100+ datasets found
  1. T

    Vital Signs: Jobs by Wage Level - Subregion

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Jan 18, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Vital Signs: Jobs by Wage Level - Subregion [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Jobs-by-Wage-Level-Subregion/yc3r-a4rh
    Explore at:
    json, xml, csv, application/rdfxml, tsv, application/rssxmlAvailable download formats
    Dataset updated
    Jan 18, 2019
    Description

    VITAL SIGNS INDICATOR Jobs by Wage Level (EQ1)

    FULL MEASURE NAME Distribution of jobs by low-, middle-, and high-wage occupations

    LAST UPDATED January 2019

    DESCRIPTION Jobs by wage level refers to the distribution of jobs by low-, middle- and high-wage occupations. In the San Francisco Bay Area, low-wage occupations have a median hourly wage of less than 80% of the regional median wage; median wages for middle-wage occupations range from 80% to 120% of the regional median wage, and high-wage occupations have a median hourly wage above 120% of the regional median wage.

    DATA SOURCE California Employment Development Department OES (2001-2017) http://www.labormarketinfo.edd.ca.gov/data/oes-employment-and-wages.html

    American Community Survey (2001-2017) http://api.census.gov

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Jobs are determined to be low-, middle-, or high-wage based on the median hourly wage of their occupational classification in the most recent year. Low-wage jobs are those that pay below 80% of the regional median wage. Middle-wage jobs are those that pay between 80% and 120% of the regional median wage. High-wage jobs are those that pay above 120% of the regional median wage. Regional median hourly wages are estimated from the American Community Survey and are published on the Vital Signs Income indicator page. For the national context analysis, occupation wage classifications are unique to each metro area. A low-wage job in New York, for instance, may be a middle-wage job in Miami. For the Bay Area in 2017, the median hourly wage for low-wage occupations was less than $20.86 per hour. For middle-wage jobs, the median ranged from $20.86 to $31.30 per hour; and for high-wage jobs, the median wage was above $31.30 per hour.

    Occupational employment and wage information comes from the Occupational Employment Statistics (OES) program. Regional and subregional data is published by the California Employment Development Department. Metro data is published by the Bureau of Labor Statistics. The OES program collects data on wage and salary workers in nonfarm establishments to produce employment and wage estimates for some 800 occupations. Data from non-incorporated self-employed persons are not collected, and are not included in these estimates. Wage estimates represent a three-year rolling average.

    Due to changes in reporting during the analysis period, subregion data from the EDD OES have been aggregated to produce geographies that can be compared over time. West Bay is San Mateo, San Francisco, and Marin counties. North Bay is Sonoma, Solano and Napa counties. East Bay is Alameda and Contra Costa counties. South Bay is Santa Clara County from 2001-2004 and Santa Clara and San Benito counties from 2005-2017.

    Due to changes in occupation classifications during the analysis period, all occupations have been reassigned to 2010 SOC codes. For pre-2009 reporting years, all employment in occupations that were split into two or more 2010 SOC occupations are assigned to the first 2010 SOC occupation listed in the crosswalk table provided by the Census Bureau. This method assumes these occupations always fall in the same wage category, and sensitivity analysis of this reassignment method shows this is true in most cases.

    In order to use OES data for time series analysis, several steps were taken to handle missing wage or employment data. For some occupations, such as airline pilots and flight attendants, no wage information was provided and these were removed from the analysis. Other occupations did not record a median hourly wage (mostly due to irregular work hours) but did record an annual average wage. Nearly all these occupations were in education (i.e. teachers). In this case, a 2080 hour-work year was assumed and [annual average wage/2080] was used as a proxy for median income. Most of these occupations were classified as high-wage, thus dispelling concern of underestimating a median wage for a teaching occupation that requires less than 2080 hours of work a year (equivalent to 12 months fulltime). Finally, the OES has missing employment data for occupations across the time series. To make the employment data comparable between years, gaps in employment data for occupations are ‘filled-in’ using linear interpolation if there are at least two years of employment data found in OES. Occupations with less than two years of employment data were dropped from the analysis. Over 80% of interpolated cells represent missing employment data for just one year in the time series. While this interpolating technique may impact year-over-year comparisons, the long-term trends represented in the analysis generally are accurate.

  2. O

    Average Salary by Job Classification

    • data.montgomerycountymd.gov
    • catalog.data.gov
    application/rdfxml +5
    Updated Jun 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Average Salary by Job Classification [Dataset]. https://data.montgomerycountymd.gov/Human-Resources/Average-Salary-by-Job-Classification/48wg-fkab
    Explore at:
    csv, tsv, application/rdfxml, json, xml, application/rssxmlAvailable download formats
    Dataset updated
    Jun 10, 2020
    Description

    This Dataset indicates average salary by position title and grade for full-time regular employees. Data excludes elected, appointed, non-merit and temporary employees. Underfilled positions are also excluded from the dataset. Update Frequency : Annually

  3. EARN06: Gross weekly earnings by occupation

    • ons.gov.uk
    • cy.ons.gov.uk
    xls
    Updated May 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). EARN06: Gross weekly earnings by occupation [Dataset]. https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/earningsandworkinghours/datasets/grossweeklyearningsbyoccupationearn06
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 13, 2025
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Gross weekly and hourly earnings by level of occupation, UK, quarterly, not seasonally adjusted. Labour Force Survey. These are official statistics in development.

  4. Wages

    • open.canada.ca
    • ouvert.canada.ca
    csv
    Updated Dec 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Employment and Social Development Canada (2024). Wages [Dataset]. https://open.canada.ca/data/en/dataset/adad580f-76b0-4502-bd05-20c125de9116
    Explore at:
    csvAvailable download formats
    Dataset updated
    Dec 12, 2024
    Dataset provided by
    Ministry of Employment and Social Development of Canadahttp://esdc-edsc.gc.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    The wages on the Job Bank website are specific to an occupation and provide information on the earnings of workers at the regional level. Wages for most occupations are also provided at the national and provincial level. In Canada, all jobs are associated with one specific occupational grouping which is determined by the National Occupational Classification. For most occupations, a minimum, median and maximum wage estimates are displayed. They are update annually. If you have comments or questions regarding the wage information, please contact the Labour Market Information Division at: NC-LMI-IMT-GD@hrsdc-rhdcc.gc.ca

  5. G

    Average full-time hourly wage paid and payroll employment by type of work,...

    • ouvert.canada.ca
    • www150.statcan.gc.ca
    • +1more
    csv, html, xml
    Updated Jan 17, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2023). Average full-time hourly wage paid and payroll employment by type of work, industry and occupation [Dataset]. https://ouvert.canada.ca/data/dataset/1f75b29f-13af-4aa6-92bb-201a11282bec
    Explore at:
    csv, xml, htmlAvailable download formats
    Dataset updated
    Jan 17, 2023
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Average full-time hourly wage paid and payroll employment by type of work, North American Industry Classification System (NAICS) and National Occupational Classification (NOC), 2016 and 2017.

  6. Average monthly salary Norway 2022, by occupation

    • statista.com
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Average monthly salary Norway 2022, by occupation [Dataset]. https://www.statista.com/statistics/1169737/average-monthly-salary-norway-by-occupation/
    Explore at:
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    Norway
    Description

    Managers earned on average the highest monthly salary in Norway. In 2022, people with a manager position earned over 78,000 Norwegian kroner on average on a monthly basis. Professionals were the occupational group with the second highest average monthly salary, followed by technicians, associate professors, and people employed in the armed forces. The lowest average salaries in Norway that year were found among elementary occupations.

  7. F

    12-Month Moving Average of Unweighted Median Hourly Wage Growth: Job Stayer

    • fred.stlouisfed.org
    json
    Updated Jun 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). 12-Month Moving Average of Unweighted Median Hourly Wage Growth: Job Stayer [Dataset]. https://fred.stlouisfed.org/series/FRBATLWGT12MMUMHWGJST
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 11, 2025
    License

    https://fred.stlouisfed.org/legal/https://fred.stlouisfed.org/legal/

    Description

    Graph and download economic data for 12-Month Moving Average of Unweighted Median Hourly Wage Growth: Job Stayer (FRBATLWGT12MMUMHWGJST) from Dec 1997 to May 2025 about growth, moving average, 1-year, jobs, average, wages, median, and USA.

  8. U.S. wage and salary accruals 2023, by industry

    • statista.com
    Updated Oct 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. wage and salary accruals 2023, by industry [Dataset]. https://www.statista.com/statistics/243834/annual-mean-wages-and-salary-per-employee-in-the-us-by-industry/
    Explore at:
    Dataset updated
    Oct 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, the average wage and salary per full-time equivalent employee in the mining industry in the United States was at 126,707 U.S. dollars. The highest wage and salary per FTE was found in the information industry, at 164,400 U.S. dollars.

  9. Brazil Average Real Income: All Jobs: Actual Earnings

    • ceicdata.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Brazil Average Real Income: All Jobs: Actual Earnings [Dataset]. https://www.ceicdata.com/en/brazil/continuous-national-household-sample-survey-monthly/average-real-income-all-jobs-actual-earnings
    Explore at:
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 1, 2018 - Mar 1, 2019
    Area covered
    Brazil
    Variables measured
    Wage/Earnings
    Description

    Brazil Average Real Income: All Jobs: Actual Earnings data was reported at 2,304.000 BRL in Mar 2019. This records a decrease from the previous number of 2,531.000 BRL for Feb 2019. Brazil Average Real Income: All Jobs: Actual Earnings data is updated monthly, averaging 2,269.000 BRL from Feb 2012 (Median) to Mar 2019, with 86 observations. The data reached an all-time high of 2,611.000 BRL in Jan 2019 and a record low of 2,147.000 BRL in Apr 2012. Brazil Average Real Income: All Jobs: Actual Earnings data remains active status in CEIC and is reported by Brazilian Institute of Geography and Statistics. The data is categorized under Brazil Premium Database’s Labour Market – Table BR.GBA001: Continuous National Household Sample Survey: Monthly.

  10. Average salary in the logistics industry by job function 2017

    • statista.com
    Updated Apr 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Average salary in the logistics industry by job function 2017 [Dataset]. https://www.statista.com/statistics/699183/logistics-market-average-salary-by-job-function/
    Explore at:
    Dataset updated
    Apr 19, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The statistic gives the results of the annual salary survey among logistics and supply chain professionals, asking respondents about their annual salaries including bonuses and other compensations in 2016 and 2017, and broken down by job function. In that period, the average salary for a supply chain management employee amounted to about 120,175 U.S. dollars, down from 141,540 U.S. dollars in the previous year.

  11. Average monthly salary in Mexico 2023, by sector of occupation

    • statista.com
    • ai-chatbox.pro
    Updated Jul 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Average monthly salary in Mexico 2023, by sector of occupation [Dataset]. https://www.statista.com/statistics/1399638/average-monthly-salary-by-sector-occupation-mexico/
    Explore at:
    Dataset updated
    Jul 5, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Mexico
    Description

    In Mexico as of the third quarter of 2023, the sectors of occupation measured by the average monthly salary had the extractive industry as the clear leader, in terms of highest average salary, with 10,612 Mexican pesos, followed by the governmental, education and health areas.

  12. T

    United States Average Hourly Wages

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Average Hourly Wages [Dataset]. https://tradingeconomics.com/united-states/wages
    Explore at:
    json, csv, xml, excelAvailable download formats
    Dataset updated
    Jun 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1964 - Jun 30, 2025
    Area covered
    United States
    Description

    Wages in the United States increased to 31.24 USD/Hour in June from 31.15 USD/Hour in May of 2025. This dataset provides - United States Average Hourly Wages - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  13. k

    Average Salaries in the Private Sector by Main Profession Nationality and...

    • datasource.kapsarc.org
    Updated Jul 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Average Salaries in the Private Sector by Main Profession Nationality and Gender [Dataset]. https://datasource.kapsarc.org/explore/dataset/average-salaries-in-the-private-sector-by-main-profession-nationality-and-gende0/
    Explore at:
    Dataset updated
    Jul 1, 2025
    Description

    Explore the dataset on average salaries in the private sector by main profession, nationality, and gender in Saudi Arabia. Gain insights into industrial and chemical processes, food industries, total labor force, and more.

    Industrial and chemical processes and food industries, Non-Saudis, Total labour force, Agricultural and animal husbandry Poultry and fishing, Services jobs, Auxiliary basic engineering jobs, Scientific, technical and human technicians, Clerical jobs, Saudis, Male, Administrative and business directors, Other, Sales jobs, Scientific, technical and human specialists, Female, Profession, Gender , Saudi, Non Saudi, SAMA Annual

    Saudi Arabia Follow data.kapsarc.org for timely data to advance energy economics research..

  14. g

    Average Salary by Job Classification | gimi9.com

    • gimi9.com
    Updated Jul 1, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Average Salary by Job Classification | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_average-salary-by-job-classification/
    Explore at:
    Dataset updated
    Jul 1, 2020
    Description

    This Dataset indicates average salary by position title and grade for full-time regular employees. Data excludes elected, appointed, non-merit and temporary employees. Underfilled positions are also excluded from the dataset. Update Frequency : Annually

  15. d

    Number of employees, average pay per person - healthcare and social work...

    • data.gov.tw
    csv, json +1
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Labor, Number of employees, average pay per person - healthcare and social work services industry (by job category) [Dataset]. https://data.gov.tw/en/datasets/41698
    Explore at:
    webservices, json, csvAvailable download formats
    Dataset authored and provided by
    Ministry of Labor
    License

    https://data.gov.tw/licensehttps://data.gov.tw/license

    Description

    The number of employees and average salary in the healthcare and social work services industry.

  16. f

    Data from: Average salary

    • froghire.ai
    Updated Apr 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FrogHire.ai (2025). Average salary [Dataset]. https://www.froghire.ai/major/See%20Section%20K%20Job%207
    Explore at:
    Dataset updated
    Apr 3, 2025
    Dataset provided by
    FrogHire.ai
    Description

    Explore the progression of average salaries for graduates in See Section K Job 7 from 2020 to 2023 through this detailed chart. It compares these figures against the national average for all graduates, offering a comprehensive look at the earning potential of See Section K Job 7 relative to other fields. This data is essential for students assessing the return on investment of their education in See Section K Job 7, providing a clear picture of financial prospects post-graduation.

  17. F

    Expenditures: Total Average Annual Expenditures by Occupation: Wage and...

    • fred.stlouisfed.org
    json
    Updated Sep 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Expenditures: Total Average Annual Expenditures by Occupation: Wage and Salary Earners: Service Workers [Dataset]. https://fred.stlouisfed.org/series/CXUTOTALEXPLB1206M
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 25, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Expenditures: Total Average Annual Expenditures by Occupation: Wage and Salary Earners: Service Workers (CXUTOTALEXPLB1206M) from 1984 to 2023 about occupation, salaries, workers, average, expenditures, wages, services, and USA.

  18. f

    Data from: Average salary

    • froghire.ai
    Updated Apr 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FrogHire.ai (2025). Average salary [Dataset]. https://www.froghire.ai/major/Technology%20See%20Section%20K%2C%20Job%203
    Explore at:
    Dataset updated
    Apr 6, 2025
    Dataset provided by
    FrogHire.ai
    Description

    Explore the progression of average salaries for graduates in Technology See Section K, Job 3 from 2020 to 2023 through this detailed chart. It compares these figures against the national average for all graduates, offering a comprehensive look at the earning potential of Technology See Section K, Job 3 relative to other fields. This data is essential for students assessing the return on investment of their education in Technology See Section K, Job 3, providing a clear picture of financial prospects post-graduation.

  19. G

    Job vacancies and average offered hourly wage by occupation (broad...

    • open.canada.ca
    • www150.statcan.gc.ca
    • +2more
    csv, html, xml
    Updated Mar 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2024). Job vacancies and average offered hourly wage by occupation (broad occupational category), quarterly, unadjusted for seasonality, inactive [Dataset]. https://open.canada.ca/data/en/dataset/7412a157-dde6-4af4-9e7d-a98c9d83d01f
    Explore at:
    html, csv, xmlAvailable download formats
    Dataset updated
    Mar 19, 2024
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Number of job vacancies and average offered hourly wage by one-digit National Occupational Classification (NOC) code, last 5 quarters.

  20. f

    Data from: Average salary

    • froghire.ai
    Updated Apr 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FrogHire.ai (2025). Average salary [Dataset]. https://www.froghire.ai/major/Technology%2C%20See%20Job%20K4
    Explore at:
    Dataset updated
    Apr 6, 2025
    Dataset provided by
    FrogHire.ai
    Description

    Explore the progression of average salaries for graduates in Technology, See Job K4 from 2020 to 2023 through this detailed chart. It compares these figures against the national average for all graduates, offering a comprehensive look at the earning potential of Technology, See Job K4 relative to other fields. This data is essential for students assessing the return on investment of their education in Technology, See Job K4, providing a clear picture of financial prospects post-graduation.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2019). Vital Signs: Jobs by Wage Level - Subregion [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Jobs-by-Wage-Level-Subregion/yc3r-a4rh

Vital Signs: Jobs by Wage Level - Subregion

Explore at:
json, xml, csv, application/rdfxml, tsv, application/rssxmlAvailable download formats
Dataset updated
Jan 18, 2019
Description

VITAL SIGNS INDICATOR Jobs by Wage Level (EQ1)

FULL MEASURE NAME Distribution of jobs by low-, middle-, and high-wage occupations

LAST UPDATED January 2019

DESCRIPTION Jobs by wage level refers to the distribution of jobs by low-, middle- and high-wage occupations. In the San Francisco Bay Area, low-wage occupations have a median hourly wage of less than 80% of the regional median wage; median wages for middle-wage occupations range from 80% to 120% of the regional median wage, and high-wage occupations have a median hourly wage above 120% of the regional median wage.

DATA SOURCE California Employment Development Department OES (2001-2017) http://www.labormarketinfo.edd.ca.gov/data/oes-employment-and-wages.html

American Community Survey (2001-2017) http://api.census.gov

CONTACT INFORMATION vitalsigns.info@bayareametro.gov

METHODOLOGY NOTES (across all datasets for this indicator) Jobs are determined to be low-, middle-, or high-wage based on the median hourly wage of their occupational classification in the most recent year. Low-wage jobs are those that pay below 80% of the regional median wage. Middle-wage jobs are those that pay between 80% and 120% of the regional median wage. High-wage jobs are those that pay above 120% of the regional median wage. Regional median hourly wages are estimated from the American Community Survey and are published on the Vital Signs Income indicator page. For the national context analysis, occupation wage classifications are unique to each metro area. A low-wage job in New York, for instance, may be a middle-wage job in Miami. For the Bay Area in 2017, the median hourly wage for low-wage occupations was less than $20.86 per hour. For middle-wage jobs, the median ranged from $20.86 to $31.30 per hour; and for high-wage jobs, the median wage was above $31.30 per hour.

Occupational employment and wage information comes from the Occupational Employment Statistics (OES) program. Regional and subregional data is published by the California Employment Development Department. Metro data is published by the Bureau of Labor Statistics. The OES program collects data on wage and salary workers in nonfarm establishments to produce employment and wage estimates for some 800 occupations. Data from non-incorporated self-employed persons are not collected, and are not included in these estimates. Wage estimates represent a three-year rolling average.

Due to changes in reporting during the analysis period, subregion data from the EDD OES have been aggregated to produce geographies that can be compared over time. West Bay is San Mateo, San Francisco, and Marin counties. North Bay is Sonoma, Solano and Napa counties. East Bay is Alameda and Contra Costa counties. South Bay is Santa Clara County from 2001-2004 and Santa Clara and San Benito counties from 2005-2017.

Due to changes in occupation classifications during the analysis period, all occupations have been reassigned to 2010 SOC codes. For pre-2009 reporting years, all employment in occupations that were split into two or more 2010 SOC occupations are assigned to the first 2010 SOC occupation listed in the crosswalk table provided by the Census Bureau. This method assumes these occupations always fall in the same wage category, and sensitivity analysis of this reassignment method shows this is true in most cases.

In order to use OES data for time series analysis, several steps were taken to handle missing wage or employment data. For some occupations, such as airline pilots and flight attendants, no wage information was provided and these were removed from the analysis. Other occupations did not record a median hourly wage (mostly due to irregular work hours) but did record an annual average wage. Nearly all these occupations were in education (i.e. teachers). In this case, a 2080 hour-work year was assumed and [annual average wage/2080] was used as a proxy for median income. Most of these occupations were classified as high-wage, thus dispelling concern of underestimating a median wage for a teaching occupation that requires less than 2080 hours of work a year (equivalent to 12 months fulltime). Finally, the OES has missing employment data for occupations across the time series. To make the employment data comparable between years, gaps in employment data for occupations are ‘filled-in’ using linear interpolation if there are at least two years of employment data found in OES. Occupations with less than two years of employment data were dropped from the analysis. Over 80% of interpolated cells represent missing employment data for just one year in the time series. While this interpolating technique may impact year-over-year comparisons, the long-term trends represented in the analysis generally are accurate.

Search
Clear search
Close search
Google apps
Main menu