8 datasets found
  1. Global Share of Adult ICU Occupancy Rate (Average) by Country, 2023

    • reportlinker.com
    Updated Apr 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ReportLinker (2024). Global Share of Adult ICU Occupancy Rate (Average) by Country, 2023 [Dataset]. https://www.reportlinker.com/dataset/7e9ea8b2aa8b68f2a9ff0aec8bec2b576b35f8fe
    Explore at:
    Dataset updated
    Apr 9, 2024
    Dataset authored and provided by
    ReportLinker
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Global Share of Adult ICU Occupancy Rate (Average) by Country, 2023 Discover more data with ReportLinker!

  2. United States COVID-19 Hospitalization Metrics by Jurisdiction, Timeseries –...

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Jul 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC Division of Healthcare Quality Promotion (DHQP) Surveillance Branch, National Healthcare Safety Network (NHSN) (2023). United States COVID-19 Hospitalization Metrics by Jurisdiction, Timeseries – ARCHIVED [Dataset]. https://data.cdc.gov/w/39z2-9zu6/tdwk-ruhb?cur=qr13z6Hpn1-&from=root
    Explore at:
    application/rssxml, tsv, csv, json, application/rdfxml, xmlAvailable download formats
    Dataset updated
    Jul 6, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC Division of Healthcare Quality Promotion (DHQP) Surveillance Branch, National Healthcare Safety Network (NHSN)
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    Note: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, and hospital capacity and occupancy data, to HHS through CDC’s National Healthcare Safety Network. The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.

    This dataset represents daily COVID-19 hospitalization data and metrics aggregated to national, state/territory, and regional levels. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.

    Reporting information:

    • As of December 15, 2022, COVID-19 hospital data are required to be reported to NHSN, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN represent aggregated counts and include metrics capturing information specific to hospital capacity, occupancy, hospitalizations, and admissions. Prior to December 15, 2022, hospitals reported data directly to the U.S. Department of Health and Human Services (HHS) or via a state submission for collection in the HHS Unified Hospital Data Surveillance System (UHDSS).
    • While CDC reviews these data for errors and corrects those found, some reporting errors might still exist within the data. To minimize errors and inconsistencies in data reported, CDC removes outliers before calculating the metrics. CDC and partners work with reporters to correct these errors and update the data in subsequent weeks.
    • Many hospital subtypes, including acute care and critical access hospitals, as well as Veterans Administration, Defense Health Agency, and Indian Health Service hospitals, are included in the metric calculations provided in this report. Psychiatric, rehabilitation, and religious non-medical hospital types are excluded from calculations.
    • Data are aggregated and displayed for hospitals with the same Centers for Medicare and Medicaid Services (CMS) Certification Number (CCN), which are assigned by CMS to counties based on the CMS Provider of Services files.
    • Full details on COVID-19 hospital data reporting guidance can be found here: https://www.hhs.gov/sites/default/files/covid-19-faqs-hospitals-hospital-laboratory-acute-care-facility-data-reporting.pdf

    Metric details:

    • Time Period: timeseries data will update weekly on Mondays as soon as they are reviewed and verified, usually before 8 pm ET. Updates will occur the following day when reporting coincides with a federal holiday. Note: Weekly updates might be delayed due to delays in reporting. All data are provisional. Because these provisional counts are subject to change, including updates to data reported previously, adjustments can occur. Data may be updated since original publication due to delays in reporting (to account for data received after a given Thursday publication) or data quality corrections.
    • New COVID-19 Hospital Admissions (count): Number of new admissions of patients with laboratory-confirmed COVID-19 in the previous week (including both adult and pediatric admissions) in the entire jurisdiction.
    • New COVID-19 Hospital Admissions (7-Day Average): 7-day average of new admissions of patients with laboratory-confirmed COVID-19 in the previous week (including both adult and pediatric admissions) in the entire jurisdiction.
    • Cumulative COVID-19 Hospital Admissions: Cumulative total number of admissions of patients with laboratory-confirmed COVID-19 (including both adult and pediatric admissions) in the entire jurisdiction since August 1, 2020.
    • Cumulative COVID-19 Hospital Admissions Rate: Cumulative total number of admissions of patients with laboratory-confirmed COVID-19 (including both adult and pediatric admissions) in the entire jurisdiction since August 1, 2020 divided by 2019 intercensal population estimate for that jurisdiction multiplied by 100,000.
    • New COVID-19 Hospital Admissions Rate (7-day average) percent change from prior week: Percent change in the 7-day average new admissions of patients with laboratory-confirmed COVID-19 per 100,000 population compared with the prior week.
    • New COVID-19 Hospital Admissions (7-Day Total): 7-day total number of new admissions of patients with laboratory-confirmed COVID-19 (including both adult and pediatric admissions) in the entire jurisdiction.
    • New COVID-19 Hospital Admissions Rate (7-Day Total): 7-day total number of new admissions of patients with laboratory-confirmed COVID-19 (including both adult and pediatric admissions) for the entire jurisdiction divided by 2019 intercensal population estimate for that jurisdiction multiplied by 100,000.
    • Total Hospitalized COVID-19 Patients: 7-day total number of patients currently hospitalized with laboratory-confirmed COVID-19 (including both adult and pediatric patients) for the entire jurisdiction.
    • Total Hospitalized COVID-19 Patients (7-Day Average): 7-day average of the number of patients currently hospitalized with laboratory-confirmed COVID-19 (including both adult and pediatric patients) for the entire jurisdiction.
    • COVID-19 Inpatient Bed Occupancy (7-Day Average): Percentage of all staffed inpatient beds occupied by patients with laboratory-confirmed COVID-19 (including both adult and pediatric patients) within the entire jurisdiction is calculated as an average of valid daily values within the past 7 days (e.g., if only three valid values, the average of those three is taken). Averages are separately calculated for the daily numerators (patients hospitalized with confirmed COVID-19) and denominators (staffed inpatient beds). The average percentage can then be taken as the ratio of these two values for the entire jurisdiction.
    • COVID-19 Inpatient Bed Occupancy absolute change from prior week: The absolute change in the percent of staffed inpatient beds occupied by patients with laboratory-confirmed COVID-19 represents the week-over-week absolute difference between the 7-day average occupancy of patients with confirmed COVID-19 in staffed inpatient beds in the past 7 days, compared with the prior week, in the entire jurisdiction.
    • COVID-19 ICU Bed Occupancy (7-Day Average): Percentage of all staffed inpatient beds occupied by adult patients with confirmed COVID-19 within the entire jurisdiction is calculated as a 7-day average of valid daily values within the past 7 days (e.g., if only three valid values, the average of those three is taken). Averages are separately calculated for the daily numerators (adult patients hospitalized with confirmed COVID-19) and denominators (staffed adult ICU beds). The average percentage can then be taken as the ratio of these two values for the entire jurisdiction.
    • COVID-19 ICU Bed Occupancy absolute change from prior week: The absolute change in the percent of staffed ICU beds occupied by patients with laboratory-confirmed COVID-19 represents the week-over-week absolute difference between the average occupancy of patients with confirmed COVID-19 in staffed adult ICU beds for the past 7 days, compared with the prior week, in the in the entire jurisdiction.

    Notes: October 27, 2023: Due to a data processing error, reported values for avg_percent_inpatient_beds_occupied_covid_confirmed will appear lower than previously reported values by an average difference of less than 1%. Therefore, previously reported values for avg_percent_inpatient_beds_occupied_covid_confirmed may have been overestimated and should be interpreted with caution.

    October 27, 2023: Due to a data processing error, reported values for abs_chg_avg_percent_inpatient_beds_occupied_covid_confirmed will differ from previously reported values by an average absolute difference of less than 1%. Therefore, previously reported values for abs_chg_avg_percent_inpatient_beds_occupied_covid_confirmed should be interpreted with caution.

    December 29, 2023: Hospitalization data reported to CDC’s National Healthcare Safety Network (NHSN) through December 23, 2023, should be interpreted with caution due to potential reporting delays that are impacted by Christmas and New Years holidays. As a result, metrics including new hospital admissions for COVID-19 and influenza and hospital occupancy may be underestimated for the week ending December 23, 2023.

    January 5, 2024: Hospitalization data reported to CDC’s National Healthcare Safety Network (NHSN) through December 30, 2023 should be interpreted with caution due to potential reporting delays that are impacted by Christmas and New Years holidays. As a result, metrics including new hospital admissions for COVID-19 and influenza and hospital occupancy may be underestimated for the week ending December 30, 2023.

  3. Weekly United States COVID-19 Hospitalization Metrics by Jurisdiction –...

    • healthdata.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Jul 11, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cdc.gov (2023). Weekly United States COVID-19 Hospitalization Metrics by Jurisdiction – ARCHIVED [Dataset]. https://healthdata.gov/dataset/Weekly-United-States-COVID-19-Hospitalization-Metr/i9k6-47up
    Explore at:
    json, csv, application/rdfxml, application/rssxml, tsv, xmlAvailable download formats
    Dataset updated
    Jul 11, 2023
    Dataset provided by
    data.cdc.gov
    Area covered
    United States
    Description

    Note: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.

    This dataset represents weekly COVID-19 hospitalization data and metrics aggregated to national, state/territory, and regional levels. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.

    Reporting information:

    • As of December 15, 2022, COVID-19 hospital data are required to be reported to NHSN, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN represent aggregated counts and include metrics capturing information specific to hospital capacity, occupancy, hospitalizations, and admissions. Prior to December 15, 2022, hospitals reported data directly to the U.S. Department of Health and Human Services (HHS) or via a state submission for collection in the HHS Unified Hospital Data Surveillance System (UHDSS).
    • While CDC reviews these data for errors and corrects those found, some reporting errors might still exist within the data. To minimize errors and inconsistencies in data reported, CDC removes outliers before calculating the metrics. CDC and partners work with reporters to correct these errors and update the data in subsequent weeks.
    • Many hospital subtypes, including acute care and critical access hospitals, as well as Veterans Administration, Defense Health Agency, and Indian Health Service hospitals, are included in the metric calculations provided in this report. Psychiatric, rehabilitation, and religious non-medical hospital types are excluded from calculations.
    • Data are aggregated and displayed for hospitals with the same Centers for Medicare and Medicaid Services (CMS) Certification Number (CCN), which are assigned by CMS to counties based on the CMS Provider of Services files.
    • Full details on COVID-19 hospital data reporting guidance can be found here: https://www.hhs.gov/sites/default/files/covid-19-faqs-hospitals-hospital-laboratory-acute-care-facility-data-reporting.pdf

    Metric details:

    • Time Period: timeseries data will update weekly on Mondays as soon as they are reviewed and verified, usually before 8 pm ET. Updates will occur the following day when reporting coincides with a federal holiday. Note: Weekly updates might be delayed due to delays in reporting. All data are provisional. Because these provisional counts are subject to change, including updates to data reported previously, adjustments can occur. Data may be updated since original publication due to delays in reporting (to account for data received after a given Thursday publication) or data quality corrections.
    • New COVID-19 Hospital Admissions (count): Number of new admissions of patients with laboratory-confirmed COVID-19 in the previous week (including both adult and pediatric admissions) in the entire jurisdiction.
    • New COVID-19 Hospital Admissions (7-Day Average): 7-day average of new admissions of patients with laboratory-confirmed COVID-19 in the previous week (including both adult and pediatric admissions) in the entire jurisdiction.
    • Cumulative COVID-19 Hospital Admissions: Cumulative total number of admissions of patients with labo

  4. Centers for Disease Control and Prevention, Division of Healthcare Quality...

    • opendata.ramseycounty.us
    application/rdfxml +5
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC Division of Healthcare Quality Promotion (DHQP) Surveillance Branch, National Healthcare Safety Network (NHSN) (2025). Centers for Disease Control and Prevention, Division of Healthcare Quality Promotion, National Healthcare Safety Network, Weekly United States COVID-19 Hospitalization Metrics - Ramsey County [Dataset]. https://opendata.ramseycounty.us/w/5mvu-4mt4/cjij-g4h4?cur=wCPAmhgX7ip
    Explore at:
    json, csv, tsv, xml, application/rdfxml, application/rssxmlAvailable download formats
    Dataset updated
    Jun 27, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC Division of Healthcare Quality Promotion (DHQP) Surveillance Branch, National Healthcare Safety Network (NHSN)
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    Ramsey County, United States
    Description

    Note: This dataset has been limited to show metrics for Ramsey County, Minnesota.

    This dataset represents COVID-19 hospitalization data and metrics aggregated to county or county-equivalent, for all counties or county-equivalents (including territories) in the United States. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.

    Reporting information: As of December 15, 2022, COVID-19 hospital data are required to be reported to NHSN, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN represent aggregated counts and include metrics capturing information specific to hospital capacity, occupancy, hospitalizations, and admissions. Prior to December 15, 2022, hospitals reported data directly to the U.S. Department of Health and Human Services (HHS) or via a state submission for collection in the HHS Unified Hospital Data Surveillance System (UHDSS). While CDC reviews these data for errors and corrects those found, some reporting errors might still exist within the data. To minimize errors and inconsistencies in data reported, CDC removes outliers before calculating the metrics. CDC and partners work with reporters to correct these errors and update the data in subsequent weeks. Many hospital subtypes, including acute care and critical access hospitals, as well as Veterans Administration, Defense Health Agency, and Indian Health Service hospitals, are included in the metric calculations provided in this report. Psychiatric, rehabilitation, and religious non-medical hospital types are excluded from calculations. Data are aggregated and displayed for hospitals with the same Centers for Medicare and Medicaid Services (CMS) Certification Number (CCN), which are assigned by CMS to counties based on the CMS Provider of Services files. Full details on COVID-19 hospital data reporting guidance can be found here: https://www.hhs.gov/sites/default/files/covid-19-faqs-hospitals-hospital-laboratory-acute-care-facility-data-reporting.pdf

    Calculation of county-level hospital metrics: County-level hospital data are derived using calculations performed at the Health Service Area (HSA) level. An HSA is defined by CDC’s National Center for Health Statistics as a geographic area containing at least one county which is self-contained with respect to the population’s provision of routine hospital care. Every county in the United States is assigned to an HSA, and each HSA must contain at least one hospital. Therefore, use of HSAs in the calculation of local hospital metrics allows for more accurate characterization of the relationship between health care utilization and health status at the local level. Data presented at the county-level represent admissions, hospital inpatient and ICU bed capacity and occupancy among hospitals within the selected HSA. Therefore, admissions, capacity, and occupancy are not limited to residents of the selected HSA. For all county-level hospital metrics listed below the values are calculated first for the entire HSA, and then the HSA-level value is then applied to each county within the HSA. For all county-level hospital metrics listed below the values are calculated first for the entire HSA, and then the HSA-level value is then applied to each county within the HSA.

    Metric details: Time period: data for the previous MMWR week (Sunday-Saturday) will update weekly on Thursdays as soon as they are reviewed and verified, usually before 8 pm ET. Updates will occur the following day when reporting coincides with a federal holiday. Note: Weekly updates might be delayed due to delays in reporting. All data are provisional. Because these provisional counts are subject to change, including updates to data reported previously, adjustments can occur. Data may be updated since original publication due to delays in reporting (to account for data received after a given Thursday publication) or data quality corrections. New hospital admissions (count): Total number of admissions of patients with laboratory-confirmed COVID-19 in the previous week (including both adult and pediatric admissions) in the entire jurisdiction New Hospital Admissions Rate Value (Admissions per 100k): Total number of new admissions of patients with laboratory-confirmed COVID-19 in the past week (including both adult and pediatric admissions) for the entire jurisdiction divided by 2019 intercensal population estimate for that jurisdiction multiplied by 100,000. (Note: This metric is used to determine each county’s COVID-19 Hospital Admissions Level for a given week). New COVID-19 Hospital Admissions Rate Level: qualitative value of new COVID-19 hospital admissions rate level [Low, Medium, High, Insufficient Data] New hospital admissions percent change from prior week: Percent change in the current weekly total new admissions of patients with laboratory-confirmed COVID-19 per 100,000 population compared with the prior week. New hospital admissions percent change from prior week level: Qualitative value of percent change in hospital admissions rate from prior week [Substantial decrease, Moderate decrease, Stable, Moderate increase, Substantial increase, Insufficient data] COVID-19 Inpatient Bed Occupancy Value: Percentage of all staffed inpatient beds occupied by patients with laboratory-confirmed COVID-19 (including both adult and pediatric patients) within the in the entire jurisdiction is calculated as an average of valid daily values within the past week (e.g., if only three valid values, the average of those three is taken). Averages are separately calculated for the daily numerators (patients hospitalized with confirmed COVID-19) and denominators (staffed inpatient beds). The average percentage can then be taken as the ratio of these two values for the entire jurisdiction. COVID-19 Inpatient Bed Occupancy Level: Qualitative value of inpatient beds occupied by COVID-19 patients level [Minimal, Low, Moderate, Substantial, High, Insufficient data] COVID-19 Inpatient Bed Occupancy percent change from prior week: The absolute change in the percent of staffed inpatient beds occupied by patients with laboratory-confirmed COVID-19 represents the week-over-week absolute difference between the average occupancy of patients with confirmed COVID-19 in staffed inpatient beds in the past week, compared with the prior week, in the entire jurisdiction. COVID-19 ICU Bed Occupancy Value: Percentage of all staffed inpatient beds occupied by adult patients with confirmed COVID-19 within the entire jurisdiction is calculated as an average of valid daily values within the past week (e.g., if only three valid values, the average of those three is taken). Averages are separately calculated for the daily numerators (adult patients hospitalized with confirmed COVID-19) and denominators (staffed adult ICU beds). The average percentage can then be taken as the ratio of these two values for the entire jurisdiction. COVID-19 ICU Bed Occupancy Level: Qualitative value of ICU beds occupied by COVID-19 patients level [Minimal, Low, Moderate, Substantial, High, Insufficient data] COVID-19 ICU Bed Occupancy percent change from prior week: The absolute change in the percent of staffed ICU beds occupied by patients with laboratory-confirmed COVID-19 represents the week-over-week absolute difference between the average occupancy of patients with confirmed COVID-19 in staffed adult ICU beds for the past week, compared with the prior week, in the in the entire jurisdiction. For all metrics, if there are no data in the specified locality for a given week, the metric value is displayed as “insufficient data”.

  5. f

    Average weekly incidence of Acute Respiratory Infection (ARI) cases with...

    • plos.figshare.com
    xls
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Montserrat Guillen; Ignasi Bardes Robles; Ester Bordera Cabrera; Xénia Acebes Roldán; Catalina Bolancé; Daniel Jorba; David Moriña (2023). Average weekly incidence of Acute Respiratory Infection (ARI) cases with Codid-19 diagnosed in Primary Care and Average Intensive Care Unit (ICU) Bed Occupancy of Covid-19 patients, all per 100,000 habitants by months in Catalonia, Spain. [Dataset]. http://doi.org/10.1371/journal.pone.0267428.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Montserrat Guillen; Ignasi Bardes Robles; Ester Bordera Cabrera; Xénia Acebes Roldán; Catalina Bolancé; Daniel Jorba; David Moriña
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Catalonia, Spain
    Description

    Average weekly incidence of Acute Respiratory Infection (ARI) cases with Codid-19 diagnosed in Primary Care and Average Intensive Care Unit (ICU) Bed Occupancy of Covid-19 patients, all per 100,000 habitants by months in Catalonia, Spain.

  6. f

    Data_Sheet_1_Tackling the Waves of COVID-19: A Planning Model for...

    • frontiersin.figshare.com
    pdf
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Felicitas Schmidt; Christian Hauptmann; Walter Kohlenz; Philipp Gasser; Sascha Hartmann; Michael Daunderer; Thomas Weiler; Lorenz Nowak (2023). Data_Sheet_1_Tackling the Waves of COVID-19: A Planning Model for Intrahospital Resource Allocation.PDF [Dataset]. http://doi.org/10.3389/frhs.2021.718668.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Frontiers
    Authors
    Felicitas Schmidt; Christian Hauptmann; Walter Kohlenz; Philipp Gasser; Sascha Hartmann; Michael Daunderer; Thomas Weiler; Lorenz Nowak
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Background: The current pandemic requires hospitals to ensure care not only for the growing number of COVID-19 patients but also regular patients. Hospital resources must be allocated accordingly.Objective: To provide hospitals with a planning model to optimally allocate resources to intensive care units given a certain incidence of COVID-19 cases.Methods: The analysis included 334 cases from four adjacent counties south-west of Munich. From length of stay and type of ward [general ward (NOR), intensive care unit (ICU)] probabilities of case numbers within a hospital at a certain time point were derived. The epidemiological situation was simulated by the effective reproduction number R, the infection rates in mid-August 2020 in the counties, and the German hospitalization rate. Simulation results are compared with real data from 2nd and 3rd wave (September 2020–May 2021).Results: With R = 2, a hospitalization rate of 17%, mitigation measures implemented on day 9 (i.e., 7-day incidence surpassing 50/100,000), the peak occupancy was reached on day 22 (155.1 beds) for the normal ward and on day 25 (44.9 beds) for the intensive care unit. A higher R led to higher occupancy rates. Simulated number of infections and intensive care unit occupancy was concordant in validation with real data obtained from the 2nd and 3rd waves in Germany.Conclusion: Hospitals could expect a peak occupancy of normal ward and intensive care unit within ~5–11 days after infections reached their peak and critical resources could be allocated accordingly. This delay (in particular for the peak of intensive care unit occupancy) might give options for timely preparation of additional intensive care unit resources.

  7. Hospital Annual Utilization Report & Pivot Tables

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    aspx, csv, docx, html +3
    Updated May 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health Care Access and Information (2025). Hospital Annual Utilization Report & Pivot Tables [Dataset]. https://data.chhs.ca.gov/dataset/hospital-annual-utilization-report
    Explore at:
    pdf, xlsx, xlsx(1080890), xlsx(605638), xlsx(572310), pdf(315089), xlsx(637002), pdf(358211), xlsx(1116716), csv(108533621), pdf(682851), xlsx(915800), pdf(536270), pdf(293988), pdf(972079), pdf(368791), pdf(301252), xlsx(657042), pdf(532200), xlsx(1108403), pdf(386430), xlsx(982162), pdf(294518), docx, html, pdf(380270), xlsx(586048), aspx, xlsx(598028), pdf(383225), xlsx(602836), zip, xlsx(607287), pdf(302833), xlsx(1107998), xlsx(1073059)Available download formats
    Dataset updated
    May 30, 2025
    Dataset authored and provided by
    Department of Health Care Access and Information
    Description

    The complete data set of annual utilization data reported by hospitals contains basic licensing information including bed classifications; patient demographics including occupancy rates, the number of discharges and patient days by bed classification, and the number of live births; as well as information on the type of services provided including the number of surgical operating rooms, number of surgeries performed (both inpatient and outpatient), the number of cardiovascular procedures performed, and licensed emergency medical services provided.

  8. f

    Table_2_Clinical Characteristics of Cancer Patients With COVID-19: A...

    • frontiersin.figshare.com
    docx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Deliang Guo; Haitao Wang; Qian Zhu; Yufeng Yuan (2023). Table_2_Clinical Characteristics of Cancer Patients With COVID-19: A Retrospective Multicentric Study in 19 Hospitals Within Hubei, China.docx [Dataset]. http://doi.org/10.3389/fmed.2021.614057.s002
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Frontiers
    Authors
    Deliang Guo; Haitao Wang; Qian Zhu; Yufeng Yuan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Hubei
    Description

    Objective: This study aimed to determine the association between prognosis of COVID-19 patients with and without cancer. Moreover, we compared the prognosis of cancer patients subjected to anti-tumor therapy with those who have not undergone anti-tumor therapy in the past 6 months.Methods and Results: A total of 7,926 adult patients with COVID-19 were retrospectively enrolled in Hubei Province,China between December 31, 2019 and February 20, 2020. Two hundred and seventy seven cancer patients (cancer group, median age 64 [IQR 56–70] years; 50.90% male) and 7,649 non-cancer patients were identified (non-cancer group, median age 55 [IQR 42–64] years; 48.19% male). The mortality rate was lower in the non-cancer group compared to the cancer group (4.50 vs. 9.03%; P < 0.001). The duration between onset and admission shorter in the cancer group (Days, 9 [IQR 5–18]) compared to the non-cancer group (Days, 10; [IQR 6–19]; P = 0.036). ICU occupancy was higher in the cancer group (n[%], 30[10.83%]) than in the non-cancer group (n[%], 314[4.11%]). In reviewing the anti-tumor therapy, data from 277 selected cancer patients were obtained out of which 74 patients had undergone anti-tumor therapy (mean age 65 [IQR 51–67] years; 45.95% male), 203 had not undergone anti-tumor therapy (non-anti-tumor therapy group, mean age 63 [IQR 53–75] years; 49.75% male) in the past 6 months. The mortality rate for the anti-tumor therapy group and the non-anti-tumor therapy group was similar (9.46 vs. 8.87%; P = 0.879).Conclusion: The mortality rate was higher in COVID-19 patients with cancer compared to those without cancer. Moreover, anti-tumor therapy in the past 6 months did not worsen the prognosis of cancer patients with COVID-19.

  9. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ReportLinker (2024). Global Share of Adult ICU Occupancy Rate (Average) by Country, 2023 [Dataset]. https://www.reportlinker.com/dataset/7e9ea8b2aa8b68f2a9ff0aec8bec2b576b35f8fe
Organization logo

Global Share of Adult ICU Occupancy Rate (Average) by Country, 2023

Explore at:
Dataset updated
Apr 9, 2024
Dataset authored and provided by
ReportLinker
License

Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically

Description

Global Share of Adult ICU Occupancy Rate (Average) by Country, 2023 Discover more data with ReportLinker!

Search
Clear search
Close search
Google apps
Main menu