This statistic shows the median household income in the United States from 1990 to 2023 in 2023 U.S. dollars. The median household income was 80,610 U.S. dollars in 2023, an increase from the previous year. Household incomeThe median household income depicts the income of households, including the income of the householder and all other individuals aged 15 years or over living in the household. Income includes wages and salaries, unemployment insurance, disability payments, child support payments received, regular rental receipts, as well as any personal business, investment, or other kinds of income received routinely. The median household income in the United States varies from state to state. In 2020, the median household income was 86,725 U.S. dollars in Massachusetts, while the median household income in Mississippi was approximately 44,966 U.S. dollars at that time. Household income is also used to determine the poverty line in the United States. In 2021, about 11.6 percent of the U.S. population was living in poverty. The child poverty rate, which represents people under the age of 18 living in poverty, has been growing steadily over the first decade since the turn of the century, from 16.2 percent of the children living below the poverty line in year 2000 to 22 percent in 2010. In 2021, it had lowered to 15.3 percent. The state with the widest gap between the rich and the poor was New York, with a Gini coefficient score of 0.51 in 2019. The Gini coefficient is calculated by looking at average income rates. A score of zero would reflect perfect income equality and a score of one indicates a society where one person would have all the money and all other people have nothing.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Real Median Personal Income in the United States (MEPAINUSA672N) from 1974 to 2023 about personal income, personal, median, income, real, and USA.
This layer shows household income ranges for households, families, married couple families, and nonfamily households (as defined by the U.S. Census). Data is from US Census American Community Survey (ACS) 5-year estimates. This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right (in ArcGIS Online). To view only the census tracts that are predominantly in Tempe, add the expression City is Tempe in the map filter settings.Layer includes:Total households (of various types including households, families, married couple families, and nonfamily households as defined by the U.S. Census)Household income bracketsHousehold median income in dollarsHousehold mean income in dollarsA ‘Null’ entry in the estimate indicates that data for this geographic area cannot be displayed because the number of sample cases is too small (per the U.S. Census).Current Vintage: 2016-2020ACS Table(s): S1901 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Data Preparation: Data table downloaded and joined with Census Tract boundaries that are within or adjacent to the City of Tempe boundaryDate of Census update: March 17, 2022National Figures: data.census.gov
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The estimated median household income and estimated median family income are two separate measures: every family is a household, but not every household is a family. According to the U.S. Census Bureau definitions of the terms, a family “includes a householder and one or more people living in the same household who are related to the householder by birth, marriage, or adoption,”[1] while a household “includes all the people who occupy a housing unit,” including households of just one person[2]. When evaluated together, the estimated median household income and estimated median family income provide a thorough picture of household-level economics in Champaign County.
Both estimated median household income and estimated median family income were higher in 2023 than in 2005. The changes in estimated median household income and estimated median family income between 2022 and 2023 were not statistically significant. Estimated median family income is consistently higher than estimated median household income, largely due to the definitions of each term, and the types of household that are measured and are not measured in each category.
Median income data was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes datasets on Median Household Income in the Past 12 Months (in 2020 Inflation-Adjusted Dollars) and Median Family Income in the Past 12 Months (in 2020 Inflation-Adjusted Dollars).
[1] U.S. Census Bureau. (Date unknown). Glossary. “Family Household.” (Accessed 19 April 2016).
[2] U.S. Census Bureau. (Date unknown). Glossary. “Household.” (Accessed 19 April 2016).
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using data.census.gov; (18 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using data.census.gov; (3 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using data.census.gov; (7 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using data.census.gov; (7 June 2021).;U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).
The SCAG_ATDB_Demographics shapefile contains Census tract level population, race, employment, English speaking, income, and elderly data of the SCAG region. Race data includes the percentage of population that is white, black, Asian, Latino, Pacific Islander, Native American, multiple races, or other. Population data includes 2010 population 2015 population, and population density. Employment data includes 2015 employment, unemployment, and employment density. English speaking data includes the percentage of the population that speaks English well. This shapefile also includes median household income and percentage of the population that is 65 years or older. This data was sourced mostly from Census data as well as the Healthy Places Index (HPI). Original data sources are listed in the relevant fields.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about Brazil Household Income per Capita
This service shows the median household after-tax income in 2015 for Canada, by 2016 census subdivision. The data is from the Census Profile, Statistics Canada Catalogue no. 98-316-X2016001. After-tax income - refers to total income less income taxes of the statistical unit during a specified reference period (for additional information refer to Total Income – 2016 Census Dictionary and After-tax Income – 2016 Census Dictionary). The median income of a specified group is the amount that divides the income distribution of that group into two halves. Census subdivision (CSD) is the general term for municipalities (as determined by provincial/territorial legislation) or areas treated as municipal equivalents for statistical purposes (e.g., Indian reserves, Indian settlements and unorganized territories). Municipal status is defined by laws in effect in each province and territory in Canada. To have a cartographic representation of the ecumene with this socio-economic indicator, it is recommended to add as the first layer, the “NRCan - 2016 population ecumene by census subdivision” web service, accessible in the data resources section below. Besides the variable described here, the dataset contains the id, name, type, province, population, land area and the number of private households for each census subdivision. If a value is null, it could be because it is not available for a specific reference period, it is not applicable, it is too unreliable to be published or it is suppressed to meet confidentiality requirements of the Statistics Act. To find out the exact reason, refer to the source data from Census in the resources below.
This statistic shows the median earnings of mid-career college graduates aged 35 to 45 who worked full-time in the United States between 2016 and 2017, by attained major. Between 2016 and 2017, mid-career graduates with a computer science major had a median income of ****** U.S. dollars in the United States.
This U.S. Census Bureau American Community Survey (ACS) five-year estimates data set contains median household income estimates during the past 12 months and in inflation-adjusted dollars. The data is available over a number of geographies ranging from statewide to census tract level. The data is available for year 2009-2016. This includes the median income of the householder and all other individuals 15 years old and over in the household, whether they are related to the householder or not. Income is based on “money” income–income received on a regular basis before payments for personal income taxes, social security, union dues, etc. Money income does not include noncash benefits that may be received.
In 2023, the real median household income for householders aged 15 to 24 was at 54,930 U.S. dollars. The highest median household income was found amongst those aged between 45 and 54. Household median income for the United States since 1990 can be accessed here.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household incomes over the past decade across various racial categories identified by the U.S. Census Bureau in Sacramento. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. It also showcases the annual income trends, between 2013 and 2023, providing insights into the economic shifts within diverse racial communities.The dataset can be utilized to gain insights into income disparities and variations across racial categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Sacramento median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household incomes over the past decade across various racial categories identified by the U.S. Census Bureau in Weston town. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. It also showcases the annual income trends, between 2013 and 2023, providing insights into the economic shifts within diverse racial communities.The dataset can be utilized to gain insights into income disparities and variations across racial categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Weston town median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household incomes over the past decade across various racial categories identified by the U.S. Census Bureau in Plano. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. It also showcases the annual income trends, between 2013 and 2023, providing insights into the economic shifts within diverse racial communities.The dataset can be utilized to gain insights into income disparities and variations across racial categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Plano median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Average Real Monthly Income: Usual Earnings: South: 14 to 17 Years data was reported at 720.000 BRL in 2017. This records an increase from the previous number of 705.000 BRL for 2016. Average Real Monthly Income: Usual Earnings: South: 14 to 17 Years data is updated yearly, averaging 712.500 BRL from Dec 2016 (Median) to 2017, with 2 observations. The data reached an all-time high of 720.000 BRL in 2017 and a record low of 705.000 BRL in 2016. Average Real Monthly Income: Usual Earnings: South: 14 to 17 Years data remains active status in CEIC and is reported by Brazilian Institute of Geography and Statistics. The data is categorized under Brazil Premium Database’s Domestic Trade and Household Survey – Table BR.HF055: Average Real Monthly Household Income: Usual Earning: by Age: South.
This dataset is a demographic shapefile for SCAG Active Transportation Program (ATP) that contains Census tract level population, race, employment, English speaking, income, and elderly data of the SCAG region. Race data includes the percentage of population that is white, black, Asian, Latino, Pacific Islander, Native American, multiple races, or other. Population data includes 2010 population 2015 population, and population density. Employment data includes 2015 employment, unemployment, and employment density. English speaking data includes the percentage of the population that speaks English well. This shapefile also includes median household income and percentage of the population that is 65 years or older. This data was sourced mostly from Census data as well as the Healthy Places Index (HPI). Original data sources are listed in the relevant fields.
This statistic illustrates the annual household income per capita in Mexico between 2006 and 2016. In 2016, Mexico's annual household income reached ******** U.S. dollars, whereas in 2014 it amounted to ******** U.S. dollars.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Average Real Monthly Income: Usual Earnings: South: Rio Grande do Sul: 30 to 39 Years data was reported at 2,400.000 BRL in 2017. This records a decrease from the previous number of 2,415.000 BRL for 2016. Average Real Monthly Income: Usual Earnings: South: Rio Grande do Sul: 30 to 39 Years data is updated yearly, averaging 2,407.500 BRL from Dec 2016 (Median) to 2017, with 2 observations. The data reached an all-time high of 2,415.000 BRL in 2016 and a record low of 2,400.000 BRL in 2017. Average Real Monthly Income: Usual Earnings: South: Rio Grande do Sul: 30 to 39 Years data remains active status in CEIC and is reported by Brazilian Institute of Geography and Statistics. The data is categorized under Brazil Premium Database’s Domestic Trade and Household Survey – Table BR.HF055: Average Real Monthly Household Income: Usual Earning: by Age: South.
This statistic shows the average monthly salary in Sweden in 2016, by age group and gender. Men earned more than women regardless of age. Both men and women earned the most in the age group of 45 to 54 years. At this age, men received an average salary of ** thousand Swedish kronor whereas women earned on average **** thousand Swedish kronor.
Average earnings, by age group and highest level of education, from the 2016 Census of Population.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This service shows the median total income of households in 2015 for Canada by 2016 census subdivision. The data is from the Census Profile, Statistics Canada Catalogue no. 98-316-X2016001. Total income refers to the sum of certain incomes (in cash and, in some circumstances, in kind) of the statistical unit during a specified reference period. The median income of a specified group is the amount that divides the income distribution of that group into two halves. For additional information refer to 'Total income' in the 2016 Census Dictionary. For additional information refer to 'Total income' in the 2016 Census Dictionary. To have a cartographic representation of the ecumene with this socio-economic indicator, it is recommended to add as the first layer, the “NRCan - 2016 population ecumene by census subdivision” web service, accessible in the data resources section below.
This statistic shows the median household income in the United States from 1990 to 2023 in 2023 U.S. dollars. The median household income was 80,610 U.S. dollars in 2023, an increase from the previous year. Household incomeThe median household income depicts the income of households, including the income of the householder and all other individuals aged 15 years or over living in the household. Income includes wages and salaries, unemployment insurance, disability payments, child support payments received, regular rental receipts, as well as any personal business, investment, or other kinds of income received routinely. The median household income in the United States varies from state to state. In 2020, the median household income was 86,725 U.S. dollars in Massachusetts, while the median household income in Mississippi was approximately 44,966 U.S. dollars at that time. Household income is also used to determine the poverty line in the United States. In 2021, about 11.6 percent of the U.S. population was living in poverty. The child poverty rate, which represents people under the age of 18 living in poverty, has been growing steadily over the first decade since the turn of the century, from 16.2 percent of the children living below the poverty line in year 2000 to 22 percent in 2010. In 2021, it had lowered to 15.3 percent. The state with the widest gap between the rich and the poor was New York, with a Gini coefficient score of 0.51 in 2019. The Gini coefficient is calculated by looking at average income rates. A score of zero would reflect perfect income equality and a score of one indicates a society where one person would have all the money and all other people have nothing.