Facebook
TwitterThe borough with the highest property prices in London, Kensington and Chelsea, had an average price for a flat exceeding *** million British pounds. London is the most populous metropolitan area in the UK, and living in it comes with a price tag. Unsurprisingly, the most expensive boroughs in terms of real estate prices are located in the heart of the metropolis: Kensington and Chelsea, the City of Westminster, and the City of London. In Kensington and Chelsea, home to several museums such as the Natural History Museum, the Victoria and Albert Museum, and the Science Museum, as well as galleries and theaters, the average price of apartments was over a million British pounds. How have residential property prices developed in recent years? The average house price in England have risen notably over the past decade, despite a slight decline in 2023. While London continues to be the hottest market in the UK, price growth in the capital has moderated. Conversely, prices in the more affordable cities, such as Belfast and Liverpool, have started to rise at a faster pace. Are residential property prices in London expected to grow in the future? Despite property prices declining in 2024, the market is forecast to continue to grow in the next five years, according to a October 2024 forecast. Some of the reasons for this are the robust demand for housing, the chronic shortage of residential properties, and the anticipated decline in mortgage interest rates.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains detailed information about rental properties across various locations in the UK. The data was collected by scraping Rightmove, a popular real estate platform. Each entry in the dataset includes the property's address, subdistrict code, rental price, deposit amount, letting type, furnish type, council tax details, property type, number of bedrooms and bathrooms, size in square feet, average distance to the nearest train station, and the count of nearest stations.
Researchers and analysts interested in the UK rental market can utilize this dataset to explore rental trends, pricing variations based on location and property type, amenities preferences, and more. The dataset provides a valuable resource for machine learning models, statistical analysis, and market research in the real estate sector.
Metadata: Source: The data was collected by scraping the Rightmove real estate platform, a leading source for property listings in the UK. Date Range: The dataset covers rental property listings available during the scraping period. Geographical Coverage: Primarily focused on various locations across the UK, providing insights into regional rental markets. Data Fields: Address: The location of the rental property. Subdistrict Code: A code representing the subdistrict or area of the property. Rent: The monthly rental price in GBP (£) for the property. Deposit: The deposit amount required for renting the property. Let Type: Indicates whether the property is available for short-term or long-term rental. Furnish Type: Describes the furnishing status of the property (e.g., furnished, unfurnished, or flexible options). Council Tax: Information about the council tax associated with the property. Property Type: Specifies the type of property, such as apartment, flat, maisonette, etc. Bedrooms: The number of bedrooms in the property. Bathrooms: The number of bathrooms in the property. Size: The size of the property in square feet (sq ft). Average Distance to Nearest Station: The average distance (in miles) to the nearest train station from the property. Nearest Station Count: The count of nearest train stations within a certain distance from the property. Data Quality: The data may contain missing values or "Ask agent" placeholders, which require direct inquiry with agents or landlords for specific information. Potential Uses: The dataset can be used for market analysis, rental price prediction models, understanding property preferences, and exploring the impact of location and amenities on rental properties in the UK.
Facebook
TwitterLondon was the most expensive city to buy an apartment in the United Kingdom, with an average value of ****** euros per square meter in the first quarter of 2025. The price of an apartment in Leeds was significantly lower at approximately ***** euros per square meter.
Facebook
TwitterGeneva stands out as Europe's most expensive city for apartment purchases in early 2025, with prices reaching a staggering 15,720 euros per square meter. This Swiss city's real estate market dwarfs even high-cost locations like Zurich and London, highlighting the extreme disparities in housing affordability across the continent. The stark contrast between Geneva and more affordable cities like Nantes, France, where the price was 3,700 euros per square meter, underscores the complex factors influencing urban property markets in Europe. Rental market dynamics and affordability challenges While purchase prices vary widely, rental markets across Europe also show significant differences. London maintained its position as the continent's priciest city for apartment rentals in 2023, with the average monthly costs for a rental apartment amounting to 36.1 euros per square meter. This figure is double the rent in Lisbon, Portugal or Madrid, Spain, and substantially higher than in other major capitals like Paris and Berlin. The disparity in rental costs reflects broader economic trends, housing policies, and the intricate balance of supply and demand in urban centers. Economic factors influencing housing costs The European housing market is influenced by various economic factors, including inflation and energy costs. As of April 2025, the European Union's inflation rate stood at 2.4 percent, with significant variations among member states. Romania experienced the highest inflation at 4.9 percent, while France and Cyprus maintained lower rates. These economic pressures, coupled with rising energy costs, contribute to the overall cost of living and housing affordability across Europe. The volatility in electricity prices, particularly in countries like Italy where rates are projected to reach 153.83 euros per megawatt hour by February 2025, further impacts housing-related expenses for both homeowners and renters.
Facebook
TwitterThe monthly house price index in London has increased since 2015, albeit with fluctuation. In August 2025, the index reached 99.1, which is a slight decrease from the same month in 2024. Nevertheless, prices widely varied in different London boroughs, with Kensington and Chelsea being the priciest boroughs for an apartment purchase.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset expands upon the original London Property Listings by including additional attributes to facilitate deeper analysis of rental properties in London. It is ideal for research and projects related to real estate trends, price categorization, and area-wise analysis in one of the world's busiest markets.
This dataset was prepared and uploaded by Mehmet Emre Sezer. It is intended for educational and non-commercial use.
Facebook
TwitterThe average price of houses bought by first-time buyers was notably lower than houses purchased by repeat buyers in London in 2024. Homebuyers spent on average 480,000 British pounds when purchasing their first property in 2024. For repeat buyers, this figure amounted to 850,000 British pounds in that year. In London, the average house price was about 630,000 British pounds in 2024.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By [source]
This dataset explores the potential relationship between art presence and property prices in London neighborhoods. We conducted an analysis to investigate this by measuring the proportion of Flickr photographs with the keyword ‘art’ attached. We then compared that data to residential property price gains for each Inner London neighborhood, seeking out any associations or correlations between art presence and housing value. Our findings demonstrate the impact of aesthetics on neighborhoods, illustrating how visual environment influences socio-economic conditions. With this dataset, we aim to show how online platforms can be leveraged for quantitative data collection and analysis which can visualize these relationships so as to better understand our urban settings
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset can be used to investigate the relationship between art presence and property prices in London neighborhoods. The dataset includes three columns – Postcode.District, Rank.Mean.Change, and Proportion.Art.Photos – which provide quantitative analyses of the association between art presence and price gains for London neighborhoods.
To use this dataset, first identify the postcode district for which you wish to access data by referencing a street list or PostCodeSearcher website that outlines postcodes for each neighborhood in London(http://postcodesearcher.com/london). This will allow you to easily find properties within each neighborhood as there are specific postcode districts that demarcate boundaries of particular areas (for example W2 covers Bayswater).
Once you have identified a postcode district of interest, review the ‘Rank.Mean Change’ column to explore how residential property prices have changed relative to other areas in Inner London since 2010-13 using fractions (1 = highest gain; 25 = lowest gain). Focusing on one particular location will also provide an idea about their current pricing level compared with others in order to evaluate whether further investment is worthwhile or not based on its past history of growth rates . It is important to note that higher rank numbers indicate higher price gains while lower rank numbers indicate lower price gains relative with respect from 2010-13 timeframe therefore comparing these values across many neighborhoods gives an indication as what area offers more value growth wise over given time period..
Finally pay attention how much did art contributes as far change in property price goes? To answer this question , review ‘Proportion Art Photos’ column which provides ratio of Flickr photographs associated with keyword 'art' attached within given regions helps identify visual characteristics within different localities.. Comparing proportions across various locations provide detail information regarding how much did share visual aesthetic characterstics impacts change in pricings accross different region.. For example it can give us further understandings if majority photographs are made up of urban landscape , abstracts or simply portrait presences had any role play when we look at relativity gains over past few years? Such comparisons help inform our understanding about potential impact art presence can have on changes stay relatively stable even during volatile market times..
By combining this data with other datasets related to demographics, infrastructure and socioeconomics present within londons different areas we can gain further insight which then allows us making informed decisions when it comes investing particular locations .
- Use this dataset to develop a predictive analytics model to identify areas in London most likely to experience an increase in residential property prices associated with the presence of art.
- Use this dataset to develop strategies and policies that promote both artistic expression and urban development in Inner London neighborhoods.
- Compare the presence of art across inner London boroughs, as well as against other cities, to gain insight into the socio-economic conditions related to the visual environment of a city and its impact on life quality for citizens
If you use this dataset in your research, please credit the original authors. Data Source
**License: [CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication](https://creativecommons.org/publicd...
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Median price paid for residential property in England and Wales, for all property types by lower layer super output area. Annual data..
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Median price paid for residential property in England and Wales by property type and electoral ward. Annual data.
Facebook
TwitterThe average mix-adjusted house price in London, England, peaked in August 2022, followed by a slight correction in 2023. In June 2024, the average house price amounted to about ******* British pounds, up from ******* British pounds a year ago. These recent fluctuations have also been observed by other measures, such as the house price index. The house price index is an important measure for the residential real estate market and is used to show changes in the value of residential properties.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By [source]
Explore a new and different way to measure the relationship between art presence and property prices in Inner London neighbourhoods. By quantifying the visual environment at scale with geotagged Flickr photos containing the word “art,” this dataset can help us garner an understanding of how aesthetic values translate into its economic value. Using data from the Land Registry of England and Wales, this dataset allows users to spot correlations between property values and art presence through visual analysis of postcode districts plotted against rank change in prices and proportion of “art” photos. Investigate whether aesthetics, particularly within urban neighbourhoods, have a bearing on local house pricing markets – adding a valuable insight into London’s ever-changing social landscape
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides a useful tool for determining the correlation between the visual environment in a given neighbourhood and its associated property values. This dataset can be used to gain insights into how art presence in an area affects housing prices.
To work with this dataset, you will first need to download it as a csv file or as an XML file. Once you have downloaded your desired version of the data, open it in your favorite spreadsheet program or text editor for further manipulation and analysis.
The two key columns you will want to focus on are Rank Mean Change and Proportion Art Photos. The Rank Mean Change column indicates how each neighbourhood ranked based on its mean property price change from Jan 1995 to Mar 2017, while Proportion Art Photos denotes the proportion of photographs taken within these areas containing the word “art”. You may also want to take note of Postcode Districts as this indicates which neighbourhood each row corresponds to making it easier for contextualizing results at a place-based level.
From here you can conduct linear regression analysis using Rank Mean Change and Proportion Art Photos as independent variables, allowing you to determine whether there is indeed any correlation between art presence in London neighbourhoods and their property values over time
- Correlating the value of properties with art presence to inform investment decisions in residential real estate.
- Utilizing Photographs from Flickr as a tool to monitor changes in art presence and creative expression over time.
- Investigating the effects of art preservation/creation initiatives on property values to determine their potential effectiveness
If you use this dataset in your research, please credit the original authors. Data Source
License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.
File: London_Prices_Flickr_Art_Agg.csv | Column name | Description | |:--------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Postcode.District | This column indicates the postcode district of each neighbourhood in Inner London. (String) | | Rank.Mean.Change | This column indicates the rank of each neighbourhood based on its mean change in property prices over time. (Integer) | | Proportion.Art.Photos | This column captures the proportion of photographs containing “art” within each postcode district during a given time period, allowing us to measure art presence at scale across inner London neighbourhoods. (Float) |
If you use this dataset in your research, please credit the original authors. ...
Facebook
Twitterhttp://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
Mix-adjusted house prices, by new/pre-owned dwellings, type of buyer (first time buyer) and region, from February 2002 for London and UK, and average mix-adjusted prices by UK region, and long term Annual House Price Index data since 1969 for London.
The ONS House Price Index is mix-adjusted to allow for differences between houses sold (for example type, number of rooms, location) in different months within a year. House prices are modelled using a combination of characteristics to produce a model containing around 100,000 cells (one such cell could be first-time buyer, old dwelling, one bedroom flat purchased in London). Each month estimated prices for all cells are produced by the model and then combined with their appropriate weight to produce mix-adjusted average prices. The index values are based on growth rates in the mix-adjusted average house prices and are annually chain linked.
The weights used for mix-adjustment change at the start of each calendar year (i.e. in January). The mix-adjusted prices are therefore not comparable between calendar years, although they are comparable within each calendar year. If you wish to calculate change between years, you should use the mix-adjusted house price index, available in Table 33.
The data published in these tables are based on a sub-sample of RMS data. These results will therefore differ from results produced using full sample data. For further information please contact the ONS using the contact details below.
House prices, mortgage advances and incomes have been rounded to the nearest £1,000.
Data taken from Table 2 and Table 9 of the monthly ONS release.
Download from ONS website
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in the United Kingdom increased to 517.10 points in October from 514.20 points in September of 2025. This dataset provides - United Kingdom House Price Index - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Summary of UK House Price Index (HPI) price statistics covering England, Scotland, Wales and Northern Ireland. Full UK HPI data are available on GOV.UK.
Facebook
TwitterOur Price Paid Data includes information on all property sales in England and Wales that are sold for value and are lodged with us for registration.
Get up to date with the permitted use of our Price Paid Data:
check what to consider when using or publishing our Price Paid Data
If you use or publish our Price Paid Data, you must add the following attribution statement:
Contains HM Land Registry data © Crown copyright and database right 2021. This data is licensed under the Open Government Licence v3.0.
Price Paid Data is released under the http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/">Open Government Licence (OGL). You need to make sure you understand the terms of the OGL before using the data.
Under the OGL, HM Land Registry permits you to use the Price Paid Data for commercial or non-commercial purposes. However, OGL does not cover the use of third party rights, which we are not authorised to license.
Price Paid Data contains address data processed against Ordnance Survey’s AddressBase Premium product, which incorporates Royal Mail’s PAF® database (Address Data). Royal Mail and Ordnance Survey permit your use of Address Data in the Price Paid Data:
If you want to use the Address Data in any other way, you must contact Royal Mail. Email address.management@royalmail.com.
The following fields comprise the address data included in Price Paid Data:
The October 2025 release includes:
As we will be adding to the October data in future releases, we would not recommend using it in isolation as an indication of market or HM Land Registry activity. When the full dataset is viewed alongside the data we’ve previously published, it adds to the overall picture of market activity.
Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.
Google Chrome (Chrome 88 onwards) is blocking downloads of our Price Paid Data. Please use another internet browser while we resolve this issue. We apologise for any inconvenience caused.
We update the data on the 20th working day of each month. You can download the:
These include standard and additional price paid data transactions received at HM Land Registry from 1 January 1995 to the most current monthly data.
Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.
The data is updated monthly and the average size of this file is 3.7 GB, you can download:
Facebook
TwitterThis Power BI project analyzes London housing data to uncover patterns and trends in pricing, borough-wise distribution, affordability, and market growth over time. The dashboard is designed for anyone interested in property investment, urban planning, or simply understanding how the London housing market behaves.
✅ Key Features:
📍 Borough-wise Price Distribution Understand how average property prices vary across different London boroughs.
📈 Trend Analysis Visualize long-term price trends with dynamic line and area charts to observe how the market has evolved over time.
🧮 Affordability Index A calculated metric to measure housing affordability based on price vs income estimations.
🏘️ Property Type Breakdown Interactive visuals showing trends across Flats, Detached, Semi-Detached, and Terraced houses.
🗓️ Time Filters & Slicers Easily filter by year, month, or borough to explore specific time periods or locations.
Facebook
TwitterAccording to the forecast, house prices in London are expected to continue to increase until 2029. During the five-year period from 2025 to 2029, the house prices for mainstream properties are forecast to rise by **** percent. In 2023, the average house price in London ranged between ******* British pounds and *** million British pounds, depending on the borough. Barking and Dagenham, Bexley, Newham, and Croydon were some of the most affordable boroughs to buy a house.
Facebook
Twitterhttp://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
This table shows the average House Price/Earnings ratio, which is an important indicator of housing affordability. Ratios are calculated by dividing house price by the median earnings of a borough.
The Annual Survey of Hours and Earnings (ASHE) is based on a 1 per cent sample of employee jobs. Information on earnings and hours is obtained in confidence from employers. It does not cover the self-employed nor does it cover employees not paid during the reference period. Information is as at April each year. The statistics used are workplace based full-time individual earnings.
Land Registry housing data are for the first half of the year only, so that they comparable to the ASHE data which are as at April.
Prior to 2006 data are not available for Inner and Outer London.
The lowest 25 per cent of prices are below the lower quartile; the highest 75 per cent are above the lower quartile.
The "lower quartile" property price/income is determined by ranking all property prices/incomes in ascending order.
The 'median' property price/income is determined by ranking all property prices/incomes in ascending order. The point at which one half of the values are above and one half are below is the median.
Regional data has not been published by DCLG since 2012. Data for regions has been calculated by the GLA. Data for 2014 has been calculated by the GLA.
Link to DCLG Live Tables
Facebook
TwitterThis dataset provides information about the number of properties, residents, and average property values for Price Street cross streets in London, AR.
Facebook
TwitterThe borough with the highest property prices in London, Kensington and Chelsea, had an average price for a flat exceeding *** million British pounds. London is the most populous metropolitan area in the UK, and living in it comes with a price tag. Unsurprisingly, the most expensive boroughs in terms of real estate prices are located in the heart of the metropolis: Kensington and Chelsea, the City of Westminster, and the City of London. In Kensington and Chelsea, home to several museums such as the Natural History Museum, the Victoria and Albert Museum, and the Science Museum, as well as galleries and theaters, the average price of apartments was over a million British pounds. How have residential property prices developed in recent years? The average house price in England have risen notably over the past decade, despite a slight decline in 2023. While London continues to be the hottest market in the UK, price growth in the capital has moderated. Conversely, prices in the more affordable cities, such as Belfast and Liverpool, have started to rise at a faster pace. Are residential property prices in London expected to grow in the future? Despite property prices declining in 2024, the market is forecast to continue to grow in the next five years, according to a October 2024 forecast. Some of the reasons for this are the robust demand for housing, the chronic shortage of residential properties, and the anticipated decline in mortgage interest rates.