This Dataset indicates average salary by position title and grade for full-time regular employees. Data excludes elected, appointed, non-merit and temporary employees. Underfilled positions are also excluded from the dataset. Update Frequency : Annually
In October 2024, the average hourly earnings for all employees on private nonfarm payrolls in the United States stood at 35.46 U.S. dollars. The data have been seasonally adjusted. Employed persons are employees on nonfarm payrolls and consist of: persons who did any work for pay or profit during the survey reference week; persons who did at least 15 hours of unpaid work in a family-operated enterprise; and persons who were temporarily absent from their regular jobs because of illness, vacation, bad weather, industrial dispute, or various personal reasons.
VITAL SIGNS INDICATOR Jobs by Wage Level (EQ1)
FULL MEASURE NAME Distribution of jobs by low-, middle-, and high-wage occupations
LAST UPDATED January 2019
DESCRIPTION Jobs by wage level refers to the distribution of jobs by low-, middle- and high-wage occupations. In the San Francisco Bay Area, low-wage occupations have a median hourly wage of less than 80% of the regional median wage; median wages for middle-wage occupations range from 80% to 120% of the regional median wage, and high-wage occupations have a median hourly wage above 120% of the regional median wage.
DATA SOURCE California Employment Development Department OES (2001-2017) http://www.labormarketinfo.edd.ca.gov/data/oes-employment-and-wages.html
American Community Survey (2001-2017) http://api.census.gov
CONTACT INFORMATION vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator) Jobs are determined to be low-, middle-, or high-wage based on the median hourly wage of their occupational classification in the most recent year. Low-wage jobs are those that pay below 80% of the regional median wage. Middle-wage jobs are those that pay between 80% and 120% of the regional median wage. High-wage jobs are those that pay above 120% of the regional median wage. Regional median hourly wages are estimated from the American Community Survey and are published on the Vital Signs Income indicator page. For the national context analysis, occupation wage classifications are unique to each metro area. A low-wage job in New York, for instance, may be a middle-wage job in Miami. For the Bay Area in 2017, the median hourly wage for low-wage occupations was less than $20.86 per hour. For middle-wage jobs, the median ranged from $20.86 to $31.30 per hour; and for high-wage jobs, the median wage was above $31.30 per hour.
Occupational employment and wage information comes from the Occupational Employment Statistics (OES) program. Regional and subregional data is published by the California Employment Development Department. Metro data is published by the Bureau of Labor Statistics. The OES program collects data on wage and salary workers in nonfarm establishments to produce employment and wage estimates for some 800 occupations. Data from non-incorporated self-employed persons are not collected, and are not included in these estimates. Wage estimates represent a three-year rolling average.
Due to changes in reporting during the analysis period, subregion data from the EDD OES have been aggregated to produce geographies that can be compared over time. West Bay is San Mateo, San Francisco, and Marin counties. North Bay is Sonoma, Solano and Napa counties. East Bay is Alameda and Contra Costa counties. South Bay is Santa Clara County from 2001-2004 and Santa Clara and San Benito counties from 2005-2017.
Due to changes in occupation classifications during the analysis period, all occupations have been reassigned to 2010 SOC codes. For pre-2009 reporting years, all employment in occupations that were split into two or more 2010 SOC occupations are assigned to the first 2010 SOC occupation listed in the crosswalk table provided by the Census Bureau. This method assumes these occupations always fall in the same wage category, and sensitivity analysis of this reassignment method shows this is true in most cases.
In order to use OES data for time series analysis, several steps were taken to handle missing wage or employment data. For some occupations, such as airline pilots and flight attendants, no wage information was provided and these were removed from the analysis. Other occupations did not record a median hourly wage (mostly due to irregular work hours) but did record an annual average wage. Nearly all these occupations were in education (i.e. teachers). In this case, a 2080 hour-work year was assumed and [annual average wage/2080] was used as a proxy for median income. Most of these occupations were classified as high-wage, thus dispelling concern of underestimating a median wage for a teaching occupation that requires less than 2080 hours of work a year (equivalent to 12 months fulltime). Finally, the OES has missing employment data for occupations across the time series. To make the employment data comparable between years, gaps in employment data for occupations are ‘filled-in’ using linear interpolation if there are at least two years of employment data found in OES. Occupations with less than two years of employment data were dropped from the analysis. Over 80% of interpolated cells represent missing employment data for just one year in the time series. While this interpolating technique may impact year-over-year comparisons, the long-term trends represented in the analysis generally are accurate.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Overview This dataset provides insights into salary distributions across various job classifications, enabling a deeper understanding of compensation trends across industries, experience levels, and geographical locations. It serves as a valuable resource for HR professionals, job seekers, researchers, and policymakers aiming to analyze pay scales, wage gaps, and salary progression trends.
Data Sources The data is aggregated from multiple employment and compensation reports, salary surveys, and publicly available job postings. It has been cleaned, standardized, and structured to ensure consistency and usability for analytical purposes.
Features Job Title: Specific title of the job (e.g., Data Analyst, Software Engineer, Marketing Manager).
Job Classification: Broad category of jobs (e.g., IT, Finance, Healthcare, Education).
Industry: The sector in which the job belongs (e.g., Technology, Banking, Retail).
Experience Level: Categorized as Entry-level, Mid-level, or Senior-level.
Education Requirement: Minimum qualification required for the job role.
Average Salary (INR/USD/Other Currency): The median or mean salary for a particular job classification.
Salary Range: The minimum and maximum salary offered for a role.
Location: Country or region where the job is based.
Employment Type: Full-time, Part-time, Contract, or Remote.
Company Size: Small, Medium, or Large enterprises.
Potential Use Cases Salary Benchmarking: Compare salary expectations across industries and job roles.
Career Planning: Identify lucrative career paths based on salary trends.
Wage Gap Analysis: Examine salary disparities by gender, location, or experience level.
Cost of Living Adjustments: Assess salaries relative to regional economic conditions.
HR and Recruitment Strategies: Optimize compensation packages to attract top talent.
Acknowledgments The dataset is compiled from various salary reports and job market research sources. Special thanks to contributors and organizations providing employment data for analysis.
License This dataset is shared for educational, research, and analytical purposes. Please ensure compliance with relevant data usage policies before any commercial applications.
Get Started The dataset can be explored using Python (Pandas), R, SQL, or visualization tools like Tableau and Power BI. Sample notebooks and analyses are available in the Kaggle notebook section.
As of 2023, the median wage for employees in healthcare support occupations was about 36,140 U.S. dollars. The occupational group with the highest annual median wage was management occupations. Mean wages for the same occupational groups can be accessed here.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Brazil Average Real Income: All Jobs: Usual Earnings data was reported at 2,295.000 BRL in Apr 2019. This records a decrease from the previous number of 2,304.000 BRL for Mar 2019. Brazil Average Real Income: All Jobs: Usual Earnings data is updated monthly, averaging 2,254.500 BRL from Mar 2012 (Median) to Apr 2019, with 86 observations. The data reached an all-time high of 2,312.000 BRL in Feb 2019 and a record low of 2,159.000 BRL in Mar 2012. Brazil Average Real Income: All Jobs: Usual Earnings data remains active status in CEIC and is reported by Brazilian Institute of Geography and Statistics. The data is categorized under Brazil Premium Database’s Labour Market – Table BR.GBA001: Continuous National Household Sample Survey: Monthly.
https://kummuni.com/terms/https://kummuni.com/terms/
A structured overview of the average, net, median, and minimum wage in Germany for 2025. This dataset combines original market research conducted by KUMMUNI GmbH with publicly available data from the German Federal Statistical Office. It includes values with and without bonuses, hourly minimum wage, and take-home pay after tax.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The graph presents the median monthly salary in the United States from 2000 to 2024. The x-axis represents the years, labeled from '00 to '24*, while the y-axis shows the salary amounts in U.S. dollars per month. Throughout this twenty-four-year period, the median monthly salary consistently increased from $2,500 in 2000 to $5,036 in 2024. The data highlights a steady upward trend, with annual salaries rising each year without any declines. Notably, the salary grew by approximately $200 each year from 2000 to 2019, surged to $4,269 in 2020, and continued to climb each subsequent year, reaching $5,000 by 2024. This consistent growth reflects economic advancements and potential increases in workforce compensation over the decade. The information is depicted in a line graph format, effectively illustrating the continuous rise in median monthly salaries across the specified years.
In 2023, the average wage and salary per full-time equivalent employee in the mining industry in the United States was at 126,707 U.S. dollars. The highest wage and salary per FTE was found in the information industry, at 164,400 U.S. dollars.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Turkey Annual Income: Avg: Primary Job (PJ) data was reported at 24,976.000 TRY in 2016. This records an increase from the previous number of 21,514.000 TRY for 2015. Turkey Annual Income: Avg: Primary Job (PJ) data is updated yearly, averaging 14,158.690 TRY from Dec 2006 (Median) to 2016, with 11 observations. The data reached an all-time high of 24,976.000 TRY in 2016 and a record low of 8,754.450 TRY in 2006. Turkey Annual Income: Avg: Primary Job (PJ) data remains active status in CEIC and is reported by Turkish Statistical Institute. The data is categorized under Global Database’s Turkey – Table TR.H032: Average Annual Primary Job Income: by Employment Type.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The wages on the Job Bank website are specific to an occupation and provide information on the earnings of workers at the regional level. Wages for most occupations are also provided at the national and provincial level. In Canada, all jobs are associated with one specific occupational grouping which is determined by the National Occupational Classification. For most occupations, a minimum, median and maximum wage estimates are displayed. They are update annually. If you have comments or questions regarding the wage information, please contact the Labour Market Information Division at: NC-LMI-IMT-GD@hrsdc-rhdcc.gc.ca
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Average Hourly Earnings of All Employees, Manufacturing (CES3000000003) from Mar 2006 to Jun 2025 about earnings, establishment survey, hours, wages, manufacturing, employment, and USA.
In 2023, the average annual real wages in the United States amounted to ****** U.S. dollars. This shows the average annual wages in the United States from 2000 to 2023 in constant 2023 PPP-adjusted U.S. dollars.
This map layer portrays 1982 estimates for total personal income, per capita personal income, annual number of full-time and part-time jobs, average wage per job in dollars, population, and per capita number of jobs, for counties in the United States. Total personal income is all the income that is received by, or on behalf of, the residents of a particular area. It is calculated as the sum of wage and salary disbursements, other labor income, proprietors' income with inventory valuation and capital consumption adjustments, rental income of persons with capital consumption adjustment, personal dividend income, personal interest income, and transfer payments to persons, minus personal contributions for social insurance. Per capita personal income is calculated as the total personal income of the residents of a county divided by the resident population of the county. The Census Bureau's annual midyear population estimates were used in the computation. The average annual number of full-time and part-time jobs includes all jobs for which wages and salaries are paid, except jury and witness service and paid employment of prisoners. The jobs are counted at equal weight, and employees, sole proprietors, and active partners are all included. Unpaid family workers and volunteers are not included. Average wage per job is the wage and salary disbursements divided by the number of wage and salary jobs in the county. Wage and salary disbursements consist of the monetary remuneration of employees, including the compensation of corporate officers; commissions, tips, and bonuses; and receipts in kind, or pay-in-kind, such as the meals furnished to the employees of restaurants. It reflects the amount of payments disbursed, but not necessarily earned during the year. Per capita number of jobs is calculated as the average annual number of full-time and part-time jobs in a county divided by the resident population of the county. The Census Bureau's annual midyear population estimates were used in the computation. All dollar estimates are in current dollars, not adjusted for inflation. The information in this map layer comes from the Regional Economic Information System (REIS) that is distributed by the Bureau of Economic Analysis, http://www.bea.gov/. This is an updated version of the November 2004 map layer.
In 2024, people working in IT management in the United States, earned an average annual salary worth around 168 thousand U.S. dollars. Software developers and project managers all reported being paid on average over 120 thousand U.S. dollars. Despite nearly all categories saw a year-on-year increase in annual compensation, IT support and help desk technicians saw a decrease compared to the previous year
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Every year between 2013 and 2021, employees from the combined Pakistani and Bangladeshi ethnic group had the lowest average hourly pay out of all ethnic groups.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Wages in the United States increased 4.72 percent in May of 2025 over the same month in the previous year. This dataset provides the latest reported value for - United States Wages and Salaries Growth - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Turkey Annual Income: Avg: PJ: ML: Clerks and Support Service Workers data was reported at 23,812.000 TRY in 2016. This records an increase from the previous number of 22,576.000 TRY for 2015. Turkey Annual Income: Avg: PJ: ML: Clerks and Support Service Workers data is updated yearly, averaging 21,266.410 TRY from Dec 2012 (Median) to 2016, with 5 observations. The data reached an all-time high of 23,812.000 TRY in 2016 and a record low of 16,613.710 TRY in 2012. Turkey Annual Income: Avg: PJ: ML: Clerks and Support Service Workers data remains active status in CEIC and is reported by Turkish Statistical Institute. The data is categorized under Global Database’s Turkey – Table TR.H032: Average Annual Primary Job Income: by Employment Type.
Located in the north of the country, Lombardy had the highest mean gross salary in 2024, while workers in Basilicata earned the lowest average wages nationwide. The figure for Lombardy amounted to ****** euros, around *** euros more than in Lazio, where the capital Rome is situated, as reported by Job Pricing. Trentino-South Tyrol was the region with the second-highest average gross salary, ****** euros per year. The last positions of the raking were occupied by the southern regions, with an average wage of ****** euros. High wages and large pay gap According to the same source, employees working in banking and financial services had some of the largest salaries in Italy. However, men earned roughly ** percent more than women (****** euros versus ****** euros). Similarly, the annual gross salary in the insurance industry was ** percent higher in favor of men. Low-wage workers The south of Italy was also the place registering the highest percentage of low paid employees. These are employees with an hourly salary of less than ********** of the median salary over the total number of employees. More specifically, in the south and on the islands, the share of low-wage employees was **** and **** percent, respectively. In the northern regions, the share amounted to only *** percent.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Average Salary by Job Classification’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/c279deaa-d913-48fe-8693-5899e9291025 on 27 January 2022.
--- Dataset description provided by original source is as follows ---
This Dataset indicates average salary by position title and grade for full-time regular employees. Data excludes elected, appointed, non-merit and temporary employees. Underfilled positions are also excluded from the dataset. Update Frequency : Annually
--- Original source retains full ownership of the source dataset ---
This Dataset indicates average salary by position title and grade for full-time regular employees. Data excludes elected, appointed, non-merit and temporary employees. Underfilled positions are also excluded from the dataset. Update Frequency : Annually