73 datasets found
  1. Life expectancy in North America 2022

    • statista.com
    Updated Jul 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Life expectancy in North America 2022 [Dataset]. https://www.statista.com/statistics/274513/life-expectancy-in-north-america/
    Explore at:
    Dataset updated
    Jul 5, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    North America
    Description

    This statistic shows the average life expectancy in North America for those born in 2022, by gender and region. In Canada, the average life expectancy was 80 years for males and 84 years for females.

    Life expectancy in North America

    Of those considered in this statistic, the life expectancy of female Canadian infants born in 2021 was the longest, at 84 years. Female infants born in America that year had a similarly high life expectancy of 81 years. Male infants, meanwhile, had lower life expectancies of 80 years (Canada) and 76 years (USA).

    Compare this to the worldwide life expectancy for babies born in 2021: 75 years for women and 71 years for men. Of continents worldwide, North America ranks equal first in terms of life expectancy of (77 years for men and 81 years for women). Life expectancy is lowest in Africa at just 63 years and 66 years for males and females respectively. Japan is the country with the highest life expectancy worldwide for babies born in 2020.

    Life expectancy is calculated according to current mortality rates of the population in question. Global variations in life expectancy are caused by differences in medical care, public health and diet, and reflect global inequalities in economic circumstances. Africa’s low life expectancy, for example, can be attributed in part to the AIDS epidemic. In 2019, around 72,000 people died of AIDS in South Africa, the largest amount worldwide. Nigeria, Tanzania and India were also high on the list of countries ranked by AIDS deaths that year. Likewise, Africa has by far the highest rate of mortality by communicable disease (i.e. AIDS, neglected tropics diseases, malaria and tuberculosis).

  2. Life expectancy in Africa 2023

    • ai-chatbox.pro
    • statista.com
    Updated Feb 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Life expectancy in Africa 2023 [Dataset]. https://www.ai-chatbox.pro/?_=%2Fstatistics%2F274511%2Flife-expectancy-in-africa%2F%23XgboDwS6a1rKoGJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    Feb 28, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Africa
    Description

    For those born in 2023, the average life expectancy at birth across Africa was 61 years for men and 65 years for women. The average life expectancy globally was 70 years for men and 75 years for women in mid-2023.

    Additional information on life expectancy in Africa

    With the exception of North Africa where life expectancy is around the worldwide average for men and women, life expectancy across all African regions paints a bleak picture. Comparison of life expectancy by continent shows the gap in average life expectancy between Africa and other continent regions. Africa trails Latin America and the Caribbean, the continent with the second lowest average life expectancy, by 10 years for men and 12 years for women.

    Life expectancy in Africa is the lowest globally Moreover, countries from across the African regions dominate the list of countries with the lowest life expectancy worldwide. Nigeria and Lesotho had the lowest life expectancy for those born in 2023 for men and women, respectively. However there is reason for hope despite the low life expectancy rates in many African countries. The Human Development index rating in Sub-Saharan Africa has increased dramatically from 0.43 to 0.55 between 2000 and 2021, demonstrating an improvement in quality of life and as a result greater access to vital services that allow people to live longer lives. One such improvement has been successful efforts to reduce the rate of aids infection and research into combating its effects. The number of new HIV infections across Africa has decreased from around 1.3 million in 2015 to 760,000 in 2022.

  3. Life expectancy by continent and gender 2024

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Life expectancy by continent and gender 2024 [Dataset]. https://www.statista.com/statistics/270861/life-expectancy-by-continent/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    In 2024, the average life expectancy in the world was 71 years for men and 76 years for women. The lowest life expectancies were found in Africa, while Oceania and Europe had the highest. What is life expectancy?Life expectancy is defined as a statistical measure of how long a person may live, based on demographic factors such as gender, current age, and most importantly the year of their birth. The most commonly used measure of life expectancy is life expectancy at birth or at age zero. The calculation is based on the assumption that mortality rates at each age were to remain constant in the future. Life expectancy has changed drastically over time, especially during the past 200 years. In the early 20th century, the average life expectancy at birth in the developed world stood at 31 years. It has grown to an average of 70 and 75 years for males and females respectively, and is expected to keep on growing with advances in medical treatment and living standards continuing. Highest and lowest life expectancy worldwide Life expectancy still varies greatly between different regions and countries of the world. The biggest impact on life expectancy is the quality of public health, medical care, and diet. As of 2022, the countries with the highest life expectancy were Japan, Liechtenstein, Switzerland, and Australia, all at 84–83 years. Most of the countries with the lowest life expectancy are mostly African countries. The ranking was led by the Chad, Nigeria, and Lesotho with 53–54 years.

  4. Life expectancy at birth, by race, Hispanic origin and sex U.S. 2020

    • statista.com
    Updated Jul 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Life expectancy at birth, by race, Hispanic origin and sex U.S. 2020 [Dataset]. https://www.statista.com/statistics/260410/life-expectancy-at-birth-in-the-us-by-race-hispanic-origin-and-sex/
    Explore at:
    Dataset updated
    Jul 5, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2020
    Area covered
    United States
    Description

    In 2020, a newborn Hispanic child in the United States had a projected life expectancy of 77.9 years, the highest life expectancy among the ethnic groups studied. In comparison, the life expectancy at birth for a Black, non-Hispanic child in 2020 was 71.5 years.

  5. Global life expectancy from birth in selected regions 1820-2020

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Global life expectancy from birth in selected regions 1820-2020 [Dataset]. https://www.statista.com/statistics/1302736/global-life-expectancy-by-region-country-historical/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Asia, Europe, Africa, LAC, North America
    Description

    A global phenomenon, known as the demographic transition, has seen life expectancy from birth increase rapidly over the past two centuries. In pre-industrial societies, the average life expectancy was around 24 years, and it is believed that this was the case throughout most of history, and in all regions. The demographic transition then began in the industrial societies of Europe, North America, and the West Pacific around the turn of the 19th century, and life expectancy rose accordingly. Latin America was the next region to follow, before Africa and most Asian populations saw their life expectancy rise throughout the 20th century.

  6. o

    Replication data for: Mortality Inequality: The Good News from a...

    • openicpsr.org
    Updated May 1, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Janet Currie; Hannes Schwandt (2016). Replication data for: Mortality Inequality: The Good News from a County-Level Approach [Dataset]. http://doi.org/10.3886/E113970V1
    Explore at:
    Dataset updated
    May 1, 2016
    Dataset provided by
    American Economic Association
    Authors
    Janet Currie; Hannes Schwandt
    Time period covered
    1990 - 2010
    Area covered
    U.S. counties
    Description

    In this essay, we ask whether the distributions of life expectancy and mortality have become generally more unequal, as many seem to believe, and we report some good news. Focusing on groups of counties ranked by their poverty rates, we show that gains in life expectancy at birth have actually been relatively equally distributed between rich and poor areas. Analysts who have concluded that inequality in life expectancy is increasing have generally focused on life expectancy at age 40 to 50. This observation suggests that it is important to examine trends in mortality for younger and older ages separately. Turning to an analysis of age-specific mortality rates, we show that among adults age 50 and over, mortality has declined more quickly in richer areas than in poorer ones, resulting in increased inequality in mortality. This finding is consistent with previous research on the subject. However, among children, mortality has been falling more quickly in poorer areas with the result that inequality in mortality has fallen substantially over time. We also show that there have been stunning declines in mortality rates for African Americans between 1990 and 2010, especially for black men. Finally we offer some hypotheses about causes for the results we see, including a discussion of differential smoking patterns by age and socioeconomic status.

  7. Life Expectancy - Men at the age of 65 years in the U.S. 1960-2021

    • statista.com
    • ai-chatbox.pro
    Updated Dec 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Life Expectancy - Men at the age of 65 years in the U.S. 1960-2021 [Dataset]. https://www.statista.com/statistics/266657/us-life-expectancy-for-men-aat-the-age-of-65-years-since-1960/
    Explore at:
    Dataset updated
    Dec 12, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The life expectancy for men aged 65 years in the U.S. has gradually increased since the 1960s. Now men in the United States aged 65 can expect to live 17 more years on average. Women aged 65 years can expect to live around 19.7 more years on average.

    Life expectancy in the U.S.

    As of 2021, the average life expectancy at birth in the United States was 76.33 years. Life expectancy in the U.S. had steadily increased for many years but has recently dropped slightly. Women consistently have a higher life expectancy than men but have also seen a slight decrease. As of 2019, a woman in the U.S. could be expected to live up to 79.3 years.

    Leading causes of death

    The leading causes of death in the United States include heart disease, cancer, unintentional injuries, chronic lower respiratory diseases and cerebrovascular diseases. However, heart disease and cancer account for around 38 percent of all deaths. Although heart disease and cancer are the leading causes of death for both men and women, there are slight variations in the leading causes of death. For example, unintentional injury and suicide account for a larger portion of deaths among men than they do among women.

  8. Rates and Trends in Hypertension-related Cardiovascular Disease Mortality...

    • catalog.data.gov
    • data.virginia.gov
    • +3more
    Updated Jun 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Rates and Trends in Hypertension-related Cardiovascular Disease Mortality Among US Adults (35+) by County, Age Group, Race/Ethnicity, and Sex – 2000-2019 [Dataset]. https://catalog.data.gov/dataset/rates-and-trends-in-hypertension-related-cardiovascular-disease-mortality-among-us-ad-2000-2fdf2
    Explore at:
    Dataset updated
    Jun 28, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This dataset documents rates and trends in local hypertension-related cardiovascular disease (CVD) death rates. Specifically, this report presents county (or county equivalent) estimates of hypertension-related CVD death rates in 2000-2019 and trends during two intervals (2000-2010, 2010-2019) by age group (ages 35–64 years, ages 65 years and older), race/ethnicity (non-Hispanic American Indian/Alaska Native, non-Hispanic Asian/Pacific Islander, non-Hispanic Black, Hispanic, non-Hispanic White), and sex (female, male). The rates and trends were estimated using a Bayesian spatiotemporal model and a smoothed over space, time, and demographic group. Rates are age-standardized in 10-year age groups using the 2010 US population. Data source: National Vital Statistics System.

  9. F

    Employment-Population Ratio - Black or African American

    • fred.stlouisfed.org
    json
    Updated Jun 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Employment-Population Ratio - Black or African American [Dataset]. https://fred.stlouisfed.org/series/LNS12300006
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 6, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Employment-Population Ratio - Black or African American (LNS12300006) from Jan 1972 to May 2025 about employment-population ratio, African-American, 16 years +, household survey, employment, population, and USA.

  10. a

    U.S. Stroke Mortality 2020-2022

    • hub.arcgis.com
    Updated Nov 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2024). U.S. Stroke Mortality 2020-2022 [Dataset]. https://hub.arcgis.com/datasets/e1a428474df841b49822b4fe59a47ef0
    Explore at:
    Dataset updated
    Nov 29, 2024
    Dataset authored and provided by
    Centers for Disease Control and Prevention
    Area covered
    Description

    2020 - 2022, county-level U.S. stroke death rates. Dataset developed by the Centers for Disease Control and Prevention, Division for Heart Disease and Stroke Prevention.Create maps of U.S. stroke death rates by county. Data can be stratified by age, race/ethnicity, and sex.Visit the CDC Atlas of Heart Disease and Stroke for additional data and maps. Atlas of Heart Disease and StrokeData SourceMortality data were obtained from the National Vital Statistics System. Bridged-Race Postcensal Population Estimates were obtained from the National Center for Health Statistics. International Classification of Diseases, 10th Revision (ICD-10) codes: I60-I69; underlying cause of death.Data DictionaryData for counties with small populations are not displayed when a reliable rate could not be generated. These counties are represented in the data with values of '-1.' CDC excludes these values when classifying the data on a map, indicating those counties as 'Insufficient Data.'Data field names and descriptionsstcty_fips: state FIPS code + county FIPS codeOther fields use the following format: RRR_S_aaaa (e.g., API_M_35UP)  RRR: 3 digits represent race/ethnicity    All - Overall    AIA - American Indian and Alaska Native, non-Hispanic    ASN - Asian, non-Hispanic    BLK - Black, non-Hispanic    HIS - Hispanic NHP – Native Hawaiian or Other Pacific Islander, non-Hispanic MOR – More than one race, non-Hispanic    WHT - White, non-Hispanic  S: 1 digit represents sex    A - All    F - Female    M - Male  aaaa: 4 digits represent age. The first 2 digits are the lower bound for age and the last 2 digits are the upper bound for age. 'UP' indicates the data includes the maximum age available and 'LT' indicates ages less than the upper bound. Example: The column 'BLK_M_65UP' displays rates per 100,000 black men aged 65 years and older.MethodologyRates are calculated using a 3-year average and are age-standardized in 10-year age groups using the 2000 U.S. Standard Population. Rates are calculated and displayed per 100,000 population. Rates were spatially smoothed using a Local Empirical Bayes algorithm to stabilize risk by borrowing information from neighboring geographic areas, making estimates more statistically robust and stable for counties with small populations. Data for counties with small populations are coded as '-1' when a reliable rate could not be generated. County-level rates were generated when the following criteria were met over a 3-year time period within each of the filters (e.g., age, race, and sex).At least one of the following 3 criteria:At least 20 events occurred within the county and its adjacent neighbors.ORAt least 16 events occurred within the county.ORAt least 5,000 population years within the county.AND all 3 of the following criteria:At least 6 population years for each age group used for age adjustment if that age group had 1 or more event.The number of population years in an age group was greater than the number of events.At least 100 population years within the county.More Questions?Interactive Atlas of Heart Disease and StrokeData SourcesStatistical Methods

  11. f

    Absolute changes in life expectancy at age 20 among people in prisons, by...

    • plos.figshare.com
    xls
    Updated Feb 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Absolute changes in life expectancy at age 20 among people in prisons, by race & sex across periods, 2000–2014. [Dataset]. https://plos.figshare.com/articles/dataset/Absolute_changes_in_life_expectancy_at_age_20_among_people_in_prisons_by_race_sex_across_periods_2000_2014_/28361505
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Feb 6, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Bryan L. Sykes; Ernest K. Chavez; Justin D. Strong
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Absolute changes in life expectancy at age 20 among people in prisons, by race & sex across periods, 2000–2014.

  12. f

    Measuring the Speed of Aging across Population Subgroups

    • plos.figshare.com
    • figshare.com
    xlsx
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Warren C. Sanderson; Sergei Scherbov (2023). Measuring the Speed of Aging across Population Subgroups [Dataset]. http://doi.org/10.1371/journal.pone.0096289
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Warren C. Sanderson; Sergei Scherbov
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    People in different subgroups age at different rates. Surveys containing biomarkers can be used to assess these subgroup differences. We illustrate this using hand-grip strength to produce an easily interpretable, physical-based measure that allows us to compare characteristic-based ages across educational subgroups in the United States. Hand-grip strength has been shown to be a good predictor of future mortality and morbidity, and therefore a useful indicator of population aging. Data from the Health and Retirement Survey (HRS) were used. Two education subgroups were distinguished, those with less than a high school diploma and those with more education. Regressions on hand-grip strength were run for each sex and race using age and education, their interactions and other covariates as independent variables. Ages of identical mean hand-grip strength across education groups were compared for people in the age range 60 to 80. The hand-grip strength of 65 year old white males with less education was the equivalent to that of 69.6 (68.2, 70.9) year old white men with more education, indicating that the more educated men had aged more slowly. This is a constant characteristic age, as defined in the Sanderson and Scherbov article “The characteristics approach to the measurement of population aging” published 2013 in Population and Development Review. Sixty-five year old white females with less education had the same average hand-grip strength as 69.4 (68.2, 70.7) year old white women with more education. African-American women at ages 60 and 65 with more education also aged more slowly than their less educated counterparts. African American men with more education aged at about the same rate as those with less education. This paper expands the toolkit of those interested in population aging by showing how survey data can be used to measure the differential extent of aging across subpopulations.

  13. f

    Hazard ratios (HR) and 95% confidence intervals (CI) from multivariate Cox...

    • figshare.com
    xls
    Updated Jun 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sarah S. Cohen; Yikyung Park; Lisa B. Signorello; Alpa V. Patel; Deborah A. Boggs; Laurence N. Kolonel; Cari M. Kitahara; Synnove F. Knutsen; Elizabeth Gillanders; Kristine R. Monroe; Amy Berrington de Gonzalez; Traci N. Bethea; Amanda Black; Gary Fraser; Susan Gapstur; Patricia Hartge; Charles E. Matthews; Song-Yi Park; Mark P. Purdue; Pramil Singh; Chinonye Harvey; William J. Blot; Julie R. Palmer (2023). Hazard ratios (HR) and 95% confidence intervals (CI) from multivariate Cox proportional hazards models for all-cause mortality according to categories of body mass index among African American participants without chronic illnessa at baseline who never smoked. [Dataset]. http://doi.org/10.1371/journal.pone.0111980.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 5, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Sarah S. Cohen; Yikyung Park; Lisa B. Signorello; Alpa V. Patel; Deborah A. Boggs; Laurence N. Kolonel; Cari M. Kitahara; Synnove F. Knutsen; Elizabeth Gillanders; Kristine R. Monroe; Amy Berrington de Gonzalez; Traci N. Bethea; Amanda Black; Gary Fraser; Susan Gapstur; Patricia Hartge; Charles E. Matthews; Song-Yi Park; Mark P. Purdue; Pramil Singh; Chinonye Harvey; William J. Blot; Julie R. Palmer
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    aChronic illness includes heart disease, stroke, or cancer (except non-melanoma skin cancer).Models adjusted for sex, education, marital status, alcohol consumption, and physical activity. Models stratified by cohort. Age-standardized death rates among referent BMI category (22.5-24.9) were 11.7, 6.8, and 7.8 per 1,000 person-years for males, females, and the total population, respectively. Age-standardized according to the US 2000 Standard Population using 5-year age increments.Hazard ratios (HR) and 95% confidence intervals (CI) from multivariate Cox proportional hazards models for all-cause mortality according to categories of body mass index among African American participants without chronic illnessa at baseline who never smoked.

  14. r

    Early Indicators of Later Work Levels Disease and Death (EI) - Union Army...

    • rrid.site
    • scicrunch.org
    • +3more
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Early Indicators of Later Work Levels Disease and Death (EI) - Union Army Samples Public Health and Ecological Datasets [Dataset]. http://identifiers.org/RRID:SCR_008921
    Explore at:
    Dataset updated
    Jun 17, 2025
    Description

    A dataset to advance the study of life-cycle interactions of biomedical and socioeconomic factors in the aging process. The EI project has assembled a variety of large datasets covering the life histories of approximately 39,616 white male volunteers (drawn from a random sample of 331 companies) who served in the Union Army (UA), and of about 6,000 African-American veterans from 51 randomly selected United States Colored Troops companies (USCT). Their military records were linked to pension and medical records that detailed the soldiers������?? health status and socioeconomic and family characteristics. Each soldier was searched for in the US decennial census for the years in which they were most likely to be found alive (1850, 1860, 1880, 1900, 1910). In addition, a sample consisting of 70,000 men examined for service in the Union Army between September 1864 and April 1865 has been assembled and linked only to census records. These records will be useful for life-cycle comparisons of those accepted and rejected for service. Military Data: The military service and wartime medical histories of the UA and USCT men were collected from the Union Army and United States Colored Troops military service records, carded medical records, and other wartime documents. Pension Data: Wherever possible, the UA and USCT samples have been linked to pension records, including surgeon''''s certificates. About 70% of men in the Union Army sample have a pension. These records provide the bulk of the socioeconomic and demographic information on these men from the late 1800s through the early 1900s, including family structure and employment information. In addition, the surgeon''''s certificates provide rich medical histories, with an average of 5 examinations per linked recruit for the UA, and about 2.5 exams per USCT recruit. Census Data: Both early and late-age familial and socioeconomic information is collected from the manuscript schedules of the federal censuses of 1850, 1860, 1870 (incomplete), 1880, 1900, and 1910. Data Availability: All of the datasets (Military Union Army; linked Census; Surgeon''''s Certificates; Examination Records, and supporting ecological and environmental variables) are publicly available from ICPSR. In addition, copies on CD-ROM may be obtained from the CPE, which also maintains an interactive Internet Data Archive and Documentation Library, which can be accessed on the Project Website. * Dates of Study: 1850-1910 * Study Features: Longitudinal, Minority Oversamples * Sample Size: ** Union Army: 35,747 ** Colored Troops: 6,187 ** Examination Sample: 70,800 ICPSR Link: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06836

  15. a

    U.S. Heart Disease Mortality Rates 2016-2018

    • hub.arcgis.com
    Updated May 28, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2020). U.S. Heart Disease Mortality Rates 2016-2018 [Dataset]. https://hub.arcgis.com/datasets/2b17d9d0f59f44b98ca65bd7333aa283
    Explore at:
    Dataset updated
    May 28, 2020
    Dataset authored and provided by
    Centers for Disease Control and Prevention
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    Create maps of U.S. heart disease death rates by county. Data can be stratified by age, race/ethnicity, and sex. Visit the CDC/DHDSP Atlas of Heart Disease and Stroke for additional data and maps. Atlas of Heart Disease and StrokeData SourceMortality data were obtained from the National Vital Statistics System. Bridged-Race Postcensal Population Estimates were obtained from the National Center for Health Statistics. International Classification of Diseases, 10th Revision (ICD-10) codes: I00-I09, I11, I13, I20-I51; underlying cause of death.Data DictionaryData for counties with small populations are not displayed when a reliable rate could not be generated. These counties are represented in the data with values of '-1.' CDC/DHDSP excludes these values when classifying the data on a map, indicating those counties as 'Insufficient Data.' Data field names and descriptionsstcty_fips: state FIPS code + county FIPS codeOther fields use the following format: RRR_S_aaaa (e.g., API_M_35UP)   RRR: 3 digits represent race/ethnicity     All - Overall     AIA - American Indian and Alaska Native, non-Hispanic     API - Asian and Pacific Islander, non-Hispanic     BLK - Black, non-Hispanic     HIS - Hispanic     WHT - White, non-Hispanic   S: 1 digit represents sex     A - All    F - Female     M - Male aaaa: 4 digits represent age. The first 2 digits are the lower bound for age and the last 2 digits are the upper bound for age. 'UP' indicates the data includes the maximum age available and 'LT' indicates ages less than the upper bound.  Example: The column 'BLK_M_65UP' displays rates per 100,000 black men aged 65 years and older.MethodologyRates are calculated using a 3-year average and are age-standardized in 10-year age groups using the 2000 U.S. Standard Population. Rates are calculated and displayed per 100,000 population. Rates were spatially smoothed using a Local Empirical Bayes algorithm to stabilize risk by borrowing information from neighboring geographic areas, making estimates more statistically robust and stable for counties with small populations. Data for counties with small populations are coded as '-1' when a reliable rate could not be generated. County-level rates were generated when the following criteria were met over a 3-year time period within each of the filters (e.g., age, race, and sex).At least one of the following 3 criteria: At least 20 events occurred within the county and its adjacent neighbors.ORAt least 16 events occurred within the county.ORAt least 5,000 population years within the county.AND all 3 of the following criteria:At least 6 population years for each age group used for age adjustment if that age group had 1 or more event.The number of population years in an age group was greater than the number of events.At least 100 population years within the county.More Questions?Interactive Atlas of Heart Disease and StrokeData SourcesStatistical Methods

  16. N

    Black Oak, AR Population Pyramid Dataset: Age Groups, Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Black Oak, AR Population Pyramid Dataset: Age Groups, Male and Female Population, and Total Population for Demographics Analysis // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/black-oak-ar-population-by-age/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Arkansas, Black Oak
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Total Population for Age Groups, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) male population, (b) female population and (b) total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the data for the Black Oak, AR population pyramid, which represents the Black Oak population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.

    Key observations

    • Youth dependency ratio, which is the number of children aged 0-14 per 100 persons aged 15-64, for Black Oak, AR, is 33.9.
    • Old-age dependency ratio, which is the number of persons aged 65 or over per 100 persons aged 15-64, for Black Oak, AR, is 27.0.
    • Total dependency ratio for Black Oak, AR is 60.9.
    • Potential support ratio, which is the number of youth (working age population) per elderly, for Black Oak, AR is 3.7.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group for the Black Oak population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Black Oak for the selected age group is shown in the following column.
    • Population (Female): The female population in the Black Oak for the selected age group is shown in the following column.
    • Total Population: The total population of the Black Oak for the selected age group is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Black Oak Population by Age. You can refer the same here

  17. Life expectancy in African countries 2025

    • statista.com
    Updated Jul 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Life expectancy in African countries 2025 [Dataset]. https://www.statista.com/statistics/1218173/life-expectancy-in-african-countries/
    Explore at:
    Dataset updated
    Jul 8, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    Africa
    Description

    Tunisia had the highest life expectancy at birth in Africa as of 2025. A newborn infant was expected to live about 77 years in the country. Algeria, Cabo Verde, Morocco, and Mauritius followed, with a life expectancy between 77 and 75 years. On the other hand, Nigeria registered the lowest average, at 54.8 years. Overall, the life expectancy in Africa was just over 64 years in the same year.

  18. N

    Black, AL Population Pyramid Dataset: Age Groups, Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Black, AL Population Pyramid Dataset: Age Groups, Male and Female Population, and Total Population for Demographics Analysis // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/523d1642-f122-11ef-8c1b-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Black
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Total Population for Age Groups, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) male population, (b) female population and (b) total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the data for the Black, AL population pyramid, which represents the Black population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.

    Key observations

    • Youth dependency ratio, which is the number of children aged 0-14 per 100 persons aged 15-64, for Black, AL, is 74.3.
    • Old-age dependency ratio, which is the number of persons aged 65 or over per 100 persons aged 15-64, for Black, AL, is 33.8.
    • Total dependency ratio for Black, AL is 108.1.
    • Potential support ratio, which is the number of youth (working age population) per elderly, for Black, AL is 3.0.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group for the Black population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Black for the selected age group is shown in the following column.
    • Population (Female): The female population in the Black for the selected age group is shown in the following column.
    • Total Population: The total population of the Black for the selected age group is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Black Population by Age. You can refer the same here

  19. d

    Stress and Families Project, 1981

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Belle, Deborah (2023). Stress and Families Project, 1981 [Dataset]. http://doi.org/10.7910/DVN/QUTY2O
    Explore at:
    Dataset updated
    Nov 20, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Belle, Deborah
    Time period covered
    Jan 1, 1981
    Description

    The Stress and Families Project was undertaken to investigate the relationship between life situation and mental health among low-income mothers, the group at greatest risk for depression. This longitudinal research project was interdisciplinary in approach and involved interview and observation data on mothers, children, and fathers. The participants were 43 low-income mothers who were recruited for the study without regard to their current mental health status. Each woman had at least one child between three and seven years of age. Approximately one-half were white and one-half African-American, and within each of those groups approximately one-half were single and one-half living with a husband or boyfriend. The women ranged in age from 21 to 44 and represented every legal marital status. Data were collected by teams of two researchers conducting interviews and observations in the women's homes over a period of several months. Interview topics included a description of a typical day in the life of the family; mental health assessment including measures of locus of control, self-esteem, stability of self-image, depression, and anxiety; social network; employment; generational change; current life conditions and stresses; social service institutions; nutrition; life events; coping; discrimination; six observations of the child; interviews on parenting with mothers and consenting fathers; and interviews with the children on their relationships with their parent(s). The Murray Archive holds additional analogue materials for this study (copies of all original record paper data, including child observations and parenting interviews). If you would like to access this material, please apply to use the data. Note: Paper Data box 8 of 8 is marked confidential and is not available for public access.

  20. Deaths from all causes

    • data-sccphd.opendata.arcgis.com
    • hub.arcgis.com
    Updated Feb 7, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Santa Clara County Public Health (2018). Deaths from all causes [Dataset]. https://data-sccphd.opendata.arcgis.com/datasets/deaths-from-all-causes
    Explore at:
    Dataset updated
    Feb 7, 2018
    Dataset provided by
    Santa Clara County Public Health Departmenthttps://publichealth.sccgov.org/
    Authors
    Santa Clara County Public Health
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Age-adjusted rate of death (all causes) by sex, race/ethnicity, age; trends. Source: Santa Clara County Public Health Department, VRBIS, 2007-2016. Data as of 05/26/2017; U.S. Census Bureau; 2010 Census, Tables PCT12, PCT12H, PCT12I, PCT12J, PCT12K, PCT12L, PCT12M; generated by Baath M.; using American FactFinder; Accessed June 20, 2017. METADATA:Notes (String): Lists table title, notes and sourcesYear (Numeric): Year of dataCategory (String): Lists the category representing the data: Santa Clara County is for total population, sex: Male and Female, race/ethnicity: African American, Asian/Pacific Islander, Latino and White (non-Hispanic White only); age categories as follows: child age groups: <1, 1 to 4, 5 to 11, 12 to 17; youth age groups: 10 to 19, 20 to 24; age groups 1: 0 to 17, 18 to 64, 65+; age groups 2: <1, 1 to 4, 5 to 14, 15 to 24, 25 to 34, 35 to 44, 45 to 54, 55 to 64, 65 to 74, 75 to 84, 85+; United StatesRate per 100,000 people (Numeric): Rate of deaths by all causes. Rates for age groups are reported as age-specific rates per 100,000 people. All other rates are age-adjusted rates per 100,000 people.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Life expectancy in North America 2022 [Dataset]. https://www.statista.com/statistics/274513/life-expectancy-in-north-america/
Organization logo

Life expectancy in North America 2022

Explore at:
8 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 5, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2022
Area covered
North America
Description

This statistic shows the average life expectancy in North America for those born in 2022, by gender and region. In Canada, the average life expectancy was 80 years for males and 84 years for females.

Life expectancy in North America

Of those considered in this statistic, the life expectancy of female Canadian infants born in 2021 was the longest, at 84 years. Female infants born in America that year had a similarly high life expectancy of 81 years. Male infants, meanwhile, had lower life expectancies of 80 years (Canada) and 76 years (USA).

Compare this to the worldwide life expectancy for babies born in 2021: 75 years for women and 71 years for men. Of continents worldwide, North America ranks equal first in terms of life expectancy of (77 years for men and 81 years for women). Life expectancy is lowest in Africa at just 63 years and 66 years for males and females respectively. Japan is the country with the highest life expectancy worldwide for babies born in 2020.

Life expectancy is calculated according to current mortality rates of the population in question. Global variations in life expectancy are caused by differences in medical care, public health and diet, and reflect global inequalities in economic circumstances. Africa’s low life expectancy, for example, can be attributed in part to the AIDS epidemic. In 2019, around 72,000 people died of AIDS in South Africa, the largest amount worldwide. Nigeria, Tanzania and India were also high on the list of countries ranked by AIDS deaths that year. Likewise, Africa has by far the highest rate of mortality by communicable disease (i.e. AIDS, neglected tropics diseases, malaria and tuberculosis).

Search
Clear search
Close search
Google apps
Main menu