to revenue.

    34) Earnings: Net income of the company.

    35) Outstanding Shares: Total number of shares issued by the company.

    36) Float: Tradable shares available to the public.

    37) Insider Ownership (%): Percentage of company owned by insiders.

    38) Insider Transactions: Recent insider buying or selling activity.

    39) Institutional Ownership (%): Percentage of company owned by institutional investors.

    40) Float Short (%): Percentage of tradable shares sold short by investors.

    41) Short Ratio: Number of days it would take to cover short positions.

    42) Average Volume: Average number of shares traded daily.

    43) Performance (Week) (%): Weekly stock performance percentage.

    44) Performance (Month) (%): Monthly stock performance percentage.

    45) Performance (Quarter) (%): Quarterly stock performance percentage.

    46) Performance (Half Year) (%): Semi-annual stock performance percentage.

    47) Performance (Year) (%): Annual stock performance percentage.

    48) Performance (Year to Date) (%): Year-to-date stock performance percentage.

    49) Volatility (Week) (%): Weekly stock price volatility percentage.

    50) Volatility (Month) (%): Monthly stock price volatility percentage.

    51) Analyst Recommendation: Analyst consensus recommendation on the stock.

    52) Relative Volume: Volume compared to the average volume.

    53) Beta: Measure of stock price volatility relative to the market.

    54) Average True Range: Average price range of a stock.

    55) Simple Moving Average (20) (%): Percentage difference from the 20-day simple moving average.

    56) Simple Moving Average (50) (%): Percentage difference from the 50-day simple moving average.

    57) Simple Moving Average (200) (%): Percentage difference from the 200-day simple moving average.

    58) Yearly High (%): Percentage difference from the yearly high stock price.

    59) Yearly Low (%): Percentage difference from the yearly low stock price.

    60) Relative Strength Index: Momentum indicator measuring the speed and change of price movements.

    61) Change from Open (%): Percentage change from the opening stock price.

    62) Gap (%): Percentage difference between the previous close and the current open price.

    63) Volume: Total number of shares traded.

  13. T

    Indonesia Stock Market (JCI) Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Indonesia Stock Market (JCI) Data [Dataset]. https://tradingeconomics.com/indonesia/stock-market
    Explore at:
    csv, excel, json, xmlAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 6, 1990 - Dec 2, 2025
    Area covered
    Indonesia
    Description

    Indonesia's main stock market index, the JCI, rose to 8617 points on December 2, 2025, gaining 0.80% from the previous session. Over the past month, the index has climbed 4.13% and is up 19.75% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Indonesia. Indonesia Stock Market (JCI) - values, historical data, forecasts and news - updated on December of 2025.

  14. T

    United Kingdom Stock Market Index (GB100) Data

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United Kingdom Stock Market Index (GB100) Data [Dataset]. https://tradingeconomics.com/united-kingdom/stock-market
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1984 - Dec 2, 2025
    Area covered
    United Kingdom
    Description

    United Kingdom's main stock market index, the GB100, fell to 9690 points on December 2, 2025, losing 0.13% from the previous session. Over the past month, the index has declined 0.12%, though it remains 15.91% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United Kingdom. United Kingdom Stock Market Index (GB100) - values, historical data, forecasts and news - updated on December of 2025.

  15. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Dec 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 1, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  16. Weekly development Dow Jones Industrial Average Index 2020-2025

    • statista.com
    Updated Mar 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Weekly development Dow Jones Industrial Average Index 2020-2025 [Dataset]. https://www.statista.com/statistics/1104278/weekly-performance-of-djia-index/
    Explore at:
    Dataset updated
    Mar 15, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1, 2020 - Mar 2, 2025
    Area covered
    United States
    Description

    The Dow Jones Industrial Average (DJIA) index dropped around ***** points in the four weeks from February 12 to March 11, 2020, but has since recovered and peaked at ********* points as of November 24, 2024. In February 2020 - just prior to the global coronavirus (COVID-19) pandemic, the DJIA index stood at a little over ****** points. U.S. markets suffer as virus spreads The COVID-19 pandemic triggered a turbulent period for stock markets – the S&P 500 and Nasdaq Composite also recorded dramatic drops. At the start of February, some analysts remained optimistic that the outbreak would ease. However, the increased spread of the virus started to hit investor confidence, prompting a record plunge in the stock markets. The Dow dropped by more than ***** points in the week from February 21 to February 28, which was a fall of **** percent – its worst percentage loss in a week since October 2008. Stock markets offer valuable economic insights The Dow Jones Industrial Average is a stock market index that monitors the share prices of the 30 largest companies in the United States. By studying the performance of the listed companies, analysts can gauge the strength of the domestic economy. If investors are confident in a company’s future, they will buy its stocks. The uncertainty of the coronavirus sparked fears of an economic crisis, and many traders decided that investment during the pandemic was too risky.

  17. Stock Market Dataset for Financial Analysis

    • kaggle.com
    zip
    Updated Feb 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WARNER (2025). Stock Market Dataset for Financial Analysis [Dataset]. https://www.kaggle.com/datasets/s3programmer/stock-market-dataset-for-financial-analysis
    Explore at:
    zip(6816930 bytes)Available download formats
    Dataset updated
    Feb 14, 2025
    Authors
    WARNER
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This stock market dataset is designed for financial analysis and predictive modeling. It includes historical stock prices, technical indicators, macroeconomic factors, and sentiment scores to help in developing and testing machine learning models for stock trend prediction.

    Dataset Features: Column Description Stock Random stock ticker (AAPL, GOOG, etc.) Date Random business date Open Open price High High price Low Low price Close Close price Volume Trading volume SMA_10 10-day Simple Moving Average RSI Relative Strength Index (10-90 range) MACD MACD indicator (-5 to 5) Bollinger_Upper Upper Bollinger Band Bollinger_Lower Lower Bollinger Band GDP_Growth Random GDP growth rate (2.5% to 3.5%) Inflation_Rate Inflation rate (1.5% to 3.0%) Interest_Rate Interest rate (0.5% to 5.0%) Sentiment_Score Random sentiment score (-1 to 1) Next_Close Next day's closing price (for regression) Target Binary classification (1: Price Increase, 0: Price Decrease)

    Key Features: Stock Prices: Open, High, Low, Close, and Volume data. Technical Indicators: Simple Moving Average (SMA), Relative Strength Index (RSI), MACD, and Bollinger Bands. Macroeconomic Factors: Simulated GDP growth, inflation rate, and interest rates. Sentiment Scores: Randomized sentiment values between -1 and 1 to simulate market sentiment. Target Variables: Next-day close price (for regression) and price movement direction (for classification).

  18. T

    China Shanghai Composite Stock Market Index Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). China Shanghai Composite Stock Market Index Data [Dataset]. https://tradingeconomics.com/china/stock-market
    Explore at:
    xml, csv, excel, jsonAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 19, 1990 - Dec 2, 2025
    Area covered
    China
    Description

    China's main stock market index, the SHANGHAI, fell to 3898 points on December 2, 2025, losing 0.42% from the previous session. Over the past month, the index has declined 1.98%, though it remains 15.36% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from China. China Shanghai Composite Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.

  19. Inflation: Friend or Foe to the Stock Market? (Forecast)

    • kappasignal.com
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). Inflation: Friend or Foe to the Stock Market? (Forecast) [Dataset]. https://www.kappasignal.com/2023/06/inflation-friend-or-foe-to-stock-market.html
    Explore at:
    Dataset updated
    Jun 1, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Inflation: Friend or Foe to the Stock Market?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  20. T

    France Stock Market Index (FR40) Data

    • tradingeconomics.com
    • pl.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). France Stock Market Index (FR40) Data [Dataset]. https://tradingeconomics.com/france/stock-market
    Explore at:
    json, xml, csv, excelAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jul 9, 1987 - Dec 2, 2025
    Area covered
    France
    Description

    France's main stock market index, the FR40, rose to 8121 points on December 2, 2025, gaining 0.29% from the previous session. Over the past month, the index has climbed 0.13% and is up 11.93% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from France. France Stock Market Index (FR40) - values, historical data, forecasts and news - updated on December of 2025.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Ziya (2025). Stock Market Dataset [Dataset]. https://www.kaggle.com/datasets/ziya07/stock-market-dataset
Organization logo

Stock Market Dataset

Explore at:
zip(1075471 bytes)Available download formats
Dataset updated
Jan 25, 2025
Authors
Ziya
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

The "Stock Market Dataset for AI-Driven Prediction and Trading Strategy Optimization" is designed to simulate real-world stock market data for training and evaluating machine learning models. This dataset includes a combination of technical indicators, market metrics, sentiment scores, and macroeconomic factors, providing a comprehensive foundation for developing and testing AI models for stock price prediction and trading strategy optimization.

Key Features Market Metrics:

Open, High, Low, Close Prices: Daily stock price movement. Volume: Represents the trading activity during the day. Technical Indicators:

RSI (Relative Strength Index): A momentum oscillator to measure the speed and change of price movements. MACD (Moving Average Convergence Divergence): An indicator to reveal changes in strength, direction, momentum, and duration of a trend. Bollinger Bands: Upper and lower bands around a stock price to measure volatility. Sentiment Analysis:

Sentiment Score: Simulated sentiment derived from financial news and social media, ranging from -1 (negative) to 1 (positive). Macroeconomic Factors:

GDP Growth: Indicates the overall health and growth of the economy. Inflation Rate: Reflects changes in purchasing power and economic stability. Target Variable:

Buy/Sell Signal: Binary classification (1 = Buy, 0 = Sell) based on price movement thresholds, simulating actionable trading decisions. Use Cases AI Model Training: Ideal for building stock prediction models using LSTM, Gradient Boosting, Random Forest, etc. Trading Strategy Optimization: Enables testing of trading algorithms and strategies in a simulated environment. Sentiment Analysis Research: Useful for understanding how sentiment influences stock movements. Feature Engineering and Selection: Provides a diverse set of features for experimentation with advanced techniques like PCA and LDA. Dataset Highlights Synthetic Yet Realistic: Carefully designed to mimic real-world financial data trends and relationships. Comprehensive Coverage: Includes key indicators and metrics used by traders and analysts. Scalable: Suitable for use in both small-scale academic projects and larger AI-driven trading platforms. Accessible for All Levels: The intuitive structure ensures that even beginners can utilize this dataset for financial machine learning applications. File Format The dataset is provided in CSV format, where:

Rows represent individual trading days. Columns represent features (technical indicators, market metrics, etc.) and the target variable. Acknowledgments This dataset is synthetically generated and is intended for research and educational purposes. It is not based on real market data and should not be used for actual trading.

Search
Clear search
Close search
Google apps
Main menu