A global phenomenon, known as the demographic transition, has seen life expectancy from birth increase rapidly over the past two centuries. In pre-industrial societies, the average life expectancy was around 24 years, and it is believed that this was the case throughout most of history, and in all regions. The demographic transition then began in the industrial societies of Europe, North America, and the West Pacific around the turn of the 19th century, and life expectancy rose accordingly. Latin America was the next region to follow, before Africa and most Asian populations saw their life expectancy rise throughout the 20th century.
Throughout most of history, average life expectancy from birth was fairly consistent across the globe, at around 24 years. A major contributor to this was high rates of infant and child mortality; those who survived into adulthood could expect to live to their 50s or 60s, yet pandemics, food instability, and conflict did cause regular spikes in mortality across the entire population. Gradually, from the 16th to 19th centuries, there was some growth in more developed societies, due to improvements in agriculture, infrastructure, and medical knowledge. However, the most significant change came with the introduction of vaccination and other medical advances in the 1800s, which saw a sharp decline in child mortality and the onset of the demographic transition. This phenomenon began in more developed countries in the 1800s, before spreading to Latin America, Asia, and (later) Africa in the 1900s. As the majority of the world's population lives in countries considered to be "less developed", this figure is much closer to the global average. However, today, there is a considerable difference in life expectancies across these countries, ranging from 84.7 years in Japan to 53 years in the Central African Republic.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>China life expectancy for 2024 was <strong>77.64</strong>, a <strong>0.22% increase</strong> from 2023.</li>
<li>China life expectancy for 2023 was <strong>77.47</strong>, a <strong>0.22% increase</strong> from 2022.</li>
<li>China life expectancy for 2022 was <strong>77.30</strong>, a <strong>0.22% increase</strong> from 2021.</li>
</ul>Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>Japan life expectancy for 2024 was <strong>85.15</strong>, a <strong>0.14% increase</strong> from 2023.</li>
<li>Japan life expectancy for 2023 was <strong>85.03</strong>, a <strong>0.14% increase</strong> from 2022.</li>
<li>Japan life expectancy for 2022 was <strong>84.91</strong>, a <strong>0.14% increase</strong> from 2021.</li>
</ul>Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.
Life expectancy in the United Kingdom was below 39 years in the year 1765, and over the course of the next two and a half centuries, it is expected to have increased by more than double, to 81.1 by the year 2020. Although life expectancy has generally increased throughout the UK's history, there were several times where the rate deviated from its previous trajectory. These changes were the result of smallpox epidemics in the late eighteenth and early nineteenth centuries, new sanitary and medical advancements throughout time (such as compulsory vaccination), and the First world War and Spanish Flu epidemic in the 1910s.
Note: This dataset is historical only and there are not corresponding datasets for more recent time periods. For that more-recent information, please visit the Chicago Health Atlas at https://chicagohealthatlas.org.
This dataset gives the average life expectancy and corresponding confidence intervals for each Chicago community area for the years 1990, 2000 and 2010. See the full description at: https://data.cityofchicago.org/api/views/qjr3-bm53/files/AAu4x8SCRz_bnQb8SVUyAXdd913TMObSYj6V40cR6p8?download=true&filename=P:\EPI\OEPHI\MATERIALS\REFERENCES\Life Expectancy\Dataset description - LE by community area.pdf
VITAL SIGNS INDICATOR Life Expectancy (EQ6)
FULL MEASURE NAME Life Expectancy
LAST UPDATED April 2017
DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.
DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link
California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
U.S. Census Bureau: Decennial Census ZCTA Population (2000-2010) http://factfinder.census.gov
U.S. Census Bureau: American Community Survey 5-Year Population Estimates (2013) http://factfinder.census.gov
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population that can be compared across time and populations. More information about the determinants of life expectancy that may lead to differences in life expectancy between neighborhoods can be found in the Bay Area Regional Health Inequities Initiative (BARHII) Health Inequities in the Bay Area report at http://www.barhii.org/wp-content/uploads/2015/09/barhii_hiba.pdf. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and ZIP Codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.
Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential ZIP Code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality.
For the ZIP Code-level life expectancy calculation, it is assumed that postal ZIP Codes share the same boundaries as ZIP Code Census Tabulation Areas (ZCTAs). More information on the relationship between ZIP Codes and ZCTAs can be found at http://www.census.gov/geo/reference/zctas.html. ZIP Code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 ZIP Code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for ZIP Codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest ZIP Code with population. ZIP Code population for 2000 estimates comes from the Decennial Census. ZIP Code population for 2013 estimates are from the American Community Survey (5-Year Average). ACS estimates are adjusted using Decennial Census data for more accurate population estimates. An adjustment factor was calculated using the ratio between the 2010 Decennial Census population estimates and the 2012 ACS 5-Year (with middle year 2010) population estimates. This adjustment factor is particularly important for ZCTAs with high homeless population (not living in group quarters) where the ACS may underestimate the ZCTA population and therefore underestimate the life expectancy. The ACS provides ZIP Code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to ZIP Codes based on majority land-area.
ZIP Codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, ZIP Codes with populations of less than 5,000 were aggregated with neighboring ZIP Codes until the merged areas had a population of more than 5,000. ZIP Code 94103, representing Treasure Island, was dropped from the dataset due to its small population and having no bordering ZIP Codes. In this way, the original 305 Bay Area ZIP Codes were reduced to 217 ZIP Code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Life expectancy at birth, female (years) in United States was reported at 81.1 years in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. United States - Life expectancy at birth, female (years) - actual values, historical data, forecasts and projections were sourced from the World Bank on May of 2025.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Life Expectancy at Birth, Total for the United States (SPDYNLE00INUSA) from 1960 to 2023 about life expectancy, life, birth, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>U.K. life expectancy for 2024 was <strong>81.92</strong>, a <strong>0.83% increase</strong> from 2023.</li>
<li>U.K. life expectancy for 2023 was <strong>81.24</strong>, a <strong>0.28% increase</strong> from 2022.</li>
<li>U.K. life expectancy for 2022 was <strong>81.01</strong>, a <strong>0.45% increase</strong> from 2021.</li>
</ul>Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.
This table contains 2394 series, with data for years 1991 - 1991 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Population group (19 items: Entire cohort; Income adequacy quintile 1 (lowest);Income adequacy quintile 2;Income adequacy quintile 3 ...), Age (14 items: At 25 years; At 30 years; At 40 years; At 35 years ...), Sex (3 items: Both sexes; Females; Males ...), Characteristics (3 items: Life expectancy; High 95% confidence interval; life expectancy; Low 95% confidence interval; life expectancy ...).
The life expectancy for men aged 65 years in the U.S. has gradually increased since the 1960s. Now men in the United States aged 65 can expect to live 17 more years on average. Women aged 65 years can expect to live around 19.7 more years on average.
Life expectancy in the U.S.
As of 2021, the average life expectancy at birth in the United States was 76.33 years. Life expectancy in the U.S. had steadily increased for many years but has recently dropped slightly. Women consistently have a higher life expectancy than men but have also seen a slight decrease. As of 2019, a woman in the U.S. could be expected to live up to 79.3 years.
Leading causes of death
The leading causes of death in the United States include heart disease, cancer, unintentional injuries, chronic lower respiratory diseases and cerebrovascular diseases. However, heart disease and cancer account for around 38 percent of all deaths. Although heart disease and cancer are the leading causes of death for both men and women, there are slight variations in the leading causes of death. For example, unintentional injury and suicide account for a larger portion of deaths among men than they do among women.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>Poland life expectancy for 2024 was <strong>79.43</strong>, a <strong>0.21% increase</strong> from 2023.</li>
<li>Poland life expectancy for 2023 was <strong>79.27</strong>, a <strong>0.2% increase</strong> from 2022.</li>
<li>Poland life expectancy for 2022 was <strong>79.11</strong>, a <strong>0.21% increase</strong> from 2021.</li>
</ul>Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.
Note: This dataset is historical only and there are not corresponding datasets for more recent time periods. For that more-recent information, please visit the Chicago Health Atlas at https://chicagohealthatlas.org. This dataset gives the average life expectancy and corresponding confidence intervals for sex and racial-ethnic groups in Chicago for the years 1990, 2000 and 2010. See the full description at: https://data.cityofchicago.org/api/views/3qdj-cqb8/files/pJ3PVVyubnsS2SpGO5P5IOPtNgCJZTE3LNOeLagC3mw?download=true&filename=P:\EPI\OEPHI\MATERIALS\REFERENCES\Life Expectancy\Dataset description_LE_ Sex_Race_Ethnicity.pdf
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
PLEASE if you use or like this dataset UPVOTE ποΈ
This dataset offers a detailed historical record of global life expectancy, covering data from 1960 to the present. It is meticulously curated to enable deep analysis of trends and gender disparities in life expectancy worldwide.
Dataset Structure & Key Columns:
Country Code (π€): Unique identifier for each country.
Country Name (π): Official name of the country.
Region (π): Broad geographical area (e.g., Asia, Europe, Africa).
Sub-Region (πΊοΈ): More specific regional classification within the broader region.
Intermediate Region (π): Additional granular geographical grouping when applicable.
Year (π ): The specific year to which the data pertains.
Life Expectancy for Women (π©ββοΈ): Average years a woman is expected to live in that country and year.
Life Expectancy for Men (π¨ββοΈ): Average years a man is expected to live in that country and year.
Context & Use Cases:
This dataset is a rich resource for exploring long-term trends in global health and demography. By comparing life expectancy data over decades, researchers can:
Analyze Time Series Trends: Forecast future changes in life expectancy and evaluate the impact of health interventions over time.
Study Gender Disparities: Investigate the differences between life expectancy for women and men, providing insights into social, economic, and healthcare factors influencing these trends.
Regional & Sub-Regional Analysis: Compare and contrast life expectancy across various regions and sub-regions to understand geographical disparities and their underlying causes.
Support Public Policy Research: Inform policymakers by linking life expectancy trends with public health policies, socioeconomic developments, and other key indicators.
Educational & Data Science Applications: Serve as a comprehensive teaching tool for courses on public health, global development, and data analysis, as well as for Kaggle competitions and projects.
With its detailed, structured format and broad temporal coverage, this dataset is ideal for anyone looking to gain a nuanced understanding of global health trends and to drive impactful analyses in public health, social sciences, and beyond.
Feel free to ask for further customizations or additional details as needed!
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>Italy life expectancy for 2024 was <strong>84.13</strong>, a <strong>0.51% increase</strong> from 2023.</li>
<li>Italy life expectancy for 2023 was <strong>83.70</strong>, a <strong>1.21% increase</strong> from 2022.</li>
<li>Italy life expectancy for 2022 was <strong>82.70</strong>, a <strong>0.06% increase</strong> from 2021.</li>
</ul>Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The USA: Life expectancy, in years, male: The latest value from 2022 is 74.8 years, an increase from 73.5 years in 2021. In comparison, the world average is 69.65 years, based on data from 192 countries. Historically, the average for the USA from 1960 to 2022 is 71.82 years. The minimum value, 66 years, was reached in 1968 while the maximum of 76.5 years was recorded in 2014.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>France life expectancy for 2024 was <strong>83.26</strong>, a <strong>0.4% increase</strong> from 2023.</li>
<li>France life expectancy for 2023 was <strong>82.93</strong>, a <strong>0.97% increase</strong> from 2022.</li>
<li>France life expectancy for 2022 was <strong>82.13</strong>, a <strong>0.24% decline</strong> from 2021.</li>
</ul>Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.
Life expectancy in India was 25.4 in the year 1800, and over the course of the next 220 years, it has increased to almost 70. Between 1800 and 1920, life expectancy in India remained in the mid to low twenties, with the largest declines coming in the 1870s and 1910s; this was because of the Great Famine of 1876-1878, and the Spanish Flu Pandemic of 1918-1919, both of which were responsible for the deaths of up to six and seventeen million Indians respectively; as well as the presence of other endemic diseases in the region, such as smallpox. From 1920 onwards, India's life expectancy has consistently increased, but it is still below the global average.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>Philippines life expectancy for 2024 was <strong>71.79</strong>, a <strong>2.8% increase</strong> from 2023.</li>
<li>Philippines life expectancy for 2023 was <strong>69.83</strong>, a <strong>0.52% increase</strong> from 2022.</li>
<li>Philippines life expectancy for 2022 was <strong>69.47</strong>, a <strong>4.19% increase</strong> from 2021.</li>
</ul>Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.
A global phenomenon, known as the demographic transition, has seen life expectancy from birth increase rapidly over the past two centuries. In pre-industrial societies, the average life expectancy was around 24 years, and it is believed that this was the case throughout most of history, and in all regions. The demographic transition then began in the industrial societies of Europe, North America, and the West Pacific around the turn of the 19th century, and life expectancy rose accordingly. Latin America was the next region to follow, before Africa and most Asian populations saw their life expectancy rise throughout the 20th century.