81 datasets found
  1. Life expectancy in the United States, 1860-2020

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Life expectancy in the United States, 1860-2020 [Dataset]. https://www.statista.com/statistics/1040079/life-expectancy-united-states-all-time/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Over the past 160 years, life expectancy (from birth) in the United States has risen from 39.4 years in 1860, to 78.9 years in 2020. One of the major reasons for the overall increase of life expectancy in the last two centuries is the fact that the infant and child mortality rates have decreased by so much during this time. Medical advancements, fewer wars and improved living standards also mean that people are living longer than they did in previous centuries.

    Despite this overall increase, the life expectancy dropped three times since 1860; from 1865 to 1870 during the American Civil War, from 1915 to 1920 during the First World War and following Spanish Flu epidemic, and it has dropped again between 2015 and now. The reason for the most recent drop in life expectancy is not a result of any specific event, but has been attributed to negative societal trends, such as unbalanced diets and sedentary lifestyles, high medical costs, and increasing rates of suicide and drug use.

  2. Global life expectancy from birth in selected regions 1820-2020

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Global life expectancy from birth in selected regions 1820-2020 [Dataset]. https://www.statista.com/statistics/1302736/global-life-expectancy-by-region-country-historical/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    North America, Asia, Europe, Africa, LAC
    Description

    A global phenomenon, known as the demographic transition, has seen life expectancy from birth increase rapidly over the past two centuries. In pre-industrial societies, the average life expectancy was around 24 years, and it is believed that this was the case throughout most of history, and in all regions. The demographic transition then began in the industrial societies of Europe, North America, and the West Pacific around the turn of the 19th century, and life expectancy rose accordingly. Latin America was the next region to follow, before Africa and most Asian populations saw their life expectancy rise throughout the 20th century.

  3. Life expectancy at birth worldwide 1950-2100

    • statista.com
    • ai-chatbox.pro
    Updated Mar 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Life expectancy at birth worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805060/life-expectancy-at-birth-worldwide/
    Explore at:
    Dataset updated
    Mar 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Global life expectancy at birth has risen significantly since the mid-1900s, from roughly 46 years in 1950 to 73.2 years in 2023. Post-COVID-19 projections There was a drop of 1.7 years during the COVID-19 pandemic, between 2019 and 2021, however, figures resumed upon their previous trajectory the following year due to the implementation of vaccination campaigns and the lower severity of later strains of the virus. By the end of the century it is believed that global life expectancy from birth will reach 82 years, although growth will slow in the coming decades as many of the more-populous Asian countries reach demographic maturity. However, there is still expected to be a wide gap between various regions at the end of the 2100s, with the Europe and North America expected to have life expectancies around 90 years, whereas Sub-Saharan Africa is predicted to be in the low-70s. The Great Leap Forward While a decrease of one year during the COVID-19 pandemic may appear insignificant, this is the largest decline in life expectancy since the "Great Leap Forward" in China in 1958, which caused global life expectancy to fall by almost four years between by 1960. The "Great Leap Forward" was a series of modernizing reforms, which sought to rapidly transition China's agrarian economy into an industrial economy, but mismanagement led to tens of millions of deaths through famine and disease.

  4. T

    Vital Signs: Life Expectancy – by ZIP Code

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Apr 12, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California, Department of Health: Death Records (2017). Vital Signs: Life Expectancy – by ZIP Code [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Life-Expectancy-by-ZIP-Code/xym8-u3kc
    Explore at:
    tsv, json, application/rdfxml, xml, csv, application/rssxmlAvailable download formats
    Dataset updated
    Apr 12, 2017
    Dataset authored and provided by
    State of California, Department of Health: Death Records
    Description

    VITAL SIGNS INDICATOR Life Expectancy (EQ6)

    FULL MEASURE NAME Life Expectancy

    LAST UPDATED April 2017

    DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.

    DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link

    California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/

    U.S. Census Bureau: Decennial Census ZCTA Population (2000-2010) http://factfinder.census.gov

    U.S. Census Bureau: American Community Survey 5-Year Population Estimates (2013) http://factfinder.census.gov

    CONTACT INFORMATION vitalsigns.info@mtc.ca.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population that can be compared across time and populations. More information about the determinants of life expectancy that may lead to differences in life expectancy between neighborhoods can be found in the Bay Area Regional Health Inequities Initiative (BARHII) Health Inequities in the Bay Area report at http://www.barhii.org/wp-content/uploads/2015/09/barhii_hiba.pdf. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and ZIP Codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.

    Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential ZIP Code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality.

    For the ZIP Code-level life expectancy calculation, it is assumed that postal ZIP Codes share the same boundaries as ZIP Code Census Tabulation Areas (ZCTAs). More information on the relationship between ZIP Codes and ZCTAs can be found at http://www.census.gov/geo/reference/zctas.html. ZIP Code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 ZIP Code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for ZIP Codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest ZIP Code with population. ZIP Code population for 2000 estimates comes from the Decennial Census. ZIP Code population for 2013 estimates are from the American Community Survey (5-Year Average). ACS estimates are adjusted using Decennial Census data for more accurate population estimates. An adjustment factor was calculated using the ratio between the 2010 Decennial Census population estimates and the 2012 ACS 5-Year (with middle year 2010) population estimates. This adjustment factor is particularly important for ZCTAs with high homeless population (not living in group quarters) where the ACS may underestimate the ZCTA population and therefore underestimate the life expectancy. The ACS provides ZIP Code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to ZIP Codes based on majority land-area.

    ZIP Codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, ZIP Codes with populations of less than 5,000 were aggregated with neighboring ZIP Codes until the merged areas had a population of more than 5,000. ZIP Code 94103, representing Treasure Island, was dropped from the dataset due to its small population and having no bordering ZIP Codes. In this way, the original 305 Bay Area ZIP Codes were reduced to 217 ZIP Code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.

  5. Life expectancy at various ages, by population group and sex, Canada

    • www150.statcan.gc.ca
    • datasets.ai
    • +2more
    Updated Dec 17, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2015). Life expectancy at various ages, by population group and sex, Canada [Dataset]. http://doi.org/10.25318/1310013401-eng
    Explore at:
    Dataset updated
    Dec 17, 2015
    Dataset provided by
    Government of Canadahttp://www.gg.ca/
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    This table contains 2394 series, with data for years 1991 - 1991 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Population group (19 items: Entire cohort; Income adequacy quintile 1 (lowest);Income adequacy quintile 2;Income adequacy quintile 3 ...), Age (14 items: At 25 years; At 30 years; At 40 years; At 35 years ...), Sex (3 items: Both sexes; Females; Males ...), Characteristics (3 items: Life expectancy; High 95% confidence interval; life expectancy; Low 95% confidence interval; life expectancy ...).

  6. M

    China Life Expectancy 1950-2025

    • macrotrends.net
    csv
    Updated May 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). China Life Expectancy 1950-2025 [Dataset]. https://www.macrotrends.net/global-metrics/countries/chn/china/life-expectancy
    Explore at:
    csvAvailable download formats
    Dataset updated
    May 31, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1950 - Jun 2, 2025
    Area covered
    China
    Description
    China life expectancy for 2025 is 77.81, a 0.22% increase from 2024.
    <ul style='margin-top:20px;'>
    
    <li>China life expectancy for 2024 was <strong>77.64</strong>, a <strong>0.22% increase</strong> from 2023.</li>
    <li>China life expectancy for 2023 was <strong>77.47</strong>, a <strong>0.22% increase</strong> from 2022.</li>
    <li>China life expectancy for 2022 was <strong>77.30</strong>, a <strong>0.22% increase</strong> from 2021.</li>
    </ul>Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.
    
  7. Life Expectancy - Men at the age of 65 years in the U.S. 1960-2021

    • statista.com
    • ai-chatbox.pro
    Updated Dec 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Life Expectancy - Men at the age of 65 years in the U.S. 1960-2021 [Dataset]. https://www.statista.com/statistics/266657/us-life-expectancy-for-men-aat-the-age-of-65-years-since-1960/
    Explore at:
    Dataset updated
    Dec 12, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The life expectancy for men aged 65 years in the U.S. has gradually increased since the 1960s. Now men in the United States aged 65 can expect to live 17 more years on average. Women aged 65 years can expect to live around 19.7 more years on average.

    Life expectancy in the U.S.

    As of 2021, the average life expectancy at birth in the United States was 76.33 years. Life expectancy in the U.S. had steadily increased for many years but has recently dropped slightly. Women consistently have a higher life expectancy than men but have also seen a slight decrease. As of 2019, a woman in the U.S. could be expected to live up to 79.3 years.

    Leading causes of death

    The leading causes of death in the United States include heart disease, cancer, unintentional injuries, chronic lower respiratory diseases and cerebrovascular diseases. However, heart disease and cancer account for around 38 percent of all deaths. Although heart disease and cancer are the leading causes of death for both men and women, there are slight variations in the leading causes of death. For example, unintentional injury and suicide account for a larger portion of deaths among men than they do among women.

  8. T

    Vital Signs: Life Expectancy – Bay Area

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Apr 7, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California, Department of Health: Death Records (2017). Vital Signs: Life Expectancy – Bay Area [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Life-Expectancy-Bay-Area/emjt-svg9
    Explore at:
    xml, csv, tsv, application/rssxml, json, application/rdfxmlAvailable download formats
    Dataset updated
    Apr 7, 2017
    Dataset authored and provided by
    State of California, Department of Health: Death Records
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR Life Expectancy (EQ6)

    FULL MEASURE NAME Life Expectancy

    LAST UPDATED April 2017

    DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.

    DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link

    California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/

    CONTACT INFORMATION vitalsigns.info@mtc.ca.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and Zip codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.

    Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential Zip code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality. For the Zip code-level life expectancy calculation, it is assumed that postal Zip codes share the same boundaries as Zip Code Census Tabulation Areas (ZCTAs). More information on the relationship between Zip codes and ZCTAs can be found at https://www.census.gov/geo/reference/zctas.html. Zip code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 Zip code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for Zip codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest Zip code with population. Zip code population for 2000 estimates comes from the Decennial Census. Zip code population for 2013 estimates are from the American Community Survey (5-Year Average). The ACS provides Zip code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to Zip codes based on majority land-area.

    Zip codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, Zip codes with populations of less than 5,000 were aggregated with neighboring Zip codes until the merged areas had a population of more than 5,000. In this way, the original 305 Bay Area Zip codes were reduced to 218 Zip code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.

  9. M

    Greece Life Expectancy (1950-2025)

    • macrotrends.net
    csv
    Updated May 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Greece Life Expectancy (1950-2025) [Dataset]. https://www.macrotrends.net/global-metrics/countries/grc/greece/life-expectancy
    Explore at:
    csvAvailable download formats
    Dataset updated
    May 31, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Greece
    Description
    Greece life expectancy for 2025 is 83.10, a 0.18% increase from 2024.
    <ul style='margin-top:20px;'>
    
    <li>Greece life expectancy for 2024 was <strong>82.95</strong>, a <strong>1.74% increase</strong> from 2023.</li>
    <li>Greece life expectancy for 2023 was <strong>81.54</strong>, a <strong>0.93% increase</strong> from 2022.</li>
    <li>Greece life expectancy for 2022 was <strong>80.79</strong>, a <strong>0.88% increase</strong> from 2021.</li>
    </ul>Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.
    
  10. Historical life expectancy from birth in selected regions 33-1875

    • statista.com
    Updated Dec 31, 2006
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2006). Historical life expectancy from birth in selected regions 33-1875 [Dataset]. https://www.statista.com/statistics/1069683/life-expectancy-historical-areas/
    Explore at:
    Dataset updated
    Dec 31, 2006
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Japan, Sweden, Egypt, France, United Kingdom (England)
    Description

    For most of the world, throughout most of human history, the average life expectancy from birth was around 24. This figure fluctuated greatly depending on the time or region, and was higher than 24 in most individual years, but factors such as pandemics, famines, and conflicts caused regular spikes in mortality and reduced life expectancy. Child mortality The most significant difference between historical mortality rates and modern figures is that child and infant mortality was so high in pre-industrial times; before the introduction of vaccination, water treatment, and other medical knowledge or technologies, women would have around seven children throughout their lifetime, but around half of these would not make it to adulthood. Accurate, historical figures for infant mortality are difficult to ascertain, as it was so prevalent, it took place in the home, and was rarely recorded in censuses; however, figures from this source suggest that the rate was around 300 deaths per 1,000 live births in some years, meaning that almost one in three infants did not make it to their first birthday in certain periods. For those who survived to adolescence, they could expect to live into their forties or fifties on average. Modern figures It was not until the eradication of plague and improvements in housing and infrastructure in recent centuries where life expectancy began to rise in some parts of Europe, before industrialization and medical advances led to the onset of the demographic transition across the world. Today, global life expectancy from birth is roughly three times higher than in pre-industrial times, at almost 73 years. It is higher still in more demographically and economically developed countries; life expectancy is over 82 years in the three European countries shown, and over 84 in Japan. For the least developed countries, mostly found in Sub-Saharan Africa, life expectancy from birth can be as low as 53 years.

  11. M

    Oman Life Expectancy (1950-2025)

    • macrotrends.net
    csv
    Updated May 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Oman Life Expectancy (1950-2025) [Dataset]. https://www.macrotrends.net/global-metrics/countries/omn/oman/life-expectancy
    Explore at:
    csvAvailable download formats
    Dataset updated
    May 31, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1950 - Dec 31, 2025
    Area covered
    Oman
    Description

    Historical chart and dataset showing Oman life expectancy by year from 1950 to 2025.

  12. a

    national records of scotland life expectancy at birth by local authority -...

    • data-stirling-council.hub.arcgis.com
    Updated Feb 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stirling Council - insights by location (2025). national records of scotland life expectancy at birth by local authority - open data [Dataset]. https://data-stirling-council.hub.arcgis.com/datasets/stirling-council::national-records-of-scotland-life-expectancy-at-birth-by-local-authority-open-data
    Explore at:
    Dataset updated
    Feb 23, 2025
    Dataset authored and provided by
    Stirling Council - insights by location
    Area covered
    Scotland
    Description

    National Records of Scotland Guidance;What is ‘period’ life expectancyAll of the estimates presented in this report are ‘period’ life expectancy. They are calculated assuming that mortality rates for each age group in the time period (here 2021-2023) are constant throughout a person’s life. Period life expectancy is often described as how long a baby born now could expect to live if they experienced today’s mortality rates throughout their lifetime. It is very unlikely that this would be the case as it means that future changes in things such as medicine and legislation are not taken into consideration.Period life expectancy is not an accurate prediction of how long a person born today will actually live, but it is a useful measure of population health at a point in time and is most useful for comparing trends over time, between areas of a country and with other countries.How national life expectancy is calculatedThe latest life expectancy figures are calculated from the mid-year population estimates for Scotland and the number of deaths registered in Scotland during 2021, 2022, and 2023. Life expectancy for Scotland is calculated for each year of age and represents the average number of years that someone of that age could expect to live if death rates for each age group remained constant over their lifetime. Life expectancy in Scotland is calculated as a three-year average, produced by combining deaths and population data for the three-year period. Three years of data are needed to provide large enough numbers to make these figures accurate and lessen the effect of very ‘good’ or ‘bad’ years. Throughout this publication, the latest life expectancy figures refer to 2021-2023 period. How sub-national life expectancy is calculatedWe calculate life expectancy for areas within Scotland using a very similar method to the national figures but with a few key differences. Firstly, we use age groups rather than single year of age. This is to increase the population size of each age group to reduce fluctuations and ensure accurate calculation of mortality rates. Secondly, we use a maximum age group of 90+ whereas the national figures are calculated up to age 100. These are known as ‘abridged life tables.’ Because these methods produce slightly different figures, we also calculate a Scotland figure using the abridged method to allow for accurate comparisons between local areas for example. This Scotland figure is only for comparison and does not replace the headline national figure. You can read more information about the methods in this publication in our methodology guide on the NRS website. Uses of life expectancyLife expectancy at birth is a very useful indicator of mortality conditions across a population at a particular point in time. It also provides an objective means of comparing trends in mortality over time, between areas of a country and with other countries. This is used to monitor and investigate health inequalities and to set public health targets. Life expectancy is also used to inform pensions policy, research and teaching.

  13. Life expectancy and other elements of the complete life table, three-year...

    • www150.statcan.gc.ca
    • data.urbandatacentre.ca
    • +2more
    Updated Dec 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2024). Life expectancy and other elements of the complete life table, three-year estimates, Canada, all provinces except Prince Edward Island [Dataset]. http://doi.org/10.25318/1310011401-eng
    Explore at:
    Dataset updated
    Dec 4, 2024
    Dataset provided by
    Government of Canadahttp://www.gg.ca/
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    This table contains mortality indicators by sex for Canada and all provinces except Prince Edward Island. These indicators are derived from three-year complete life tables. Mortality indicators derived from single-year life tables are also available (table 13-10-0837). For Prince Edward Island, Yukon, the Northwest Territories and Nunavut, mortality indicators derived from three-year abridged life tables are available (table 13-10-0140).

  14. Health Inequality Project

    • redivis.com
    application/jsonl +7
    Updated Jan 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). Health Inequality Project [Dataset]. http://doi.org/10.57761/7wg0-e126
    Explore at:
    parquet, arrow, avro, spss, csv, stata, sas, application/jsonlAvailable download formats
    Dataset updated
    Jan 17, 2020
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford Center for Population Health Sciences
    Time period covered
    Jan 1, 2001 - Dec 31, 2014
    Description

    Abstract

    The Health Inequality Project uses big data to measure differences in life expectancy by income across areas and identify strategies to improve health outcomes for low-income Americans.

    Section 7

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each percentile of the national income distribution. Both race-adjusted and unadjusted estimates are reported.

    Source

    Section 13

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each percentile of the national income distribution separately by year. Both race-adjusted and unadjusted estimates are reported.

    Source

    Section 6

    This dataset was created on 2020-01-10 18:53:00.508 by merging multiple datasets together. The source datasets for this version were:

    Commuting Zone Life Expectancy Estimates by year: CZ-level by-year life expectancy estimates for men and women, by income quartile

    Commuting Zone Life Expectancy: Commuting zone (CZ)-level life expectancy estimates for men and women, by income quartile

    Commuting Zone Life Expectancy Trends: CZ-level estimates of trends in life expectancy for men and women, by income quartile

    Commuting Zone Characteristics: CZ-level characteristics

    Commuting Zone Life Expectancy for larger populations: CZ-level life expectancy estimates for men and women, by income ventile

    Section 15

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by state of residence and year. Both race-adjusted and unadjusted estimates are reported.

    Source

    Section 11

    This table reports US mortality rates by gender, age, year and household income percentile. Household incomes are measured two years prior to the mortality rate for mortality rates at ages 40-63, and at age 61 for mortality rates at ages 64-76. The “lag” variable indicates the number of years between measurement of income and mortality.

    Observations with 1 or 2 deaths have been masked: all mortality rates that reflect only 1 or 2 deaths have been recoded to reflect 3 deaths

    Source

    Section 3

    This table reports coefficients and standard errors from regressions of life expectancy estimates for men and women at age 40 for each quartile of the national income distribution on calendar year by commuting zone of residence. Only the slope coefficient, representing the average increase or decrease in life expectancy per year, is reported. Trend estimates for both race-adjusted and unadjusted life expectancies are reported. Estimates are reported for the 100 largest CZs (populations greater than 590,000) only.

    Source

    Section 9

    This table reports life expectancy estimates at age 40 for Males and Females for all countries. Source: World Health Organization, accessed at: http://apps.who.int/gho/athena/

    Source

    Section 10

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by county of residence. Both race-adjusted and unadjusted estimates are reported. Estimates are reported for counties with populations larger than 25,000 only

    Source

    Section 2

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by commuting zone of residence and year. Both race-adjusted and unadjusted estimates are reported. Estimates are reported for the 100 largest CZs (populations greater than 590,000) only.

    Source

    Section 8

    This table reports US population and death counts by age, year, and sex from various sources. Counts labelled “dm1” are derived from the Social Security Administration Data Master 1 file. Counts labelled “irs” are derived from tax data. Counts labelled “cdc” are derived from NCHS life tables.

    Source

    Section 12

    This table reports numerous county characteristics, compiled from various sources. These characteristics are described in the county life expectancy table.

    Two variables constructed by the Cen

  15. Life expectancy in India 1800-2020

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Life expectancy in India 1800-2020 [Dataset]. https://www.statista.com/statistics/1041383/life-expectancy-india-all-time/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    Life expectancy in India was 25.4 in the year 1800, and over the course of the next 220 years, it has increased to almost 70. Between 1800 and 1920, life expectancy in India remained in the mid to low twenties, with the largest declines coming in the 1870s and 1910s; this was because of the Great Famine of 1876-1878, and the Spanish Flu Pandemic of 1918-1919, both of which were responsible for the deaths of up to six and seventeen million Indians respectively; as well as the presence of other endemic diseases in the region, such as smallpox. From 1920 onwards, India's life expectancy has consistently increased, but it is still below the global average.

  16. Life expectancy in Japan, 1860-2020

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Life expectancy in Japan, 1860-2020 [Dataset]. https://www.statista.com/statistics/1041369/life-expectancy-japan-all-time/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1860 - 2020
    Area covered
    Japan
    Description

    Life expectancy in Japan was 36.4 in the year 1860, and over the course of the next 160 years, it is expected to have increased to 84.4, which is the second highest in the world (after Monaco). Although life expectancy has generally increased throughout Japan's history, there were several times where the rate deviated from its previous trajectory. These changes were a result of the Spanish Flu in the 1910s, the Second World War in the 1940s, and the sharp increase was due to the high rate of industrialization and economic prosperity in Japan, in the mid-twentieth century.

  17. Life expectancy in the United Kingdom 1765-2020

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Life expectancy in the United Kingdom 1765-2020 [Dataset]. https://www.statista.com/statistics/1040159/life-expectancy-united-kingdom-all-time/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1765 - 2020
    Area covered
    United Kingdom
    Description

    Life expectancy in the United Kingdom was below 39 years in the year 1765, and over the course of the next two and a half centuries, it is expected to have increased by more than double, to 81.1 by the year 2020. Although life expectancy has generally increased throughout the UK's history, there were several times where the rate deviated from its previous trajectory. These changes were the result of smallpox epidemics in the late eighteenth and early nineteenth centuries, new sanitary and medical advancements throughout time (such as compulsory vaccination), and the First world War and Spanish Flu epidemic in the 1910s.

  18. f

    Mortality rate, expected lifespan, and maximum lifespan estimated from...

    • plos.figshare.com
    xls
    Updated Jul 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ulrich G. Mueller; Anna G. Himler; Caroline E. Farrior (2023). Mortality rate, expected lifespan, and maximum lifespan estimated from observed survivorship records of a cohort of 150 M. hartmanni colonies from a single population at Stengl Lost Pines Biological Station surveyed annually in late spring or early summer between 2000–2007 until all colonies had died. [Dataset]. http://doi.org/10.1371/journal.pone.0289146.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jul 26, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Ulrich G. Mueller; Anna G. Himler; Caroline E. Farrior
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Cedar Creek
    Description

    Maximum lifespan is defined as the timepoint at which 95% of colonies of a cohort are expected to have died. The four Estimates 1–4 are based on models that differ in modeling assumptions. Mortality was assumed to occur only outside the annual re-survey season April-July (Estimates 1 and 3); or alternatively, mortality risk was assumed to be constant across all days of the year including the re-survey months April-July (Estimates 2 and 4). Estimates 1 and 2 ignore differences in sample sizes across years (later years have naturally smaller sample sizes because of nest mortality), while Estimates 3 and 4 weigh confidence in the mortality rates across years by the number of individual nests at the start of a given census interval (additional details in Materials and methods).

  19. C

    Sewage signaling card

    • ckan.mobidatalab.eu
    esri rest, wfs, wms
    Updated Jun 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NationaalGeoregisterNL (2023). Sewage signaling card [Dataset]. https://ckan.mobidatalab.eu/dataset/signalingcard-sewage
    Explore at:
    wfs, wms, esri restAvailable download formats
    Dataset updated
    Jun 7, 2023
    Dataset provided by
    NationaalGeoregisterNL
    Description

    The sewerage monitoring map indicates at neighborhood level (area boundaries according to Statistics Netherlands) what percentage of the sewer system is older than 50 years. The lifespan of sewers varies widely and can be up to 100 years. The average lifespan is about 50 years, but this is regularly not achieved due to subsidence, for example. The map has classified the life of the sewer. '0-30 years' indicates that there is no to very small chance that the sewer system will be replaced within 10 years. '30-50 years' shows where it is likely that the sewer will be replaced within 10 years. '>50 years' shows where the sewer probably needs to be replaced (based on lifespan). The length is determined in meters per class.

  20. f

    Excel file summarizing raw data and metadata.

    • figshare.com
    xlsx
    Updated Jul 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ulrich G. Mueller; Anna G. Himler; Caroline E. Farrior (2023). Excel file summarizing raw data and metadata. [Dataset]. http://doi.org/10.1371/journal.pone.0289146.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 26, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Ulrich G. Mueller; Anna G. Himler; Caroline E. Farrior
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Mycetosoritis hartmanni is a rarely collected fungus-farming ant of North America. We describe life history and nest architecture for a M. hartmanni population in central Texas, USA. Colonies are monogynous with typically less than 100 workers (average 47.6 workers, maximum 148 workers). Nests occur always in sand and have a uniform architecture with 1–3 underground garden chambers arranged along a vertical tunnel, with the deepest gardens 50–70 cm deep. Foragers are active primarily between April and October. After reduced activity between November and February, egg laying by queens resumes in April, and the first worker pupae develop in early June. Reproductive females and males are reared primarily in July and August, with proportionally more females produced early in summer (protogyny). Mating flights and founding of new nests by mated females occur in late June to August, but may extend through September. For a cohort of 150 established nests (nests that had survived at least one year after nest founding), the estimated mortality rate was 0.41–0.53, the estimated average lifespan for these nests was 1.9–2.5 years, and the longest-living nests were observed to live for 6 years. These life-history parameters for M. hartmanni in central Texas are consistent with information from additional M. hartmanni nests observed throughout the range of this species from eastern Louisiana to southern Texas. Throughout its range in the USA, M. hartmanni can be locally very abundant in sun-exposed, sandy soil. Abundance of M. hartmanni seems so far relatively unaffected by invasive fire ants, and at present M. hartmanni does not appear to be an endangered species.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Life expectancy in the United States, 1860-2020 [Dataset]. https://www.statista.com/statistics/1040079/life-expectancy-united-states-all-time/
Organization logo

Life expectancy in the United States, 1860-2020

Explore at:
47 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 9, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

Over the past 160 years, life expectancy (from birth) in the United States has risen from 39.4 years in 1860, to 78.9 years in 2020. One of the major reasons for the overall increase of life expectancy in the last two centuries is the fact that the infant and child mortality rates have decreased by so much during this time. Medical advancements, fewer wars and improved living standards also mean that people are living longer than they did in previous centuries.

Despite this overall increase, the life expectancy dropped three times since 1860; from 1865 to 1870 during the American Civil War, from 1915 to 1920 during the First World War and following Spanish Flu epidemic, and it has dropped again between 2015 and now. The reason for the most recent drop in life expectancy is not a result of any specific event, but has been attributed to negative societal trends, such as unbalanced diets and sedentary lifestyles, high medical costs, and increasing rates of suicide and drug use.

Search
Clear search
Close search
Google apps
Main menu