29 datasets found
  1. F

    Money Market Funds; Total Financial Assets, Level

    • fred.stlouisfed.org
    json
    Updated Jun 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Money Market Funds; Total Financial Assets, Level [Dataset]. https://fred.stlouisfed.org/series/MMMFFAQ027S
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 12, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Money Market Funds; Total Financial Assets, Level (MMMFFAQ027S) from Q4 1945 to Q1 2025 about MMMF, IMA, financial, assets, and USA.

  2. Monthly inflation rate and Federal Reserve interest rate in the U.S....

    • statista.com
    • ai-chatbox.pro
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Monthly inflation rate and Federal Reserve interest rate in the U.S. 2018-2025 [Dataset]. https://www.statista.com/statistics/1312060/us-inflation-rate-federal-reserve-interest-rate-monthly/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2018 - Mar 2024
    Area covered
    United States
    Description

    The inflation rate in the United States declined significantly between June 2022 and May 2025, despite rising inflationary pressures towards the end of 2024. The peak inflation rate was recorded in June 2022, at *** percent. In August 2023, the Federal Reserve's interest rate hit its highest level during the observed period, at **** percent, and remained unchanged until September 2024, when the Federal Reserve implemented its first rate cut since September 2021. By January 2025, the rate dropped to **** percent, signalling a shift in monetary policy. What is the Federal Reserve interest rate? The Federal Reserve interest rate, or the federal funds rate, is the rate at which banks and credit unions lend to and borrow from each other. It is one of the Federal Reserve's key tools for maintaining strong employment rates, stable prices, and reasonable interest rates. The rate is determined by the Federal Reserve and adjusted eight times a year, though it can be changed through emergency meetings during times of crisis. The Fed doesn't directly control the interest rate but sets a target rate. It then uses open market operations to influence rates toward this target. Ways of measuring inflation Inflation is typically measured using several methods, with the most common being the Consumer Price Index (CPI). The CPI tracks the price of a fixed basket of goods and services over time, providing a measure of the price changes consumers face. At the end of 2023, the CPI in the United States was ****** percent, up from ****** a year earlier. A more business-focused measure is the producer price index (PPI), which represents the costs of firms.

  3. U

    Inflation Data

    • dataverse.unc.edu
    • dataverse-staging.rdmc.unc.edu
    Updated Oct 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UNC Dataverse (2022). Inflation Data [Dataset]. http://doi.org/10.15139/S3/QA4MPU
    Explore at:
    Dataset updated
    Oct 9, 2022
    Dataset provided by
    UNC Dataverse
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This is not going to be an article or Op-Ed about Michael Jordan. Since 2009 we've been in the longest bull-market in history, that's 11 years and counting. However a few metrics like the stock market P/E, the call to put ratio and of course the Shiller P/E suggest a great crash is coming in-between the levels of 1929 and the dot.com bubble. Mean reversion historically is inevitable and the Fed's printing money experiment could end in disaster for the stock market in late 2021 or 2022. You can read Jeremy Grantham's Last Dance article here. You are likely well aware of Michael Burry's predicament as well. It's easier for you just to skim through two related videos on this topic of a stock market crash. Michael Burry's Warning see this YouTube. Jeremy Grantham's Warning See this YouTube. Typically when there is a major event in the world, there is a crash and then a bear market and a recovery that takes many many months. In March, 2020 that's not what we saw since the Fed did some astonishing things that means a liquidity sloth and the risk of a major inflation event. The pandemic represented the quickest decline of at least 30% in the history of the benchmark S&P 500, but the recovery was not correlated to anything but Fed intervention. Since the pandemic clearly isn't disappearing and many sectors such as travel, business travel, tourism and supply chain disruptions appear significantly disrupted - the so-called economic recovery isn't so great. And there's this little problem at the heart of global capitalism today, the stock market just keeps going up. Crashes and corrections typically occur frequently in a normal market. But the Fed liquidity and irresponsible printing of money is creating a scenario where normal behavior isn't occurring on the markets. According to data provided by market analytics firm Yardeni Research, the benchmark index has undergone 38 declines of at least 10% since the beginning of 1950. Since March, 2020 we've barely seen a down month. September, 2020 was flat-ish. The S&P 500 has more than doubled since those lows. Look at the angle of the curve: The S&P 500 was 735 at the low in 2009, so in this bull market alone it has gone up 6x in valuation. That's not a normal cycle and it could mean we are due for an epic correction. I have to agree with the analysts who claim that the long, long bull market since 2009 has finally matured into a fully-fledged epic bubble. There is a complacency, buy-the dip frenzy and general meme environment to what BigTech can do in such an environment. The weight of Apple, Amazon, Alphabet, Microsoft, Facebook, Nvidia and Tesla together in the S&P and Nasdaq is approach a ridiculous weighting. When these stocks are seen both as growth, value and companies with unbeatable moats the entire dynamics of the stock market begin to break down. Check out FANG during the pandemic. BigTech is Seen as Bullet-Proof me valuations and a hysterical speculative behavior leads to even higher highs, even as 2020 offered many younger people an on-ramp into investing for the first time. Some analysts at JP Morgan are even saying that until retail investors stop charging into stocks, markets probably don’t have too much to worry about. Hedge funds with payment for order flows can predict exactly how these retail investors are behaving and monetize them. PFOF might even have to be banned by the SEC. The risk-on market theoretically just keeps going up until the Fed raises interest rates, which could be in 2023! For some context, we're more than 1.4 years removed from the bear-market bottom of the coronavirus crash and haven't had even a 5% correction in nine months. This is the most over-priced the market has likely ever been. At the night of the dot-com bubble the S&P 500 was only 1,400. Today it is 4,500, not so many years after. Clearly something is not quite right if you look at history and the P/E ratios. A market pumped with liquidity produces higher earnings with historically low interest rates, it's an environment where dangerous things can occur. In late 1997, as the S&P 500 passed its previous 1929 peak of 21x earnings, that seemed like a lot, but nothing compared to today. For some context, the S&P 500 Shiller P/E closed last week at 38.58, which is nearly a two-decade high. It's also well over double the average Shiller P/E of 16.84, dating back 151 years. So the stock market is likely around 2x over-valued. Try to think rationally about what this means for valuations today and your favorite stock prices, what should they be in historical terms? The S&P 500 is up 31% in the past year. It will likely hit 5,000 before a correction given the amount of added liquidity to the system and the QE the Fed is using that's like a huge abuse of MMT, or Modern Monetary Theory. This has also lent to bubbles in the housing market, crypto and even commodities like Gold with long-term global GDP meeting many headwinds in the years ahead due to a demographic shift of an ageing population and significant technological automation. So if you think that stocks or equities or ETFs are the best place to put your money in 2022, you might want to think again. The crash of the OTC and small-cap market since February 2021 has been quite an indication of what a correction looks like. According to the Motley Fool what happens after major downturns in the market historically speaking? In each of the previous four instances that the S&P 500's Shiller P/E shot above and sustained 30, the index lost anywhere from 20% to 89% of its value. So what's what we too are due for, reversion to the mean will be realistically brutal after the Fed's hyper-extreme intervention has run its course. Of course what the Fed stimulus has really done is simply allowed the 1% to get a whole lot richer to the point of wealth inequality spiraling out of control in the decades ahead leading us likely to a dystopia in an unfair and unequal version of BigTech capitalism. This has also led to a trend of short squeeze to these tech stocks, as shown in recent years' data. Of course the Fed has to say that's its done all of these things for the people, employment numbers and the labor market. Women in the workplace have been set behind likely 15 years in social progress due to the pandemic and the Fed's response. While the 89% lost during the Great Depression would be virtually impossible today thanks to ongoing intervention from the Federal Reserve and Capitol Hill, a correction of 20% to 50% would be pretty fair and simply return the curve back to a normal trajectory as interest rates going back up eventually in the 2023 to 2025 period. It's very unlikely the market has taken Fed tapering into account (priced-in), since the euphoria of a can't miss market just keeps pushing the markets higher. But all good things must come to an end. Earlier this month, the U.S. Bureau of Labor Statistics released inflation data from July. This report showed that the Consumer Price Index for All Urban Consumers rose 5.2% over the past 12 months. While the Fed and economists promise us this inflation is temporary, others are not so certain. As you print so much money, the money you have is worth less and certain goods cost more. Wage gains in some industries cannot be taken back, they are permanent - in the service sector like restaurants, hospitality and travel that have been among the hardest hit. The pandemic has led to a paradigm shift in the future of work, and that too is not temporary. The Great Resignation means white collar jobs with be more WFM than ever before, with a new software revolution, different transport and energy behaviors and so forth. Climate change alone could slow down global GDP in the 21st century. How can inflation be temporary when so many trends don't appear to be temporary? Sure the price of lumber or used-cars could be temporary, but a global chip shortage is exasperating the automobile sector. The stock market isn't even behaving like it cares about anything other than the Fed, and its $billions of dollars of buying bonds each month. Some central banks will start to taper about December, 2021 (like the European). However Delta could further mutate into a variant that makes the first generation of vaccines less effective. Such a macro event could be enough to trigger the correction we've been speaking about. So stay safe, and keep your money safe. The Last Dance of the 2009 bull market could feel especially more painful because we've been spoiled for so long in the markets. We can barely remember what March, 2020 felt like. Some people sold their life savings simply due to scare tactics by the likes of Bill Ackman. His scare tactics on CNBC won him likely hundreds of millions as the stock market tanked. Hedge funds further gamed the Reddit and Gamestop movement, orchestrating them and leading the new retail investors into meme speculation and a whole bunch of other unsavory things like options trading at such scale we've never seen before. It's not just inflation and higher interest rates, it's how absurdly high valuations have become. Still correlation does not imply causation. Just because inflation has picked up, it doesn't guarantee that stocks will head lower. Nevertheless, weaker buying power associated with higher inflation can't be overlooked as a potential negative for the U.S. economy and equities. The current S&P500 10-year P/E Ratio is 38.7. This is 97% above the modern-era market average of 19.6, putting the current P/E 2.5 standard deviations above the modern-era average. This is just math, folks. History is saying the stock market is 2x its true value. So why and who would be full on the market or an asset class like crypto that is mostly speculative in nature to begin with? Study the following on a historical basis, and due your own due diligence as to the health of the markets: Debt-to-GDP ratio Call to put ratio

  4. Hedge Funds in the US - Market Research Report (2015-2030)

    • ibisworld.com
    Updated Sep 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IBISWorld (2024). Hedge Funds in the US - Market Research Report (2015-2030) [Dataset]. https://www.ibisworld.com/united-states/market-research-reports/hedge-funds-industry/
    Explore at:
    Dataset updated
    Sep 15, 2024
    Dataset authored and provided by
    IBISWorld
    License

    https://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/

    Time period covered
    2014 - 2029
    Area covered
    United States
    Description

    Consistent growth in assets under management (AUM) has immensely benefited the Hedge Funds industry over the past five years. Industry servicers invest capital they receive from a variety of investor types across a broad range of asset classes and investment strategies. Operators collect a fee for the amount of money they manage for these clients and a percentage of gains they are able to generate on invested assets. This business model helped industry revenue climb at a CAGR of 7.7% to $127.4 billion over the past five years, including an expected incline of 5.7% in 2024. Despite economic volatility in 2020 due to the pandemic lowering interest rates, an incline in the value of stocks in 2020 positively affected many hedge funds. The S&P 500 climbed 16.3% in 2020, which helped increase AUM. Although industry professionals question the relevance of benchmarking hedge fund returns against equity performance, given that hedge funds rely on a range of instruments other than stocks, the industry's poor performance relative to the S&P 500 has begun to raise concern from some investors. These trends have affected the industry's structure, with the traditional 2.0 and 20.0 structure of a flat fee on total AUM and a right-to-earned profit deteriorating into a 1.4 and 16.0 arrangement. As a result, industry profit, measured as earnings before interest and taxes, has been hindered over the past five years. Industry revenue is expected to grow at a CAGR of 3.1% to $148.5 billion over the next five years. AUM is forecast to continue increasing at a consistent rate, partly due to the diversification benefits that hedge funds provide. Nonetheless, increased regulation stemming from the global financial crisis and an escalating focus on the industry's tax structure has the potential to harm industry profit. Further economic uncertainty stemming from heightened inflation and persistently high interest rates is anticipated to dampen any large-scale growth for the industry as more hedge funds take a hawkish approach in their investment portfolio moving forward. Regardless, the number of new hedge funds is forecast to trend with AUM and revenue over the next five years.

  5. Annual Fed funds effective rate in the U.S. 1990-2024

    • statista.com
    • ai-chatbox.pro
    Updated Jan 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual Fed funds effective rate in the U.S. 1990-2024 [Dataset]. https://www.statista.com/statistics/247941/federal-funds-rate-level-in-the-united-states/
    Explore at:
    Dataset updated
    Jan 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The U.S. federal funds rate peaked in 2023 at its highest level since the 2007-08 financial crisis, reaching 5.33 percent by December 2023. A significant shift in monetary policy occurred in the second half of 2024, with the Federal Reserve implementing regular rate cuts. By December 2024, the rate had declined to 4.48 percent. What is a central bank rate? The federal funds rate determines the cost of overnight borrowing between banks, allowing them to maintain necessary cash reserves and ensure financial system liquidity. When this rate rises, banks become more inclined to hold rather than lend money, reducing the money supply. While this decreased lending slows economic activity, it helps control inflation by limiting the circulation of money in the economy. Historic perspective The federal funds rate historically follows cyclical patterns, falling during recessions and gradually rising during economic recoveries. Some central banks, notably the European Central Bank, went beyond traditional monetary policy by implementing both aggressive asset purchases and negative interest rates.

  6. T

    United States Fed Funds Interest Rate

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Fed Funds Interest Rate [Dataset]. https://tradingeconomics.com/united-states/interest-rate
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Aug 4, 1971 - Jun 18, 2025
    Area covered
    United States
    Description

    The benchmark interest rate in the United States was last recorded at 4.50 percent. This dataset provides the latest reported value for - United States Fed Funds Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  7. why is mutual fund investing a good idea for retirement, but not for your...

    • kappasignal.com
    Updated May 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). why is mutual fund investing a good idea for retirement, but not for your emergency fund or short-term savings? (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/why-is-mutual-fund-investing-good-idea.html
    Explore at:
    Dataset updated
    May 6, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    why is mutual fund investing a good idea for retirement, but not for your emergency fund or short-term savings?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  8. k

    which type of mutual fund has the highest allocation toward stocks?...

    • kappasignal.com
    Updated May 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). which type of mutual fund has the highest allocation toward stocks? (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/which-type-of-mutual-fund-has-highest.html
    Explore at:
    Dataset updated
    May 8, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    which type of mutual fund has the highest allocation toward stocks?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  9. Aggressive growth stock mutual funds (Forecast)

    • kappasignal.com
    Updated May 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). Aggressive growth stock mutual funds (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/aggressive-growth-stock-mutual-funds.html
    Explore at:
    Dataset updated
    May 9, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Aggressive growth stock mutual funds

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  10. Are Index Funds Good Investments? (Forecast)

    • kappasignal.com
    Updated Apr 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). Are Index Funds Good Investments? (Forecast) [Dataset]. https://www.kappasignal.com/2023/04/are-index-funds-good-investments.html
    Explore at:
    Dataset updated
    Apr 18, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Are Index Funds Good Investments?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  11. Portfolio Management & Investment Advice in the US - Market Research Report...

    • ibisworld.com
    Updated Mar 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IBISWorld (2025). Portfolio Management & Investment Advice in the US - Market Research Report (2015-2030) [Dataset]. https://www.ibisworld.com/united-states/market-research-reports/portfolio-management-investment-advice-industry/
    Explore at:
    Dataset updated
    Mar 15, 2025
    Dataset authored and provided by
    IBISWorld
    License

    https://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/

    Time period covered
    2015 - 2030
    Area covered
    United States
    Description

    In the last five years, the industry has experienced countervailing trends. For most of the period, rising assets under management (AUM) due to rising asset prices and growing disposable income have increased the base of assets industry operators charge fees on. Increased investor preference for passive asset management, including through exchange-traded funds (ETFs), has driven expenses charged for the management of assets down during the period. Financial markets play an integral role in AUM growth and, consequently, base and performance fees earned by managers. Growth in financial markets was supported by vital macroeconomic variables rising during the majority of the current period, including employment and disposable income levels. Market indices, such as the S&P 500, demonstrated strong growth as these variables increased. In addition, interest rates have climbed significantly over the past five years, which has increased interest income from fixed-income securities such as bonds, although interest rates have been slashed in the latter part of the current period. As interest rates fall, investment funds will shift from fixed-income securities into equities. Portfolio management and investment advice revenue has grown at a CAGR of 6.4% to $579.1 billion over the past five years, including a 3.4% rise in 2025 alone. However, profit has fallen slightly to 29.9% of revenue in the same year. Portfolio management and investment advice revenue are expected to climb at a CAGR of 2.7% to $661.3 billion over the five years to 2030. The beginning of the outlook period is expected to be marred by the anticipated rate cuts by the Federal Reserve as inflationary pressures continue to ease. The FED will monitor inflation, employment, potential tariffs and other economic factors before cutting interest rates at the onset of the outlook period. Customer preferences towards low to zero fees will persist, forcing the portfolio management and investment advising industry to change.

  12. T

    Mexico Interest Rate

    • tradingeconomics.com
    • fr.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Mexico Interest Rate [Dataset]. https://tradingeconomics.com/mexico/interest-rate
    Explore at:
    excel, json, csv, xmlAvailable download formats
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Oct 14, 2005 - Jun 26, 2025
    Area covered
    Mexico
    Description

    The benchmark interest rate in Mexico was last recorded at 8 percent. This dataset provides - Mexico Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  13. Prime loan rate of banks in the U.S. 1990-2025

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Prime loan rate of banks in the U.S. 1990-2025 [Dataset]. https://www.statista.com/statistics/187623/charged-prime-rate-by-us-banks/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The U.S. bank prime loan rate has undergone significant fluctuations over the past three decades, reflecting broader economic trends and monetary policy decisions. From a high of **** percent in 1990, the rate has seen periods of decline, stability, and recent increases. As of May 2025, the prime rate stood at *** percent, marking a notable rise from the historic lows seen in the early 2020s. Federal Reserve's impact on lending rates The prime rate's trajectory closely mirrors changes in the federal funds rate, which serves as a key benchmark for the U.S. financial system. In 2023, the Federal Reserve implemented a series of rate hikes, pushing the federal funds target range to 5.25-5.5 percent by year-end. This aggressive monetary tightening was aimed at combating rising inflation, and its effects rippled through various lending rates, including the prime rate. Long-term investment outlook While short-term rates have risen, long-term investment yields have also seen changes. The 10-year U.S. Treasury bond, a benchmark for long-term interest rates, showed an average market yield of **** percent in the second quarter of 2024, adjusted for constant maturity and inflation. This figure represents a recovery from negative real returns seen in 2021, reflecting shifting expectations for economic growth and inflation. The evolving yield environment has implications for both borrowers and investors, influencing decisions across the financial landscape.

  14. k

    if you were looking to invest in a mutual fund focused on safety and minimal...

    • kappasignal.com
    Updated May 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). if you were looking to invest in a mutual fund focused on safety and minimal growth, what type of mutual fund would you invest in? (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/if-you-were-looking-to-invest-in-mutual.html
    Explore at:
    Dataset updated
    May 6, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    if you were looking to invest in a mutual fund focused on safety and minimal growth, what type of mutual fund would you invest in?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  15. k

    WIW Western Asset Inflation-Linked Opportunities & Income Fund (Forecast)

    • kappasignal.com
    Updated Apr 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). WIW Western Asset Inflation-Linked Opportunities & Income Fund (Forecast) [Dataset]. https://www.kappasignal.com/2023/04/wiw-western-asset-inflation-linked.html
    Explore at:
    Dataset updated
    Apr 14, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    WIW Western Asset Inflation-Linked Opportunities & Income Fund

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  16. T

    Brazil Interest Rate

    • tradingeconomics.com
    • tr.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Brazil Interest Rate [Dataset]. https://tradingeconomics.com/brazil/interest-rate
    Explore at:
    xml, json, csv, excelAvailable download formats
    Dataset updated
    Jun 18, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 5, 1999 - Jun 18, 2025
    Area covered
    Brazil
    Description

    The benchmark interest rate in Brazil was last recorded at 15 percent. This dataset provides - Brazil Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  17. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Jul 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 1, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  18. Annual returns of Nasdaq 100 Index 1986-2024

    • statista.com
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual returns of Nasdaq 100 Index 1986-2024 [Dataset]. https://www.statista.com/statistics/1330833/nasdaq-100-index-annual-returns/
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The annual returns of the Nasdaq 100 Index from 1986 to 2024. fluctuated significantly throughout the period considered. The Nasdaq 100 index saw its lowest performance in 2008, with a return rate of ****** percent, while the largest returns were registered in 1999, at ****** percent. As of June 11, 2024, the rate of return of Nasdaq 100 Index stood at ** percent. The Nasdaq 100 is a stock market index comprised of the 100 largest and most actively traded non-financial companies listed on the Nasdaq stock exchange. How has the Nasdaq 100 evolved over years? The Nasdaq 100, which was previously heavily influenced by tech companies during the dot-com boom, has undergone significant diversification. Today, it represents a broader range of high-growth, non-financial companies across sectors like consumer services and healthcare, reflecting the evolving landscape of the global economy. The annual development of the Nasdaq 100 recently has generally been positive, except for 2022, when the NASDAQ experienced a decline due to worries about escalating inflation, interest rates, and regulatory challenges. What are the leading companies on Nasdaq 100? In August 2023, ***** was the largest company on the Nasdaq 100, with a market capitalization of **** trillion euros. Also, ****************************************** were among the five leading companies included in the index. Market capitalization is one of the most common ways of measuring how big a company is in the financial markets. It is calculated by multiplying the total number of outstanding shares by the current market price.

  19. U.S. projected annual inflation rate 2010-2029

    • statista.com
    Updated Aug 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. projected annual inflation rate 2010-2029 [Dataset]. https://www.statista.com/statistics/244983/projected-inflation-rate-in-the-united-states/
    Explore at:
    Dataset updated
    Aug 21, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The inflation rate in the United States is expected to decrease to 2.1 percent by 2029. 2022 saw a year of exceptionally high inflation, reaching eight percent for the year. The data represents U.S. city averages. The base period was 1982-84. In economics, the inflation rate is a measurement of inflation, the rate of increase of a price index (in this case: consumer price index). It is the percentage rate of change in prices level over time. The rate of decrease in the purchasing power of money is approximately equal. According to the forecast, prices will increase by 2.9 percent in 2024. The annual inflation rate for previous years can be found here and the consumer price index for all urban consumers here. The monthly inflation rate for the United States can also be accessed here. Inflation in the U.S.Inflation is a term used to describe a general rise in the price of goods and services in an economy over a given period of time. Inflation in the United States is calculated using the consumer price index (CPI). The consumer price index is a measure of change in the price level of a preselected market basket of consumer goods and services purchased by households. This forecast of U.S. inflation was prepared by the International Monetary Fund. They project that inflation will stay higher than average throughout 2023, followed by a decrease to around roughly two percent annual rise in the general level of prices until 2028. Considering the annual inflation rate in the United States in 2021, a two percent inflation rate is a very moderate projection. The 2022 spike in inflation in the United States and worldwide is due to a variety of factors that have put constraints on various aspects of the economy. These factors include COVID-19 pandemic spending and supply-chain constraints, disruptions due to the war in Ukraine, and pandemic related changes in the labor force. Although the moderate inflation of prices between two and three percent is considered normal in a modern economy, countries’ central banks try to prevent severe inflation and deflation to keep the growth of prices to a minimum. Severe inflation is considered dangerous to a country’s economy because it can rapidly diminish the population’s purchasing power and thus damage the GDP .

  20. k

    What is a index fund and how does it work? (Forecast)

    • kappasignal.com
    Updated Apr 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). What is a index fund and how does it work? (Forecast) [Dataset]. https://www.kappasignal.com/2023/04/what-is-index-fund-and-how-does-it-work.html
    Explore at:
    Dataset updated
    Apr 18, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    What is a index fund and how does it work?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2025). Money Market Funds; Total Financial Assets, Level [Dataset]. https://fred.stlouisfed.org/series/MMMFFAQ027S

Money Market Funds; Total Financial Assets, Level

MMMFFAQ027S

Explore at:
8 scholarly articles cite this dataset (View in Google Scholar)
jsonAvailable download formats
Dataset updated
Jun 12, 2025
License

https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

Description

Graph and download economic data for Money Market Funds; Total Financial Assets, Level (MMMFFAQ027S) from Q4 1945 to Q1 2025 about MMMF, IMA, financial, assets, and USA.

Search
Clear search
Close search
Google apps
Main menu