30 datasets found
  1. M

    S&P 500 Index - 100 Years of Historical Data

    • macrotrends.net
    csv
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). S&P 500 Index - 100 Years of Historical Data [Dataset]. https://www.macrotrends.net/2324/sp-500-historical-chart-data
    Explore at:
    csvAvailable download formats
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Historical dataset for the S&P 500 stock market index since 1927. Historical data is inflation-adjusted using the headline CPI and each data point represents the month-end closing value. The current month is updated on an hourly basis with today's latest value.

  2. Annual returns of Nasdaq 100 Index 1986-2024

    • statista.com
    Updated Jun 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Annual returns of Nasdaq 100 Index 1986-2024 [Dataset]. https://www.statista.com/statistics/1330833/nasdaq-100-index-annual-returns/
    Explore at:
    Dataset updated
    Jun 12, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The annual returns of the Nasdaq 100 Index from 1986 to 2024. fluctuated significantly throughout the period considered. The Nasdaq 100 index saw its lowest performance in 2008, with a return rate of -41.89 percent, while the largest returns were registered in 1999, at 101.95 percent. As of June 11, 2024, the rate of return of Nasdaq 100 Index stood at 14 percent. The Nasdaq 100 is a stock market index comprised of the 100 largest and most actively traded non-financial companies listed on the Nasdaq stock exchange. How has the Nasdaq 100 evolved over years? The Nasdaq 100, which was previously heavily influenced by tech companies during the dot-com boom, has undergone significant diversification. Today, it represents a broader range of high-growth, non-financial companies across sectors like consumer services and healthcare, reflecting the evolving landscape of the global economy. The annual development of the Nasdaq 100 recently has generally been positive, except for 2022, when the NASDAQ experienced a decline due to worries about escalating inflation, interest rates, and regulatory challenges. What are the leading companies on Nasdaq 100? In August 2023, Apple was the largest company on the Nasdaq 100, with a market capitalization of 2.73 trillion euros. Also, Alphabet C, Alphabet, Amazon, and Broadcom were among the five leading companies included in the index. Market capitalization is one of the most common ways of measuring how big a company is in the financial markets. It is calculated by multiplying the total number of outstanding shares by the current market price.

  3. M

    S&P 500 - 10 Years of Daily Historical Data

    • macrotrends.net
    csv
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). S&P 500 - 10 Years of Daily Historical Data [Dataset]. https://www.macrotrends.net/2488/sp500-10-year-daily-chart
    Explore at:
    csvAvailable download formats
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Historical dataset of the S&P 500 stock market index over the last 10 years. Values shown are daily closing prices. The most recent value is updated on an hourly basis during regular trading hours.

  4. Monthly development S&P 500 Index 2018-2024

    • statista.com
    Updated Feb 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Monthly development S&P 500 Index 2018-2024 [Dataset]. https://www.statista.com/statistics/697624/monthly-sandp-500-index-performance/
    Explore at:
    Dataset updated
    Feb 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2018 - Dec 2024
    Area covered
    United States
    Description

    The S&P 500, an index of 500 publicly traded companies in the United States, closed at 5,881.63 points on the last trading day of December 2024. What is the S&P 500? The S&P 500 is a stock market index that tracks the evolution of 500 companies. In contrast to the Dow Jones Industrial Index, which measures the performance of thirty large U.S. companies, the S&P 500 shows the sentiments in the broader market. Publicly traded companies Companies on the S&P 500 are publicly traded, meaning that anyone can invest in them. A large share of adults in the United States invest in the stock market, though many of these are through a retirement account or mutual fund. While most people make a modest return, the most successful investors have made billions of U.S. dollars through investing.

  5. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Jun 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 6, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  6. BlackRock's, leading global investment funds June 2024, by NAV average...

    • statista.com
    • ai-chatbox.pro
    Updated Jun 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). BlackRock's, leading global investment funds June 2024, by NAV average return [Dataset]. https://www.statista.com/statistics/1256823/fastest-growing-blackrock-funds-worldwide/
    Explore at:
    Dataset updated
    Jun 24, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jun 24, 2024
    Area covered
    Worldwide
    Description

    As of June 2024, the fund with the third-highest return based on net asset value (NAV) was Back Rock's iShares MSCI Poland ETF. The iShares MSCI Peru and Global Exposure ETF ranked second with a one-year NAV return of nearly 54 percent. The top ranking spot went to iShares Blockchain and Tech ETF with a NAV return of over 57 percent.

  7. M

    NASDAQ Composite Historical Chart

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). NASDAQ Composite Historical Chart [Dataset]. https://www.macrotrends.net/1320/nasdaq-historical-chart
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1915 - 2025
    Area covered
    United States
    Description

    Interactive chart of the NASDAQ Composite stock market index since 1971. Historical data is inflation-adjusted using the headline CPI and each data point represents the month-end closing value. The current month is updated on an hourly basis with today's latest value.

  8. T

    Warsaw Stock Exchange WIG Index Data

    • tradingeconomics.com
    • es.tradingeconomics.com
    • +14more
    csv, excel, json, xml
    Updated May 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Warsaw Stock Exchange WIG Index Data [Dataset]. https://tradingeconomics.com/poland/stock-market
    Explore at:
    xml, excel, csv, jsonAvailable download formats
    Dataset updated
    May 26, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 16, 1991 - Jun 6, 2025
    Area covered
    Poland
    Description

    Poland's main stock market index, the WIG, fell to 99287 points on June 6, 2025, losing 0.94% from the previous session. Over the past month, the index has declined 1.09%, though it remains 16.94% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Poland. Warsaw Stock Exchange WIG Index - values, historical data, forecasts and news - updated on June of 2025.

  9. k

    What is a index fund and how does it work? (Forecast)

    • kappasignal.com
    Updated Apr 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). What is a index fund and how does it work? (Forecast) [Dataset]. https://www.kappasignal.com/2023/04/what-is-index-fund-and-how-does-it-work.html
    Explore at:
    Dataset updated
    Apr 18, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    What is a index fund and how does it work?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  10. T

    Sweden - Stock Market Return (%, Year-on-year)

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jun 10, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). Sweden - Stock Market Return (%, Year-on-year) [Dataset]. https://tradingeconomics.com/sweden/stock-market-return-percent-year-on-year-wb-data.html
    Explore at:
    xml, csv, json, excelAvailable download formats
    Dataset updated
    Jun 10, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    Sweden
    Description

    Stock market return (%, year-on-year) in Sweden was reported at 29.59 % in 2021, according to the World Bank collection of development indicators, compiled from officially recognized sources. Sweden - Stock market return (%, year-on-year) - actual values, historical data, forecasts and projections were sourced from the World Bank on June of 2025.

  11. SP500 Stock Market Index

    • kaggle.com
    Updated Sep 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elvin Aghammadzada (2020). SP500 Stock Market Index [Dataset]. https://www.kaggle.com/elvinagammed/sp500-stock-market-index/metadata
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 25, 2020
    Dataset provided by
    Kaggle
    Authors
    Elvin Aghammadzada
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    Context

    The S&P 500,[2] or simply the S&P,[4] is a stock market index that measures the stock performance of 500 large companies listed on stock exchanges in the United States. It is one of the most commonly followed equity indices.[5] The average annual total return and compound annual growth rate of the index, including dividends, since inception in 1926 has been approximately 9.8%, or 6% after inflation; however, there were several years where the index declined over 30%.[6][7] The index has posted annual increases 70% of the time.[5] However, the index has only made new highs on 5% of trading days, meaning that on 95% of trading days, the index has closed below its all-time high.[8]

    For a list of the components of the index, see List of S&P 500 companies. The components that have increased their dividends in 25 consecutive years are known as the S&P 500 Dividend Aristocrats.[9]:25

    The S&P 500 index is a capitalization-weighted index and the 10 largest companies in the index account for 26% of the market capitalization of the index. The 10 largest companies in the index, in order of weighting, are Apple Inc., Microsoft, Amazon.com, Alphabet Inc., Facebook, Johnson & Johnson, Berkshire Hathaway, Visa Inc., Procter & Gamble and JPMorgan Chase, respectively.[2]

    Funds that track the index have been recommended as investments by Warren Buffett, Burton Malkiel, and John C. Bogle for investors with long time horizons.[10]

    Although the index includes only companies listed in the United States, companies in the index derive on average only 71% of their revenue in the United States.[11]

    The index is one of the factors in computation of the Conference Board Leading Economic Index, used to forecast the direction of the economy.[12]

    The index is associated with many ticker symbols, including: ^GSPC,[13] INX,[14] and $SPX, depending on market or website.[15] The index value is updated every 15 seconds, or 1,559 times per trading day, with price updates disseminated by Reuters.[16]

    The S&P 500 is maintained by S&P Dow Jones Indices, a joint venture majority-owned by S&P Global and its components are selected by a committee.[17][18]

    Content

    What's inside is more than just rows and columns. Make it easy for others to get started by describing how you acquired the data and what time period it represents, too.

    Acknowledgements

    We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.

    Inspiration

    Your data will be in front of the world's largest data science community. What questions do you want to see answered?

  12. k

    Are Index Funds Good Investments? (Forecast)

    • kappasignal.com
    Updated Apr 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). Are Index Funds Good Investments? (Forecast) [Dataset]. https://www.kappasignal.com/2023/04/are-index-funds-good-investments.html
    Explore at:
    Dataset updated
    Apr 18, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Are Index Funds Good Investments?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  13. M

    Nikkei 225 Index

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Nikkei 225 Index [Dataset]. https://www.macrotrends.net/2593/nikkei-225-index-historical-chart-data
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1915 - 2025
    Area covered
    United States
    Description

    Interactive daily chart of Japan's Nikkei 225 stock market index back to 1949. Each data point represents the closing value for that trading day and is denominated in japanese yen (JPY). The current price is updated on an hourly basis with today's latest value.

  14. N

    Norway Oslo Bors: Index: OSEFX Mutual Fund Gross Return

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Norway Oslo Bors: Index: OSEFX Mutual Fund Gross Return [Dataset]. https://www.ceicdata.com/en/norway/oslo-bors-monthly/oslo-bors-index-osefx-mutual-fund-gross-return
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2024 - Feb 1, 2025
    Area covered
    Norway
    Description

    Norway Oslo Bors: Index: OSEFX Mutual Fund Gross Return data was reported at 1,448.510 NA in Apr 2025. This records a decrease from the previous number of 1,463.590 NA for Mar 2025. Norway Oslo Bors: Index: OSEFX Mutual Fund Gross Return data is updated monthly, averaging 842.000 NA from Jun 2013 (Median) to Apr 2025, with 143 observations. The data reached an all-time high of 1,473.730 NA in Jan 2025 and a record low of 461.090 NA in Jun 2013. Norway Oslo Bors: Index: OSEFX Mutual Fund Gross Return data remains active status in CEIC and is reported by Exchange Data International Limited. The data is categorized under Global Database’s Norway – Table NO.EDI.SE: Oslo Bors: Monthly.

  15. k

    What is the main disadvantage of index fund? (Forecast)

    • kappasignal.com
    Updated Apr 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). What is the main disadvantage of index fund? (Forecast) [Dataset]. https://www.kappasignal.com/2023/04/what-is-main-disadvantage-of-index-fund.html
    Explore at:
    Dataset updated
    Apr 18, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    What is the main disadvantage of index fund?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  16. Performance difference between the S&P 500 ESG and S&P 500 indexes 2022-2025...

    • statista.com
    • ai-chatbox.pro
    Updated Apr 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Performance difference between the S&P 500 ESG and S&P 500 indexes 2022-2025 [Dataset]. https://www.statista.com/statistics/1269643/s-p-500-esg-normal-index-comparison/
    Explore at:
    Dataset updated
    Apr 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 29, 2022 - Apr 29, 2025
    Area covered
    Worldwide
    Description

    Until the fourth quarter of 2023, the S&P 500 and the S&P 500 ESG index exhibited similar performance, both indexes were weighted to similar industries as the S&P 500 followed the leading 500 companies in the United States. Throughout 2024, the S&P 500 ESG index steadily outperformed the S&P 500 by three points on average. During the coronavirus pandemic, the technology sector was one of the best-performing sectors in the market. The major differences between the two indexes were the S&P 500 ESG index was skewed towards firms with higher environmental, social, and governance (ESG) scores and had a higher concentration of technology securities than the S&P 500 index. What is a market capitalization index? Both the S&P 500 and the S&P 500 ESG are market capitalization indexes, meaning the individual components (such as stocks and other securities) weighted to the indexes influence the overall value. Market trends such as inflation, interest rates, and international issues like the coronavirus pandemic and the popularity of ESG among professional investors affect the performance of stocks. When weighted components rise in value this causes an increase in the overall value of the index they are weighted too. What trends are driving index performance? Recent economic and social trends have led to higher levels of ESG integration and maintenance among firms worldwide and higher prioritization from investors to include ESG-focused firms in their investment choices. From a global survey group over one-third of the respondents were willing to prioritize ESG benefits over a higher return on their investment. These trends influenced the performance of securities on the market, leading to an increased value of individual weighted stocks, resulting in an overall increase in the index value.

  17. J

    Realized GARCH: a joint model for returns and realized measures of...

    • journaldata.zbw.eu
    • jda-test.zbw.eu
    .ox, pdf, txt, zip
    Updated Dec 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter Reinhard Hansen; Zhuo Huang; Howard Shek; Peter Reinhard Hansen; Zhuo Huang; Howard Shek (2022). Realized GARCH: a joint model for returns and realized measures of volatility (replication data) [Dataset]. http://doi.org/10.15456/jae.2022320.0729902475
    Explore at:
    txt(1143), .ox(960), zip(1592743), zip(2032710), pdf(294612), .ox(12643)Available download formats
    Dataset updated
    Dec 7, 2022
    Dataset provided by
    ZBW - Leibniz Informationszentrum Wirtschaft
    Authors
    Peter Reinhard Hansen; Zhuo Huang; Howard Shek; Peter Reinhard Hansen; Zhuo Huang; Howard Shek
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We introduce a new framework, Realized GARCH, for the joint modeling of returns and realized measures of volatility. A key feature is a measurement equation that relates the realized measure to the conditional variance of returns. The measurement equation facilitates a simple modeling of the dependence between returns and future volatility. Realized GARCH models with a linear or log-linear specification have many attractive features. They are parsimonious, simple to estimate, and imply an ARMA structure for the conditional variance and the realized measure. An empirical application with Dow Jones Industrial Average stocks and an exchange traded index fund shows that a simple Realized GARCH structure leads to substantial improvements in the empirical fit over standard GARCH models that only use daily returns.

  18. k

    FLC Flaherty & Crumrine Total Return Fund Inc Common Stock (Forecast)

    • kappasignal.com
    Updated Dec 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). FLC Flaherty & Crumrine Total Return Fund Inc Common Stock (Forecast) [Dataset]. https://www.kappasignal.com/2022/12/flc-flaherty-crumrine-total-return-fund.html
    Explore at:
    Dataset updated
    Dec 3, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    FLC Flaherty & Crumrine Total Return Fund Inc Common Stock

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  19. k

    ZTR Virtus Total Return Fund Inc. (Forecast)

    • kappasignal.com
    Updated Nov 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). ZTR Virtus Total Return Fund Inc. (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/ztr-virtus-total-return-fund-inc.html
    Explore at:
    Dataset updated
    Nov 29, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    ZTR Virtus Total Return Fund Inc.

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  20. T

    Russia Stock Market Index MOEX CFD Data

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Apr 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Russia Stock Market Index MOEX CFD Data [Dataset]. https://tradingeconomics.com/russia/stock-market
    Explore at:
    json, csv, excel, xmlAvailable download formats
    Dataset updated
    Apr 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 22, 1997 - Jun 6, 2025
    Area covered
    Russia
    Description

    Russia's main stock market index, the MOEX, fell to 2788 points on June 6, 2025, losing 2.39% from the previous session. Over the past month, the index has declined 1.58% and is down 13.76% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Russia. Russia Stock Market Index MOEX CFD - values, historical data, forecasts and news - updated on June of 2025.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
MACROTRENDS (2025). S&P 500 Index - 100 Years of Historical Data [Dataset]. https://www.macrotrends.net/2324/sp-500-historical-chart-data

S&P 500 Index - 100 Years of Historical Data

S&P 500 Index - 100 Years of Historical Data

Explore at:
48 scholarly articles cite this dataset (View in Google Scholar)
csvAvailable download formats
Dataset updated
May 27, 2025
Dataset authored and provided by
MACROTRENDS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
World
Description

Historical dataset for the S&P 500 stock market index since 1927. Historical data is inflation-adjusted using the headline CPI and each data point represents the month-end closing value. The current month is updated on an hourly basis with today's latest value.

Search
Clear search
Close search
Google apps
Main menu