Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for TEMPERATURE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Facebook
TwitterThe average temperature in December 2024 was 38.25 degrees Fahrenheit in the United States, the fourth-largest country in the world. The country has extremely diverse climates across its expansive landmass. Temperatures in the United States On the continental U.S., the southern regions face warm to extremely hot temperatures all year round, the Pacific Northwest tends to deal with rainy weather, the Mid-Atlantic sees all four seasons, and New England experiences the coldest winters in the country. The North American country has experienced an increase in the daily minimum temperatures since 1970. Consequently, the average annual temperature in the United States has seen a spike in recent years. Climate Change The entire world has seen changes in its average temperature as a result of climate change. Climate change occurs due to increased levels of greenhouse gases which act to trap heat in the atmosphere, preventing it from leaving the Earth. Greenhouse gases are emitted from various sectors but most prominently from burning fossil fuels. Climate change has significantly affected the average temperature across countries worldwide. In the United States, an increasing number of people have stated that they have personally experienced the effects of climate change. Not only are there environmental consequences due to climate change, but also economic ones. In 2022, for instance, extreme temperatures in the United States caused over 5.5 million U.S. dollars in economic damage. These economic ramifications occur for several reasons, which include higher temperatures, changes in regional precipitation, and rising sea levels.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for TEMPERATURE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Facebook
TwitterThe highest average temperature recorded in 2024 until November was in August, at 16.8 degrees Celsius. Since 2015, the highest average daily temperature in the UK was registered in July 2018, at 18.7 degrees Celsius. The summer of 2018 was the joint hottest since institutions began recording temperatures in 1910. One noticeable anomaly during this period was in December 2015, when the average daily temperature reached 9.5 degrees Celsius. This month also experienced the highest monthly rainfall in the UK since before 2014, with England, Wales, and Scotland suffering widespread flooding. Daily hours of sunshine Unsurprisingly, the heat wave that spread across the British Isles in 2018 was the result of particularly sunny weather. July 2018 saw an average of 8.7 daily sun hours in the United Kingdom. This was more hours of sun than was recorded in July 2024, which only saw 5.8 hours of sun. Temperatures are on the rise Since the 1960s, there has been an increase in regional temperatures across the UK. Between 1961 and 1990, temperatures in England averaged nine degrees Celsius, and from 2013 to 2022, average temperatures in the country had increased to 10.3 degrees Celsius. Due to its relatively southern location, England continues to rank as the warmest country in the UK.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset was scraped from the World Bank Climate Knowledge https://climateknowledgeportal.worldbank.org/ for all available countries from 1901 to 2022. Dataset also includes 5 year smooth temperature values.
Facebook
TwitterBased on current monthly figures, on average, German climate has gotten a bit warmer. The average temperature for January 2025 was recorded at around 2 degrees Celsius, compared to 1.5 degrees a year before. In the broader context of climate change, average monthly temperatures are indicative of where the national climate is headed and whether attempts to control global warming are successful. Summer and winter Average summer temperature in Germany fluctuated in recent years, generally between 18 to 19 degrees Celsius. The season remains generally warm, and while there may not be as many hot and sunny days as in other parts of Europe, heat waves have occurred. In fact, 2023 saw 11.5 days with a temperature of at least 30 degrees, though this was a decrease compared to the year before. Meanwhile, average winter temperatures also fluctuated, but were higher in recent years, rising over four degrees on average in 2024. Figures remained in the above zero range since 2011. Numbers therefore suggest that German winters are becoming warmer, even if individual regions experiencing colder sub-zero snaps or even more snowfall may disagree. Rain, rain, go away Average monthly precipitation varied depending on the season, though sometimes figures from different times of the year were comparable. In 2024, the average monthly precipitation was highest in May and September, although rainfalls might increase in October and November with the beginning of the cold season. In the past, torrential rains have led to catastrophic flooding in Germany, with one of the most devastating being the flood of July 2021. Germany is not immune to the weather changing between two extremes, e.g. very warm spring months mostly without rain, when rain might be wished for, and then increased precipitation in other months where dry weather might be better, for example during planting and harvest seasons. Climate change remains on the agenda in all its far-reaching ways.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Some say climate change is the biggest threat of our age while others say it’s a myth based on dodgy science. We are turning some of the data over to you so you can form your own view.
Even more than with other data sets that Kaggle has featured, there’s a huge amount of data cleaning and preparation that goes into putting together a long-time study of climate trends. Early data was collected by technicians using mercury thermometers, where any variation in the visit time impacted measurements. In the 1940s, the construction of airports caused many weather stations to be moved. In the 1980s, there was a move to electronic thermometers that are said to have a cooling bias.
Given this complexity, there are a range of organizations that collate climate trends data. The three most cited land and ocean temperature data sets are NOAA’s MLOST, NASA’s GISTEMP and the UK’s HadCrut.
We have repackaged the data from a newer compilation put together by the Berkeley Earth, which is affiliated with Lawrence Berkeley National Laboratory. The Berkeley Earth Surface Temperature Study combines 1.6 billion temperature reports from 16 pre-existing archives. It is nicely packaged and allows for slicing into interesting subsets (for example by country). They publish the source data and the code for the transformations they applied. They also use methods that allow weather observations from shorter time series to be included, meaning fewer observations need to be thrown away.
In this dataset, we have include several files:
Global Land and Ocean-and-Land Temperatures (GlobalTemperatures.csv):
Other files include:
The raw data comes from the Berkeley Earth data page.
Facebook
TwitterThe annual mean temperature in England has typically been the highest of the United Kingdom's countries. In 2024, it stood at ***** degrees Celsius, while the average temperature in Scotland was **** degrees Celsius.
Facebook
TwitterThis statistic shows a ranking of the estimated worldwide average temperature in 2020, differentiated by country. The figure refers to the projected annual average temperature for the period 2020-2039 as modelled by the GISS-E2-R model in the RCP 4.5 scenario (Medium-low emission).The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in more than 150 countries and regions worldwide. All input data are sourced from international institutions, national statistical offices, and trade associations. All data has been are processed to generate comparable datasets (see supplementary notes under details for more information).
Facebook
Twitterhttp://www.worldclim.org/currenthttp://www.worldclim.org/current
(From http://www.worldclim.org/methods) - For a complete description, see:
Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis, 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978.
The data layers were generated through interpolation of average monthly climate data from weather stations on a 30 arc-second resolution grid (often referred to as 1 km2 resolution). Variables included are monthly total precipitation, and monthly mean, minimum and maximum temperature, and 19 derived bioclimatic variables.
The WorldClim interpolated climate layers were made using: * Major climate databases compiled by the Global Historical Climatology Network (GHCN), the FAO, the WMO, the International Center for Tropical Agriculture (CIAT), R-HYdronet, and a number of additional minor databases for Australia, New Zealand, the Nordic European Countries, Ecuador, Peru, Bolivia, among others. * The SRTM elevation database (aggregeated to 30 arc-seconds, 1 km) * The ANUSPLIN software. ANUSPLIN is a program for interpolating noisy multi-variate data using thin plate smoothing splines. We used latitude, longitude, and elevation as independent variables.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for TEMPERATURE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Facebook
Twitterhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/insitu-gridded-observations-global-and-regional/insitu-gridded-observations-global-and-regional_15437b363f02bf5e6f41fc2995e3d19a590eb4daff5a7ce67d1ef6c269d81d68.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/insitu-gridded-observations-global-and-regional/insitu-gridded-observations-global-and-regional_15437b363f02bf5e6f41fc2995e3d19a590eb4daff5a7ce67d1ef6c269d81d68.pdf
This dataset provides high-resolution gridded temperature and precipitation observations from a selection of sources. Additionally the dataset contains daily global average near-surface temperature anomalies. All fields are defined on either daily or monthly frequency. The datasets are regularly updated to incorporate recent observations. The included data sources are commonly known as GISTEMP, Berkeley Earth, CPC and CPC-CONUS, CHIRPS, IMERG, CMORPH, GPCC and CRU, where the abbreviations are explained below. These data have been constructed from high-quality analyses of meteorological station series and rain gauges around the world, and as such provide a reliable source for the analysis of weather extremes and climate trends. The regular update cycle makes these data suitable for a rapid study of recently occurred phenomena or events. The NASA Goddard Institute for Space Studies temperature analysis dataset (GISTEMP-v4) combines station data of the Global Historical Climatology Network (GHCN) with the Extended Reconstructed Sea Surface Temperature (ERSST) to construct a global temperature change estimate. The Berkeley Earth Foundation dataset (BERKEARTH) merges temperature records from 16 archives into a single coherent dataset. The NOAA Climate Prediction Center datasets (CPC and CPC-CONUS) define a suite of unified precipitation products with consistent quantity and improved quality by combining all information sources available at CPC and by taking advantage of the optimal interpolation (OI) objective analysis technique. The Climate Hazards Group InfraRed Precipitation with Station dataset (CHIRPS-v2) incorporates 0.05° resolution satellite imagery and in-situ station data to create gridded rainfall time series over the African continent, suitable for trend analysis and seasonal drought monitoring. The Integrated Multi-satellitE Retrievals dataset (IMERG) by NASA uses an algorithm to intercalibrate, merge, and interpolate “all'' satellite microwave precipitation estimates, together with microwave-calibrated infrared (IR) satellite estimates, precipitation gauge analyses, and potentially other precipitation estimators over the entire globe at fine time and space scales for the Tropical Rainfall Measuring Mission (TRMM) and its successor, Global Precipitation Measurement (GPM) satellite-based precipitation products. The Climate Prediction Center morphing technique dataset (CMORPH) by NOAA has been created using precipitation estimates that have been derived from low orbiter satellite microwave observations exclusively. Then, geostationary IR data are used as a means to transport the microwave-derived precipitation features during periods when microwave data are not available at a location. The Global Precipitation Climatology Centre dataset (GPCC) is a centennial product of monthly global land-surface precipitation based on the ~80,000 stations world-wide that feature record durations of 10 years or longer. The data coverage per month varies from ~6,000 (before 1900) to more than 50,000 stations. The Climatic Research Unit dataset (CRU v4) features an improved interpolation process, which delivers full traceability back to station measurements. The station measurements of temperature and precipitation are public, as well as the gridded dataset and national averages for each country. Cross-validation was performed at a station level, and the results have been published as a guide to the accuracy of the interpolation. This catalogue entry complements the E-OBS record in many aspects, as it intends to provide high-resolution gridded meteorological observations at a global rather than continental scale. These data may be suitable as a baseline for model comparisons or extreme event analysis in the CMIP5 and CMIP6 dataset.
Facebook
TwitterDuring 2023, the average temperature recorded in India was ***** degrees Celsius, a slight increase from the ** degrees Celsius recorded in the previous year. This represented the highest average temperature recorded in the South Asian country since 2017.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for TEMPERATURE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Facebook
TwitterPublication of monthly mean temperature, pressure, precipitation, vapor pressure, and hours of sunshine for approximately 2,000 surface data collection stations worldwide, and monthly mean upper air temperatures, dew point depressions, and wind velocities for approximately 500 observing sites.
Facebook
Twitterhttp://dcat-ap.de/def/licenses/geonutz/20130319http://dcat-ap.de/def/licenses/geonutz/20130319
This data set only contains monthly values for the last 3 years and the current year, which have not yet gone through all stages of quality control. This collection of worldwide measurements from CLIMAT stations is based on original data provided by the responsible national weather services. Further information: https://opendata.dwd.de/climate_environment/CDC/observations_global/CLIMAT/monthly/qc/air_temperature_mean/recent/BESCHREIBUNG_obsglobal_monthly_qc_air_temperature_mean_recent_de.pdf
Facebook
TwitterIn December 2022, the minimum temperature measured at Riyadh (King Khaled International Airport) weather station in Saudi Arabia was 5.4 degrees Celsius. This was the second temperature in Riyadh during the year, with January having the coldest, at 1.8 degrees Celsius. July recorded the hottest temperature of the year at 27.9 degrees Celsius.
Facebook
TwitterIn 2023, the observed annual average mean temperature in Australia reached 22.32 degrees Celsius. Overall, the annual average temperature had increased compared to the temperature reported for 1901. Impact of climate change The rising temperatures in Australia are a prime example of global climate change. As a dry country, peak temperatures and drought pose significant environmental threats to Australia, leading to water shortages and an increase in bushfires. Western and South Australia reported the highest temperatures measured in the country, with record high temperatures of over 50°C in 2022. Australia’s emission sources While Australia has pledged its commitment to the Paris Climate Agreement, it still relies economically on a few high greenhouse gas emitting sectors, such as the mining and energy sectors. Australia’s current leading source of greenhouse gas emissions is the generation of electricity, and black coal is still a dominant source for its total energy production. One of the future challenges of the country will thus be to find a balance between economic security and the mitigation of environmental impact.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Image is an ecological-environmental model framework that simulates the environmental impact of human activities worldwide. It models the interactions between society, the biosphere and the climate system to evaluate sustainability issues such as climate change, biodiversity and quality of life. The IMAGE model (version 3.0, 2014) aims to explore the long-term dynamics and effects of global change resulting from the interaction between demographic, technological, economic, social, cultural and political factors.
IMAGE 3.0
Image runs result in grid-level data with resolution of 30 by 30 arcminutes and 5 by 5 arcminutes for physical processes and in data at regional level with 26 regions for socio-economic data. Since version 3.0, the grid data is published in netcdf format via the KNMI data portal (KDC). This dataset is a grid dataset.
The IMAGE indicators at grid level
Eleven indicators are available: Annual precipitation, annual temperature, dryness index, biomass, fraction of land cover type, fraction of land cover type detailed, land cover, monthly rainfall, monthly temperature, net primary production (NPP) and population density. For each indicator, there is a data file per scenario. These data files can be viewed and downloaded.
The SSP scenarios
The first IMAGE 3.0 results are the SSP scenarios of the Shared Socioeconomic Pathways — SSP project. These are documented in the article: Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. The data of the following scenarios are available via the KNMI portal: baseline (SSP2) and mitigation scenarios (SSP2_SPA0_RCP_1.9, SSP2_SPA2_RCP_2.6, SSP2_SPA2_RCP_3.4, SSP2_SPA2_RCP_4.5, SSP2_SPA2_RCP_6.0). SPA2 stands for fragmented and postponed policies, SPA0 stands for global uniform policy without delay, RCP stands for Representative Concentration Pathways. The results for the SSP1, SSP3, SSP4 and SSP5 scenarios are available on request. To do this, please contact the IMAGE team: IMAGE-info@pbl.nl
Indicator — Annual temperature (30 arcmin)
This indicator shows the global annual surface temperature for each country cell for the period 1970 to 2100 in increments of 5 years. Below you can download the entire indicator dataset as TAR file (in NetCDF 4.0 format) or per scenario as separate files (in.nc format).
The data is available under CC-BY license. The IMAGE team would like to be involved in projects that use the data.
Facebook
TwitterThis is the second of two datasets containing derived data necessary to reproduce the results of the associated journal article: "On the Sensitivity of Annual Streamflow to Air Temperature," intended for publication in Water Resources Research. The first dataset contains monthly time series of basin-mean precipitation, air temperature, and net radiation, along with basin characteristics. This second dataset, using the first as input, contains empirical and theoretical estimates of annual streamflow sensitivities to precipitation, temperature, and previous-year streamflow. For each basin, a water year was defined by optimization of a streamflow regression against precipitation, temperature, and previous-year streamflow; all variables in the regression were detrended, normalized (except in the case of temperature) anomalies. The coefficients from the optimal regression were the empirical sensitivities. Theoretical sensitivities were computed according to equations in the associated paper. Their computation required estimates of the sensitivities of annual net radiation to precipitation and temperature; these were estimated empirically by regression. Other variables used in the paper and included here are basic basin characteristics; long-term means of streamflow, precipitation, temperature, and net radiation; standard errors of estimation of the regression coefficients for streamflow and net radiation; monthly climatological means of net radiation and temperature; potential evapotranspiration; and adjusted precipitation amounts that make the basin means obey a common relation between aridity index and evapotranspiration ratio.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for TEMPERATURE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.